source: sasview/src/sas/models/c_extension/cephes/ndtri.c @ 1e81bc8

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 1e81bc8 was 79492222, checked in by krzywon, 10 years ago

Changed the file and folder names to remove all SANS references.

  • Property mode set to 100644
File size: 9.9 KB
Line 
1/*                                                      ndtri.c
2 *
3 *      Inverse of Normal distribution function
4 *
5 *
6 *
7 * SYNOPSIS:
8 *
9 * double x, y, ndtri();
10 *
11 * x = ndtri( y );
12 *
13 *
14 *
15 * DESCRIPTION:
16 *
17 * Returns the argument, x, for which the area under the
18 * Gaussian probability density function (integrated from
19 * minus infinity to x) is equal to y.
20 *
21 *
22 * For small arguments 0 < y < exp(-2), the program computes
23 * z = sqrt( -2.0 * log(y) );  then the approximation is
24 * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
25 * There are two rational functions P/Q, one for 0 < y < exp(-32)
26 * and the other for y up to exp(-2).  For larger arguments,
27 * w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
28 *
29 *
30 * ACCURACY:
31 *
32 *                      Relative error:
33 * arithmetic   domain        # trials      peak         rms
34 *    DEC      0.125, 1         5500       9.5e-17     2.1e-17
35 *    DEC      6e-39, 0.135     3500       5.7e-17     1.3e-17
36 *    IEEE     0.125, 1        20000       7.2e-16     1.3e-16
37 *    IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17
38 *
39 *
40 * ERROR MESSAGES:
41 *
42 *   message         condition    value returned
43 * ndtri domain       x <= 0        -MAXNUM
44 * ndtri domain       x >= 1         MAXNUM
45 *
46 */
47
48
49/*
50Cephes Math Library Release 2.8:  June, 2000
51Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
52*/
53
54#include "mconf.h"
55extern double MAXNUM;
56
57#ifdef UNK
58/* sqrt(2pi) */
59static double s2pi = 2.50662827463100050242E0;
60#endif
61
62#ifdef DEC
63static unsigned short s2p[] = {0040440,0066230,0177661,0034055};
64#define s2pi *(double *)s2p
65#endif
66
67#ifdef IBMPC
68static unsigned short s2p[] = {0x2706,0x1ff6,0x0d93,0x4004};
69#define s2pi *(double *)s2p
70#endif
71
72#ifdef MIEEE
73static unsigned short s2p[] = {
740x4004,0x0d93,0x1ff6,0x2706
75};
76#define s2pi *(double *)s2p
77#endif
78
79/* approximation for 0 <= |y - 0.5| <= 3/8 */
80#ifdef UNK
81static double P0[5] = {
82-5.99633501014107895267E1,
83 9.80010754185999661536E1,
84-5.66762857469070293439E1,
85 1.39312609387279679503E1,
86-1.23916583867381258016E0,
87};
88static double Q0[8] = {
89/* 1.00000000000000000000E0,*/
90 1.95448858338141759834E0,
91 4.67627912898881538453E0,
92 8.63602421390890590575E1,
93-2.25462687854119370527E2,
94 2.00260212380060660359E2,
95-8.20372256168333339912E1,
96 1.59056225126211695515E1,
97-1.18331621121330003142E0,
98};
99#endif
100#ifdef DEC
101static unsigned short P0[20] = {
1020141557,0155170,0071360,0120550,
1030041704,0000214,0172417,0067307,
1040141542,0132204,0040066,0156723,
1050041136,0163161,0157276,0007747,
1060140236,0116374,0073666,0051764,
107};
108static unsigned short Q0[32] = {
109/*0040200,0000000,0000000,0000000,*/
1100040372,0026256,0110403,0123707,
1110040625,0122024,0020277,0026661,
1120041654,0134161,0124134,0007244,
1130142141,0073162,0133021,0131371,
1140042110,0041235,0043516,0057767,
1150141644,0011417,0036155,0137305,
1160041176,0076556,0004043,0125430,
1170140227,0073347,0152776,0067251,
118};
119#endif
120#ifdef IBMPC
121static unsigned short P0[20] = {
1220x142d,0x0e5e,0xfb4f,0xc04d,
1230xedd9,0x9ea1,0x8011,0x4058,
1240xdbba,0x8806,0x5690,0xc04c,
1250xc1fd,0x3bd7,0xdcce,0x402b,
1260xca7e,0x8ef6,0xd39f,0xbff3,
127};
128static unsigned short Q0[36] = {
129/*0x0000,0x0000,0x0000,0x3ff0,*/
1300x74f9,0xd220,0x4595,0x3fff,
1310xe5b6,0x8417,0xb482,0x4012,
1320x81d4,0x350b,0x970e,0x4055,
1330x365f,0x56c2,0x2ece,0xc06c,
1340xcbff,0xa8e9,0x0853,0x4069,
1350xb7d9,0xe78d,0x8261,0xc054,
1360x7563,0xc104,0xcfad,0x402f,
1370xcdd5,0xfabf,0xeedc,0xbff2,
138};
139#endif
140#ifdef MIEEE
141static unsigned short P0[20] = {
1420xc04d,0xfb4f,0x0e5e,0x142d,
1430x4058,0x8011,0x9ea1,0xedd9,
1440xc04c,0x5690,0x8806,0xdbba,
1450x402b,0xdcce,0x3bd7,0xc1fd,
1460xbff3,0xd39f,0x8ef6,0xca7e,
147};
148static unsigned short Q0[32] = {
149/*0x3ff0,0x0000,0x0000,0x0000,*/
1500x3fff,0x4595,0xd220,0x74f9,
1510x4012,0xb482,0x8417,0xe5b6,
1520x4055,0x970e,0x350b,0x81d4,
1530xc06c,0x2ece,0x56c2,0x365f,
1540x4069,0x0853,0xa8e9,0xcbff,
1550xc054,0x8261,0xe78d,0xb7d9,
1560x402f,0xcfad,0xc104,0x7563,
1570xbff2,0xeedc,0xfabf,0xcdd5,
158};
159#endif
160
161
162/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
163 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
164 */
165#ifdef UNK
166static double P1[9] = {
167 4.05544892305962419923E0,
168 3.15251094599893866154E1,
169 5.71628192246421288162E1,
170 4.40805073893200834700E1,
171 1.46849561928858024014E1,
172 2.18663306850790267539E0,
173-1.40256079171354495875E-1,
174-3.50424626827848203418E-2,
175-8.57456785154685413611E-4,
176};
177static double Q1[8] = {
178/*  1.00000000000000000000E0,*/
179 1.57799883256466749731E1,
180 4.53907635128879210584E1,
181 4.13172038254672030440E1,
182 1.50425385692907503408E1,
183 2.50464946208309415979E0,
184-1.42182922854787788574E-1,
185-3.80806407691578277194E-2,
186-9.33259480895457427372E-4,
187};
188#endif
189#ifdef DEC
190static unsigned short P1[36] = {
1910040601,0143074,0150744,0073326,
1920041374,0031554,0113253,0146016,
1930041544,0123272,0012463,0176771,
1940041460,0051160,0103560,0156511,
1950041152,0172624,0117772,0030755,
1960040413,0170713,0151545,0176413,
1970137417,0117512,0022154,0131671,
1980137017,0104257,0071432,0007072,
1990135540,0143363,0063137,0036166,
200};
201static unsigned short Q1[32] = {
202/*0040200,0000000,0000000,0000000,*/
2030041174,0075325,0004736,0120326,
2040041465,0110044,0047561,0045567,
2050041445,0042321,0012142,0030340,
2060041160,0127074,0166076,0141051,
2070040440,0046055,0040745,0150400,
2080137421,0114146,0067330,0010621,
2090137033,0175162,0025555,0114351,
2100135564,0122773,0145750,0030357,
211};
212#endif
213#ifdef IBMPC
214static unsigned short P1[36] = {
2150x8edb,0x9a3c,0x38c7,0x4010,
2160x7982,0x92d5,0x866d,0x403f,
2170x7fbf,0x42a6,0x94d7,0x404c,
2180x1ba9,0x10ee,0x0a4e,0x4046,
2190x463e,0x93ff,0x5eb2,0x402d,
2200xbfa1,0x7a6c,0x7e39,0x4001,
2210x9677,0x448d,0xf3e9,0xbfc1,
2220x41c7,0xee63,0xf115,0xbfa1,
2230xe78f,0x6ccb,0x18de,0xbf4c,
224};
225static unsigned short Q1[32] = {
226/*0x0000,0x0000,0x0000,0x3ff0,*/
2270xd41b,0xa13b,0x8f5a,0x402f,
2280x296f,0x89ee,0xb204,0x4046,
2290x461c,0x228c,0xa89a,0x4044,
2300xd845,0x9d87,0x15c7,0x402e,
2310xba20,0xa83c,0x0985,0x4004,
2320x0232,0xcddb,0x330c,0xbfc2,
2330xb31d,0x456d,0x7f4e,0xbfa3,
2340x061e,0x797d,0x94bf,0xbf4e,
235};
236#endif
237#ifdef MIEEE
238static unsigned short P1[36] = {
2390x4010,0x38c7,0x9a3c,0x8edb,
2400x403f,0x866d,0x92d5,0x7982,
2410x404c,0x94d7,0x42a6,0x7fbf,
2420x4046,0x0a4e,0x10ee,0x1ba9,
2430x402d,0x5eb2,0x93ff,0x463e,
2440x4001,0x7e39,0x7a6c,0xbfa1,
2450xbfc1,0xf3e9,0x448d,0x9677,
2460xbfa1,0xf115,0xee63,0x41c7,
2470xbf4c,0x18de,0x6ccb,0xe78f,
248};
249static unsigned short Q1[32] = {
250/*0x3ff0,0x0000,0x0000,0x0000,*/
2510x402f,0x8f5a,0xa13b,0xd41b,
2520x4046,0xb204,0x89ee,0x296f,
2530x4044,0xa89a,0x228c,0x461c,
2540x402e,0x15c7,0x9d87,0xd845,
2550x4004,0x0985,0xa83c,0xba20,
2560xbfc2,0x330c,0xcddb,0x0232,
2570xbfa3,0x7f4e,0x456d,0xb31d,
2580xbf4e,0x94bf,0x797d,0x061e,
259};
260#endif
261
262/* Approximation for interval z = sqrt(-2 log y ) between 8 and 64
263 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
264 */
265
266#ifdef UNK
267static double P2[9] = {
268  3.23774891776946035970E0,
269  6.91522889068984211695E0,
270  3.93881025292474443415E0,
271  1.33303460815807542389E0,
272  2.01485389549179081538E-1,
273  1.23716634817820021358E-2,
274  3.01581553508235416007E-4,
275  2.65806974686737550832E-6,
276  6.23974539184983293730E-9,
277};
278static double Q2[8] = {
279/*  1.00000000000000000000E0,*/
280  6.02427039364742014255E0,
281  3.67983563856160859403E0,
282  1.37702099489081330271E0,
283  2.16236993594496635890E-1,
284  1.34204006088543189037E-2,
285  3.28014464682127739104E-4,
286  2.89247864745380683936E-6,
287  6.79019408009981274425E-9,
288};
289#endif
290#ifdef DEC
291static unsigned short P2[36] = {
2920040517,0033507,0036236,0125641,
2930040735,0044616,0014473,0140133,
2940040574,0012567,0114535,0102541,
2950040252,0120340,0143474,0150135,
2960037516,0051057,0115361,0031211,
2970036512,0131204,0101511,0125144,
2980035236,0016627,0043160,0140216,
2990033462,0060512,0060141,0010641,
3000031326,0062541,0101304,0077706,
301};
302static unsigned short Q2[32] = {
303/*0040200,0000000,0000000,0000000,*/
3040040700,0143322,0132137,0040501,
3050040553,0101155,0053221,0140257,
3060040260,0041071,0052573,0010004,
3070037535,0066472,0177261,0162330,
3080036533,0160475,0066666,0036132,
3090035253,0174533,0027771,0044027,
3100033502,0016147,0117666,0063671,
3110031351,0047455,0141663,0054751,
312};
313#endif
314#ifdef IBMPC
315static unsigned short P2[36] = {
3160xd574,0xe793,0xe6e8,0x4009,
3170x780b,0xc327,0xa931,0x401b,
3180xb0ac,0xf32b,0x82ae,0x400f,
3190x9a0c,0x18e7,0x541c,0x3ff5,
3200x2651,0xf35e,0xca45,0x3fc9,
3210x354d,0x9069,0x5650,0x3f89,
3220x1812,0xe8ce,0xc3b2,0x3f33,
3230x2234,0x4c0c,0x4c29,0x3ec6,
3240x8ff9,0x3058,0xccac,0x3e3a,
325};
326static unsigned short Q2[32] = {
327/*0x0000,0x0000,0x0000,0x3ff0,*/
3280xe828,0x568b,0x18da,0x4018,
3290x3816,0xaad2,0x704d,0x400d,
3300x6200,0x2aaf,0x0847,0x3ff6,
3310x3c9b,0x5fd6,0xada7,0x3fcb,
3320xc78b,0xadb6,0x7c27,0x3f8b,
3330x2903,0x65ff,0x7f2b,0x3f35,
3340xccf7,0xf3f6,0x438c,0x3ec8,
3350x6b3d,0xb876,0x29e5,0x3e3d,
336};
337#endif
338#ifdef MIEEE
339static unsigned short P2[36] = {
3400x4009,0xe6e8,0xe793,0xd574,
3410x401b,0xa931,0xc327,0x780b,
3420x400f,0x82ae,0xf32b,0xb0ac,
3430x3ff5,0x541c,0x18e7,0x9a0c,
3440x3fc9,0xca45,0xf35e,0x2651,
3450x3f89,0x5650,0x9069,0x354d,
3460x3f33,0xc3b2,0xe8ce,0x1812,
3470x3ec6,0x4c29,0x4c0c,0x2234,
3480x3e3a,0xccac,0x3058,0x8ff9,
349};
350static unsigned short Q2[32] = {
351/*0x3ff0,0x0000,0x0000,0x0000,*/
3520x4018,0x18da,0x568b,0xe828,
3530x400d,0x704d,0xaad2,0x3816,
3540x3ff6,0x0847,0x2aaf,0x6200,
3550x3fcb,0xada7,0x5fd6,0x3c9b,
3560x3f8b,0x7c27,0xadb6,0xc78b,
3570x3f35,0x7f2b,0x65ff,0x2903,
3580x3ec8,0x438c,0xf3f6,0xccf7,
3590x3e3d,0x29e5,0xb876,0x6b3d,
360};
361#endif
362
363#ifdef ANSIPROT
364extern double polevl ( double, void *, int );
365extern double p1evl ( double, void *, int );
366extern double log ( double );
367extern double sqrt ( double );
368#else
369double polevl(), p1evl(), log(), sqrt();
370#endif
371
372double ndtri(y0)
373double y0;
374{
375double x, y, z, y2, x0, x1;
376int code;
377
378if( y0 <= 0.0 )
379        {
380        mtherr( "ndtri", DOMAIN );
381        return( -MAXNUM );
382        }
383if( y0 >= 1.0 )
384        {
385        mtherr( "ndtri", DOMAIN );
386        return( MAXNUM );
387        }
388code = 1;
389y = y0;
390if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */
391        {
392        y = 1.0 - y;
393        code = 0;
394        }
395
396if( y > 0.13533528323661269189 )
397        {
398        y = y - 0.5;
399        y2 = y * y;
400        x = y + y * (y2 * polevl( y2, P0, 4)/p1evl( y2, Q0, 8 ));
401        x = x * s2pi; 
402        return(x);
403        }
404
405x = sqrt( -2.0 * log(y) );
406x0 = x - log(x)/x;
407
408z = 1.0/x;
409if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */
410        x1 = z * polevl( z, P1, 8 )/p1evl( z, Q1, 8 );
411else
412        x1 = z * polevl( z, P2, 8 )/p1evl( z, Q2, 8 );
413x = x0 - x1;
414if( code != 0 )
415        x = -x;
416return( x );
417}
Note: See TracBrowser for help on using the repository browser.