1 | /* stdtr.c |
---|
2 | * |
---|
3 | * Student's t distribution |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double t, stdtr(); |
---|
10 | * short k; |
---|
11 | * |
---|
12 | * y = stdtr( k, t ); |
---|
13 | * |
---|
14 | * |
---|
15 | * DESCRIPTION: |
---|
16 | * |
---|
17 | * Computes the integral from minus infinity to t of the Student |
---|
18 | * t distribution with integer k > 0 degrees of freedom: |
---|
19 | * |
---|
20 | * t |
---|
21 | * - |
---|
22 | * | | |
---|
23 | * - | 2 -(k+1)/2 |
---|
24 | * | ( (k+1)/2 ) | ( x ) |
---|
25 | * ---------------------- | ( 1 + --- ) dx |
---|
26 | * - | ( k ) |
---|
27 | * sqrt( k pi ) | ( k/2 ) | |
---|
28 | * | | |
---|
29 | * - |
---|
30 | * -inf. |
---|
31 | * |
---|
32 | * Relation to incomplete beta integral: |
---|
33 | * |
---|
34 | * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) |
---|
35 | * where |
---|
36 | * z = k/(k + t**2). |
---|
37 | * |
---|
38 | * For t < -2, this is the method of computation. For higher t, |
---|
39 | * a direct method is derived from integration by parts. |
---|
40 | * Since the function is symmetric about t=0, the area under the |
---|
41 | * right tail of the density is found by calling the function |
---|
42 | * with -t instead of t. |
---|
43 | * |
---|
44 | * ACCURACY: |
---|
45 | * |
---|
46 | * Tested at random 1 <= k <= 25. The "domain" refers to t. |
---|
47 | * Relative error: |
---|
48 | * arithmetic domain # trials peak rms |
---|
49 | * IEEE -100,-2 50000 5.9e-15 1.4e-15 |
---|
50 | * IEEE -2,100 500000 2.7e-15 4.9e-17 |
---|
51 | */ |
---|
52 | |
---|
53 | /* stdtri.c |
---|
54 | * |
---|
55 | * Functional inverse of Student's t distribution |
---|
56 | * |
---|
57 | * |
---|
58 | * |
---|
59 | * SYNOPSIS: |
---|
60 | * |
---|
61 | * double p, t, stdtri(); |
---|
62 | * int k; |
---|
63 | * |
---|
64 | * t = stdtri( k, p ); |
---|
65 | * |
---|
66 | * |
---|
67 | * DESCRIPTION: |
---|
68 | * |
---|
69 | * Given probability p, finds the argument t such that stdtr(k,t) |
---|
70 | * is equal to p. |
---|
71 | * |
---|
72 | * ACCURACY: |
---|
73 | * |
---|
74 | * Tested at random 1 <= k <= 100. The "domain" refers to p: |
---|
75 | * Relative error: |
---|
76 | * arithmetic domain # trials peak rms |
---|
77 | * IEEE .001,.999 25000 5.7e-15 8.0e-16 |
---|
78 | * IEEE 10^-6,.001 25000 2.0e-12 2.9e-14 |
---|
79 | */ |
---|
80 | |
---|
81 | |
---|
82 | /* |
---|
83 | Cephes Math Library Release 2.8: June, 2000 |
---|
84 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
85 | */ |
---|
86 | |
---|
87 | #include "mconf.h" |
---|
88 | |
---|
89 | extern double PI, MACHEP, MAXNUM; |
---|
90 | #ifdef ANSIPROT |
---|
91 | extern double sqrt ( double ); |
---|
92 | extern double atan ( double ); |
---|
93 | extern double incbet ( double, double, double ); |
---|
94 | extern double incbi ( double, double, double ); |
---|
95 | extern double fabs ( double ); |
---|
96 | #else |
---|
97 | double sqrt(), atan(), incbet(), incbi(), fabs(); |
---|
98 | #endif |
---|
99 | |
---|
100 | double stdtr( k, t ) |
---|
101 | int k; |
---|
102 | double t; |
---|
103 | { |
---|
104 | double x, rk, z, f, tz, p, xsqk; |
---|
105 | int j; |
---|
106 | |
---|
107 | if( k <= 0 ) |
---|
108 | { |
---|
109 | mtherr( "stdtr", DOMAIN ); |
---|
110 | return(0.0); |
---|
111 | } |
---|
112 | |
---|
113 | if( t == 0 ) |
---|
114 | return( 0.5 ); |
---|
115 | |
---|
116 | if( t < -2.0 ) |
---|
117 | { |
---|
118 | rk = k; |
---|
119 | z = rk / (rk + t * t); |
---|
120 | p = 0.5 * incbet( 0.5*rk, 0.5, z ); |
---|
121 | return( p ); |
---|
122 | } |
---|
123 | |
---|
124 | /* compute integral from -t to + t */ |
---|
125 | |
---|
126 | if( t < 0 ) |
---|
127 | x = -t; |
---|
128 | else |
---|
129 | x = t; |
---|
130 | |
---|
131 | rk = k; /* degrees of freedom */ |
---|
132 | z = 1.0 + ( x * x )/rk; |
---|
133 | |
---|
134 | /* test if k is odd or even */ |
---|
135 | if( (k & 1) != 0) |
---|
136 | { |
---|
137 | |
---|
138 | /* computation for odd k */ |
---|
139 | |
---|
140 | xsqk = x/sqrt(rk); |
---|
141 | p = atan( xsqk ); |
---|
142 | if( k > 1 ) |
---|
143 | { |
---|
144 | f = 1.0; |
---|
145 | tz = 1.0; |
---|
146 | j = 3; |
---|
147 | while( (j<=(k-2)) && ( (tz/f) > MACHEP ) ) |
---|
148 | { |
---|
149 | tz *= (j-1)/( z * j ); |
---|
150 | f += tz; |
---|
151 | j += 2; |
---|
152 | } |
---|
153 | p += f * xsqk/z; |
---|
154 | } |
---|
155 | p *= 2.0/PI; |
---|
156 | } |
---|
157 | |
---|
158 | |
---|
159 | else |
---|
160 | { |
---|
161 | |
---|
162 | /* computation for even k */ |
---|
163 | |
---|
164 | f = 1.0; |
---|
165 | tz = 1.0; |
---|
166 | j = 2; |
---|
167 | |
---|
168 | while( ( j <= (k-2) ) && ( (tz/f) > MACHEP ) ) |
---|
169 | { |
---|
170 | tz *= (j - 1)/( z * j ); |
---|
171 | f += tz; |
---|
172 | j += 2; |
---|
173 | } |
---|
174 | p = f * x/sqrt(z*rk); |
---|
175 | } |
---|
176 | |
---|
177 | /* common exit */ |
---|
178 | |
---|
179 | |
---|
180 | if( t < 0 ) |
---|
181 | p = -p; /* note destruction of relative accuracy */ |
---|
182 | |
---|
183 | p = 0.5 + 0.5 * p; |
---|
184 | return(p); |
---|
185 | } |
---|
186 | |
---|
187 | double stdtri( k, p ) |
---|
188 | int k; |
---|
189 | double p; |
---|
190 | { |
---|
191 | double t, rk, z; |
---|
192 | int rflg; |
---|
193 | |
---|
194 | if( k <= 0 || p <= 0.0 || p >= 1.0 ) |
---|
195 | { |
---|
196 | mtherr( "stdtri", DOMAIN ); |
---|
197 | return(0.0); |
---|
198 | } |
---|
199 | |
---|
200 | rk = k; |
---|
201 | |
---|
202 | if( p > 0.25 && p < 0.75 ) |
---|
203 | { |
---|
204 | if( p == 0.5 ) |
---|
205 | return( 0.0 ); |
---|
206 | z = 1.0 - 2.0 * p; |
---|
207 | z = incbi( 0.5, 0.5*rk, fabs(z) ); |
---|
208 | t = sqrt( rk*z/(1.0-z) ); |
---|
209 | if( p < 0.5 ) |
---|
210 | t = -t; |
---|
211 | return( t ); |
---|
212 | } |
---|
213 | rflg = -1; |
---|
214 | if( p >= 0.5) |
---|
215 | { |
---|
216 | p = 1.0 - p; |
---|
217 | rflg = 1; |
---|
218 | } |
---|
219 | z = incbi( 0.5*rk, 0.5, 2.0*p ); |
---|
220 | |
---|
221 | if( MAXNUM * z < rk ) |
---|
222 | return(rflg* MAXNUM); |
---|
223 | t = sqrt( rk/z - rk ); |
---|
224 | return( rflg * t ); |
---|
225 | } |
---|