1 | /* struve.c |
---|
2 | * |
---|
3 | * Struve function |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double v, x, y, struve(); |
---|
10 | * |
---|
11 | * y = struve( v, x ); |
---|
12 | * |
---|
13 | * |
---|
14 | * |
---|
15 | * DESCRIPTION: |
---|
16 | * |
---|
17 | * Computes the Struve function Hv(x) of order v, argument x. |
---|
18 | * Negative x is rejected unless v is an integer. |
---|
19 | * |
---|
20 | * This module also contains the hypergeometric functions 1F2 |
---|
21 | * and 3F0 and a routine for the Bessel function Yv(x) with |
---|
22 | * noninteger v. |
---|
23 | * |
---|
24 | * |
---|
25 | * |
---|
26 | * ACCURACY: |
---|
27 | * |
---|
28 | * Not accurately characterized, but spot checked against tables. |
---|
29 | * |
---|
30 | */ |
---|
31 | |
---|
32 | |
---|
33 | /* |
---|
34 | Cephes Math Library Release 2.81: June, 2000 |
---|
35 | Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier |
---|
36 | */ |
---|
37 | #include "mconf.h" |
---|
38 | #define DEBUG 0 |
---|
39 | #ifdef ANSIPROT |
---|
40 | extern double gamma ( double ); |
---|
41 | extern double pow ( double, double ); |
---|
42 | extern double sqrt ( double ); |
---|
43 | extern double yn ( int, double ); |
---|
44 | extern double jv ( double, double ); |
---|
45 | extern double fabs ( double ); |
---|
46 | extern double floor ( double ); |
---|
47 | extern double sin ( double ); |
---|
48 | extern double cos ( double ); |
---|
49 | double yv ( double, double ); |
---|
50 | double onef2 (double, double, double, double, double * ); |
---|
51 | double threef0 (double, double, double, double, double * ); |
---|
52 | #else |
---|
53 | double gamma(), pow(), sqrt(), yn(), yv(), jv(), fabs(), floor(); |
---|
54 | double sin(), cos(); |
---|
55 | double onef2(), threef0(); |
---|
56 | #endif |
---|
57 | static double stop = 1.37e-17; |
---|
58 | extern double MACHEP; |
---|
59 | |
---|
60 | double onef2( a, b, c, x, err ) |
---|
61 | double a, b, c, x; |
---|
62 | double *err; |
---|
63 | { |
---|
64 | double n, a0, sum, t; |
---|
65 | double an, bn, cn, max, z; |
---|
66 | |
---|
67 | an = a; |
---|
68 | bn = b; |
---|
69 | cn = c; |
---|
70 | a0 = 1.0; |
---|
71 | sum = 1.0; |
---|
72 | n = 1.0; |
---|
73 | t = 1.0; |
---|
74 | max = 0.0; |
---|
75 | |
---|
76 | do |
---|
77 | { |
---|
78 | if( an == 0 ) |
---|
79 | goto done; |
---|
80 | if( bn == 0 ) |
---|
81 | goto error; |
---|
82 | if( cn == 0 ) |
---|
83 | goto error; |
---|
84 | if( (a0 > 1.0e34) || (n > 200) ) |
---|
85 | goto error; |
---|
86 | a0 *= (an * x) / (bn * cn * n); |
---|
87 | sum += a0; |
---|
88 | an += 1.0; |
---|
89 | bn += 1.0; |
---|
90 | cn += 1.0; |
---|
91 | n += 1.0; |
---|
92 | z = fabs( a0 ); |
---|
93 | if( z > max ) |
---|
94 | max = z; |
---|
95 | if( sum != 0 ) |
---|
96 | t = fabs( a0 / sum ); |
---|
97 | else |
---|
98 | t = z; |
---|
99 | } |
---|
100 | while( t > stop ); |
---|
101 | |
---|
102 | done: |
---|
103 | |
---|
104 | *err = fabs( MACHEP*max /sum ); |
---|
105 | |
---|
106 | #if DEBUG |
---|
107 | printf(" onef2 cancellation error %.5E\n", *err ); |
---|
108 | #endif |
---|
109 | |
---|
110 | goto xit; |
---|
111 | |
---|
112 | error: |
---|
113 | #if DEBUG |
---|
114 | printf("onef2 does not converge\n"); |
---|
115 | #endif |
---|
116 | *err = 1.0e38; |
---|
117 | |
---|
118 | xit: |
---|
119 | |
---|
120 | #if DEBUG |
---|
121 | printf("onef2( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum); |
---|
122 | #endif |
---|
123 | return(sum); |
---|
124 | } |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | |
---|
129 | double threef0( a, b, c, x, err ) |
---|
130 | double a, b, c, x; |
---|
131 | double *err; |
---|
132 | { |
---|
133 | double n, a0, sum, t, conv, conv1; |
---|
134 | double an, bn, cn, max, z; |
---|
135 | |
---|
136 | an = a; |
---|
137 | bn = b; |
---|
138 | cn = c; |
---|
139 | a0 = 1.0; |
---|
140 | sum = 1.0; |
---|
141 | n = 1.0; |
---|
142 | t = 1.0; |
---|
143 | max = 0.0; |
---|
144 | conv = 1.0e38; |
---|
145 | conv1 = conv; |
---|
146 | |
---|
147 | do |
---|
148 | { |
---|
149 | if( an == 0.0 ) |
---|
150 | goto done; |
---|
151 | if( bn == 0.0 ) |
---|
152 | goto done; |
---|
153 | if( cn == 0.0 ) |
---|
154 | goto done; |
---|
155 | if( (a0 > 1.0e34) || (n > 200) ) |
---|
156 | goto error; |
---|
157 | a0 *= (an * bn * cn * x) / n; |
---|
158 | an += 1.0; |
---|
159 | bn += 1.0; |
---|
160 | cn += 1.0; |
---|
161 | n += 1.0; |
---|
162 | z = fabs( a0 ); |
---|
163 | if( z > max ) |
---|
164 | max = z; |
---|
165 | if( z >= conv ) |
---|
166 | { |
---|
167 | if( (z < max) && (z > conv1) ) |
---|
168 | goto done; |
---|
169 | } |
---|
170 | conv1 = conv; |
---|
171 | conv = z; |
---|
172 | sum += a0; |
---|
173 | if( sum != 0 ) |
---|
174 | t = fabs( a0 / sum ); |
---|
175 | else |
---|
176 | t = z; |
---|
177 | } |
---|
178 | while( t > stop ); |
---|
179 | |
---|
180 | done: |
---|
181 | |
---|
182 | t = fabs( MACHEP*max/sum ); |
---|
183 | #if DEBUG |
---|
184 | printf(" threef0 cancellation error %.5E\n", t ); |
---|
185 | #endif |
---|
186 | |
---|
187 | max = fabs( conv/sum ); |
---|
188 | if( max > t ) |
---|
189 | t = max; |
---|
190 | #if DEBUG |
---|
191 | printf(" threef0 convergence %.5E\n", max ); |
---|
192 | #endif |
---|
193 | |
---|
194 | goto xit; |
---|
195 | |
---|
196 | error: |
---|
197 | #if DEBUG |
---|
198 | printf("threef0 does not converge\n"); |
---|
199 | #endif |
---|
200 | t = 1.0e38; |
---|
201 | |
---|
202 | xit: |
---|
203 | |
---|
204 | #if DEBUG |
---|
205 | printf("threef0( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum); |
---|
206 | #endif |
---|
207 | |
---|
208 | *err = t; |
---|
209 | return(sum); |
---|
210 | } |
---|
211 | |
---|
212 | |
---|
213 | |
---|
214 | |
---|
215 | extern double PI; |
---|
216 | |
---|
217 | double struve( v, x ) |
---|
218 | double v, x; |
---|
219 | { |
---|
220 | double y, ya, f, g, h, t; |
---|
221 | double onef2err, threef0err; |
---|
222 | |
---|
223 | f = floor(v); |
---|
224 | if( (v < 0) && ( v-f == 0.5 ) ) |
---|
225 | { |
---|
226 | y = jv( -v, x ); |
---|
227 | f = 1.0 - f; |
---|
228 | g = 2.0 * floor(f/2.0); |
---|
229 | if( g != f ) |
---|
230 | y = -y; |
---|
231 | return(y); |
---|
232 | } |
---|
233 | t = 0.25*x*x; |
---|
234 | f = fabs(x); |
---|
235 | g = 1.5 * fabs(v); |
---|
236 | if( (f > 30.0) && (f > g) ) |
---|
237 | { |
---|
238 | onef2err = 1.0e38; |
---|
239 | y = 0.0; |
---|
240 | } |
---|
241 | else |
---|
242 | { |
---|
243 | y = onef2( 1.0, 1.5, 1.5+v, -t, &onef2err ); |
---|
244 | } |
---|
245 | |
---|
246 | if( (f < 18.0) || (x < 0.0) ) |
---|
247 | { |
---|
248 | threef0err = 1.0e38; |
---|
249 | ya = 0.0; |
---|
250 | } |
---|
251 | else |
---|
252 | { |
---|
253 | ya = threef0( 1.0, 0.5, 0.5-v, -1.0/t, &threef0err ); |
---|
254 | } |
---|
255 | |
---|
256 | f = sqrt( PI ); |
---|
257 | h = pow( 0.5*x, v-1.0 ); |
---|
258 | |
---|
259 | if( onef2err <= threef0err ) |
---|
260 | { |
---|
261 | g = gamma( v + 1.5 ); |
---|
262 | y = y * h * t / ( 0.5 * f * g ); |
---|
263 | return(y); |
---|
264 | } |
---|
265 | else |
---|
266 | { |
---|
267 | g = gamma( v + 0.5 ); |
---|
268 | ya = ya * h / ( f * g ); |
---|
269 | ya = ya + yv( v, x ); |
---|
270 | return(ya); |
---|
271 | } |
---|
272 | } |
---|
273 | |
---|
274 | |
---|
275 | |
---|
276 | |
---|
277 | /* Bessel function of noninteger order |
---|
278 | */ |
---|
279 | |
---|
280 | double yv( v, x ) |
---|
281 | double v, x; |
---|
282 | { |
---|
283 | double y, t; |
---|
284 | int n; |
---|
285 | |
---|
286 | y = floor( v ); |
---|
287 | if( y == v ) |
---|
288 | { |
---|
289 | n = v; |
---|
290 | y = yn( n, x ); |
---|
291 | return( y ); |
---|
292 | } |
---|
293 | t = PI * v; |
---|
294 | y = (cos(t) * jv( v, x ) - jv( -v, x ))/sin(t); |
---|
295 | return( y ); |
---|
296 | } |
---|
297 | |
---|
298 | /* Crossover points between ascending series and asymptotic series |
---|
299 | * for Struve function |
---|
300 | * |
---|
301 | * v x |
---|
302 | * |
---|
303 | * 0 19.2 |
---|
304 | * 1 18.95 |
---|
305 | * 2 19.15 |
---|
306 | * 3 19.3 |
---|
307 | * 5 19.7 |
---|
308 | * 10 21.35 |
---|
309 | * 20 26.35 |
---|
310 | * 30 32.31 |
---|
311 | * 40 40.0 |
---|
312 | */ |
---|