1 | /* ndtri.c |
---|
2 | * |
---|
3 | * Inverse of Normal distribution function |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double x, y, ndtri(); |
---|
10 | * |
---|
11 | * x = ndtri( y ); |
---|
12 | * |
---|
13 | * |
---|
14 | * |
---|
15 | * DESCRIPTION: |
---|
16 | * |
---|
17 | * Returns the argument, x, for which the area under the |
---|
18 | * Gaussian probability density function (integrated from |
---|
19 | * minus infinity to x) is equal to y. |
---|
20 | * |
---|
21 | * |
---|
22 | * For small arguments 0 < y < exp(-2), the program computes |
---|
23 | * z = sqrt( -2.0 * log(y) ); then the approximation is |
---|
24 | * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). |
---|
25 | * There are two rational functions P/Q, one for 0 < y < exp(-32) |
---|
26 | * and the other for y up to exp(-2). For larger arguments, |
---|
27 | * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). |
---|
28 | * |
---|
29 | * |
---|
30 | * ACCURACY: |
---|
31 | * |
---|
32 | * Relative error: |
---|
33 | * arithmetic domain # trials peak rms |
---|
34 | * DEC 0.125, 1 5500 9.5e-17 2.1e-17 |
---|
35 | * DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17 |
---|
36 | * IEEE 0.125, 1 20000 7.2e-16 1.3e-16 |
---|
37 | * IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17 |
---|
38 | * |
---|
39 | * |
---|
40 | * ERROR MESSAGES: |
---|
41 | * |
---|
42 | * message condition value returned |
---|
43 | * ndtri domain x <= 0 -MAXNUM |
---|
44 | * ndtri domain x >= 1 MAXNUM |
---|
45 | * |
---|
46 | */ |
---|
47 | |
---|
48 | |
---|
49 | /* |
---|
50 | Cephes Math Library Release 2.8: June, 2000 |
---|
51 | Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier |
---|
52 | */ |
---|
53 | |
---|
54 | #include "mconf.h" |
---|
55 | extern double MAXNUM; |
---|
56 | |
---|
57 | #ifdef UNK |
---|
58 | /* sqrt(2pi) */ |
---|
59 | static double s2pi = 2.50662827463100050242E0; |
---|
60 | #endif |
---|
61 | |
---|
62 | #ifdef DEC |
---|
63 | static unsigned short s2p[] = {0040440,0066230,0177661,0034055}; |
---|
64 | #define s2pi *(double *)s2p |
---|
65 | #endif |
---|
66 | |
---|
67 | #ifdef IBMPC |
---|
68 | static unsigned short s2p[] = {0x2706,0x1ff6,0x0d93,0x4004}; |
---|
69 | #define s2pi *(double *)s2p |
---|
70 | #endif |
---|
71 | |
---|
72 | #ifdef MIEEE |
---|
73 | static unsigned short s2p[] = { |
---|
74 | 0x4004,0x0d93,0x1ff6,0x2706 |
---|
75 | }; |
---|
76 | #define s2pi *(double *)s2p |
---|
77 | #endif |
---|
78 | |
---|
79 | /* approximation for 0 <= |y - 0.5| <= 3/8 */ |
---|
80 | #ifdef UNK |
---|
81 | static double P0[5] = { |
---|
82 | -5.99633501014107895267E1, |
---|
83 | 9.80010754185999661536E1, |
---|
84 | -5.66762857469070293439E1, |
---|
85 | 1.39312609387279679503E1, |
---|
86 | -1.23916583867381258016E0, |
---|
87 | }; |
---|
88 | static double Q0[8] = { |
---|
89 | /* 1.00000000000000000000E0,*/ |
---|
90 | 1.95448858338141759834E0, |
---|
91 | 4.67627912898881538453E0, |
---|
92 | 8.63602421390890590575E1, |
---|
93 | -2.25462687854119370527E2, |
---|
94 | 2.00260212380060660359E2, |
---|
95 | -8.20372256168333339912E1, |
---|
96 | 1.59056225126211695515E1, |
---|
97 | -1.18331621121330003142E0, |
---|
98 | }; |
---|
99 | #endif |
---|
100 | #ifdef DEC |
---|
101 | static unsigned short P0[20] = { |
---|
102 | 0141557,0155170,0071360,0120550, |
---|
103 | 0041704,0000214,0172417,0067307, |
---|
104 | 0141542,0132204,0040066,0156723, |
---|
105 | 0041136,0163161,0157276,0007747, |
---|
106 | 0140236,0116374,0073666,0051764, |
---|
107 | }; |
---|
108 | static unsigned short Q0[32] = { |
---|
109 | /*0040200,0000000,0000000,0000000,*/ |
---|
110 | 0040372,0026256,0110403,0123707, |
---|
111 | 0040625,0122024,0020277,0026661, |
---|
112 | 0041654,0134161,0124134,0007244, |
---|
113 | 0142141,0073162,0133021,0131371, |
---|
114 | 0042110,0041235,0043516,0057767, |
---|
115 | 0141644,0011417,0036155,0137305, |
---|
116 | 0041176,0076556,0004043,0125430, |
---|
117 | 0140227,0073347,0152776,0067251, |
---|
118 | }; |
---|
119 | #endif |
---|
120 | #ifdef IBMPC |
---|
121 | static unsigned short P0[20] = { |
---|
122 | 0x142d,0x0e5e,0xfb4f,0xc04d, |
---|
123 | 0xedd9,0x9ea1,0x8011,0x4058, |
---|
124 | 0xdbba,0x8806,0x5690,0xc04c, |
---|
125 | 0xc1fd,0x3bd7,0xdcce,0x402b, |
---|
126 | 0xca7e,0x8ef6,0xd39f,0xbff3, |
---|
127 | }; |
---|
128 | static unsigned short Q0[36] = { |
---|
129 | /*0x0000,0x0000,0x0000,0x3ff0,*/ |
---|
130 | 0x74f9,0xd220,0x4595,0x3fff, |
---|
131 | 0xe5b6,0x8417,0xb482,0x4012, |
---|
132 | 0x81d4,0x350b,0x970e,0x4055, |
---|
133 | 0x365f,0x56c2,0x2ece,0xc06c, |
---|
134 | 0xcbff,0xa8e9,0x0853,0x4069, |
---|
135 | 0xb7d9,0xe78d,0x8261,0xc054, |
---|
136 | 0x7563,0xc104,0xcfad,0x402f, |
---|
137 | 0xcdd5,0xfabf,0xeedc,0xbff2, |
---|
138 | }; |
---|
139 | #endif |
---|
140 | #ifdef MIEEE |
---|
141 | static unsigned short P0[20] = { |
---|
142 | 0xc04d,0xfb4f,0x0e5e,0x142d, |
---|
143 | 0x4058,0x8011,0x9ea1,0xedd9, |
---|
144 | 0xc04c,0x5690,0x8806,0xdbba, |
---|
145 | 0x402b,0xdcce,0x3bd7,0xc1fd, |
---|
146 | 0xbff3,0xd39f,0x8ef6,0xca7e, |
---|
147 | }; |
---|
148 | static unsigned short Q0[32] = { |
---|
149 | /*0x3ff0,0x0000,0x0000,0x0000,*/ |
---|
150 | 0x3fff,0x4595,0xd220,0x74f9, |
---|
151 | 0x4012,0xb482,0x8417,0xe5b6, |
---|
152 | 0x4055,0x970e,0x350b,0x81d4, |
---|
153 | 0xc06c,0x2ece,0x56c2,0x365f, |
---|
154 | 0x4069,0x0853,0xa8e9,0xcbff, |
---|
155 | 0xc054,0x8261,0xe78d,0xb7d9, |
---|
156 | 0x402f,0xcfad,0xc104,0x7563, |
---|
157 | 0xbff2,0xeedc,0xfabf,0xcdd5, |
---|
158 | }; |
---|
159 | #endif |
---|
160 | |
---|
161 | |
---|
162 | /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 |
---|
163 | * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. |
---|
164 | */ |
---|
165 | #ifdef UNK |
---|
166 | static double P1[9] = { |
---|
167 | 4.05544892305962419923E0, |
---|
168 | 3.15251094599893866154E1, |
---|
169 | 5.71628192246421288162E1, |
---|
170 | 4.40805073893200834700E1, |
---|
171 | 1.46849561928858024014E1, |
---|
172 | 2.18663306850790267539E0, |
---|
173 | -1.40256079171354495875E-1, |
---|
174 | -3.50424626827848203418E-2, |
---|
175 | -8.57456785154685413611E-4, |
---|
176 | }; |
---|
177 | static double Q1[8] = { |
---|
178 | /* 1.00000000000000000000E0,*/ |
---|
179 | 1.57799883256466749731E1, |
---|
180 | 4.53907635128879210584E1, |
---|
181 | 4.13172038254672030440E1, |
---|
182 | 1.50425385692907503408E1, |
---|
183 | 2.50464946208309415979E0, |
---|
184 | -1.42182922854787788574E-1, |
---|
185 | -3.80806407691578277194E-2, |
---|
186 | -9.33259480895457427372E-4, |
---|
187 | }; |
---|
188 | #endif |
---|
189 | #ifdef DEC |
---|
190 | static unsigned short P1[36] = { |
---|
191 | 0040601,0143074,0150744,0073326, |
---|
192 | 0041374,0031554,0113253,0146016, |
---|
193 | 0041544,0123272,0012463,0176771, |
---|
194 | 0041460,0051160,0103560,0156511, |
---|
195 | 0041152,0172624,0117772,0030755, |
---|
196 | 0040413,0170713,0151545,0176413, |
---|
197 | 0137417,0117512,0022154,0131671, |
---|
198 | 0137017,0104257,0071432,0007072, |
---|
199 | 0135540,0143363,0063137,0036166, |
---|
200 | }; |
---|
201 | static unsigned short Q1[32] = { |
---|
202 | /*0040200,0000000,0000000,0000000,*/ |
---|
203 | 0041174,0075325,0004736,0120326, |
---|
204 | 0041465,0110044,0047561,0045567, |
---|
205 | 0041445,0042321,0012142,0030340, |
---|
206 | 0041160,0127074,0166076,0141051, |
---|
207 | 0040440,0046055,0040745,0150400, |
---|
208 | 0137421,0114146,0067330,0010621, |
---|
209 | 0137033,0175162,0025555,0114351, |
---|
210 | 0135564,0122773,0145750,0030357, |
---|
211 | }; |
---|
212 | #endif |
---|
213 | #ifdef IBMPC |
---|
214 | static unsigned short P1[36] = { |
---|
215 | 0x8edb,0x9a3c,0x38c7,0x4010, |
---|
216 | 0x7982,0x92d5,0x866d,0x403f, |
---|
217 | 0x7fbf,0x42a6,0x94d7,0x404c, |
---|
218 | 0x1ba9,0x10ee,0x0a4e,0x4046, |
---|
219 | 0x463e,0x93ff,0x5eb2,0x402d, |
---|
220 | 0xbfa1,0x7a6c,0x7e39,0x4001, |
---|
221 | 0x9677,0x448d,0xf3e9,0xbfc1, |
---|
222 | 0x41c7,0xee63,0xf115,0xbfa1, |
---|
223 | 0xe78f,0x6ccb,0x18de,0xbf4c, |
---|
224 | }; |
---|
225 | static unsigned short Q1[32] = { |
---|
226 | /*0x0000,0x0000,0x0000,0x3ff0,*/ |
---|
227 | 0xd41b,0xa13b,0x8f5a,0x402f, |
---|
228 | 0x296f,0x89ee,0xb204,0x4046, |
---|
229 | 0x461c,0x228c,0xa89a,0x4044, |
---|
230 | 0xd845,0x9d87,0x15c7,0x402e, |
---|
231 | 0xba20,0xa83c,0x0985,0x4004, |
---|
232 | 0x0232,0xcddb,0x330c,0xbfc2, |
---|
233 | 0xb31d,0x456d,0x7f4e,0xbfa3, |
---|
234 | 0x061e,0x797d,0x94bf,0xbf4e, |
---|
235 | }; |
---|
236 | #endif |
---|
237 | #ifdef MIEEE |
---|
238 | static unsigned short P1[36] = { |
---|
239 | 0x4010,0x38c7,0x9a3c,0x8edb, |
---|
240 | 0x403f,0x866d,0x92d5,0x7982, |
---|
241 | 0x404c,0x94d7,0x42a6,0x7fbf, |
---|
242 | 0x4046,0x0a4e,0x10ee,0x1ba9, |
---|
243 | 0x402d,0x5eb2,0x93ff,0x463e, |
---|
244 | 0x4001,0x7e39,0x7a6c,0xbfa1, |
---|
245 | 0xbfc1,0xf3e9,0x448d,0x9677, |
---|
246 | 0xbfa1,0xf115,0xee63,0x41c7, |
---|
247 | 0xbf4c,0x18de,0x6ccb,0xe78f, |
---|
248 | }; |
---|
249 | static unsigned short Q1[32] = { |
---|
250 | /*0x3ff0,0x0000,0x0000,0x0000,*/ |
---|
251 | 0x402f,0x8f5a,0xa13b,0xd41b, |
---|
252 | 0x4046,0xb204,0x89ee,0x296f, |
---|
253 | 0x4044,0xa89a,0x228c,0x461c, |
---|
254 | 0x402e,0x15c7,0x9d87,0xd845, |
---|
255 | 0x4004,0x0985,0xa83c,0xba20, |
---|
256 | 0xbfc2,0x330c,0xcddb,0x0232, |
---|
257 | 0xbfa3,0x7f4e,0x456d,0xb31d, |
---|
258 | 0xbf4e,0x94bf,0x797d,0x061e, |
---|
259 | }; |
---|
260 | #endif |
---|
261 | |
---|
262 | /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 |
---|
263 | * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. |
---|
264 | */ |
---|
265 | |
---|
266 | #ifdef UNK |
---|
267 | static double P2[9] = { |
---|
268 | 3.23774891776946035970E0, |
---|
269 | 6.91522889068984211695E0, |
---|
270 | 3.93881025292474443415E0, |
---|
271 | 1.33303460815807542389E0, |
---|
272 | 2.01485389549179081538E-1, |
---|
273 | 1.23716634817820021358E-2, |
---|
274 | 3.01581553508235416007E-4, |
---|
275 | 2.65806974686737550832E-6, |
---|
276 | 6.23974539184983293730E-9, |
---|
277 | }; |
---|
278 | static double Q2[8] = { |
---|
279 | /* 1.00000000000000000000E0,*/ |
---|
280 | 6.02427039364742014255E0, |
---|
281 | 3.67983563856160859403E0, |
---|
282 | 1.37702099489081330271E0, |
---|
283 | 2.16236993594496635890E-1, |
---|
284 | 1.34204006088543189037E-2, |
---|
285 | 3.28014464682127739104E-4, |
---|
286 | 2.89247864745380683936E-6, |
---|
287 | 6.79019408009981274425E-9, |
---|
288 | }; |
---|
289 | #endif |
---|
290 | #ifdef DEC |
---|
291 | static unsigned short P2[36] = { |
---|
292 | 0040517,0033507,0036236,0125641, |
---|
293 | 0040735,0044616,0014473,0140133, |
---|
294 | 0040574,0012567,0114535,0102541, |
---|
295 | 0040252,0120340,0143474,0150135, |
---|
296 | 0037516,0051057,0115361,0031211, |
---|
297 | 0036512,0131204,0101511,0125144, |
---|
298 | 0035236,0016627,0043160,0140216, |
---|
299 | 0033462,0060512,0060141,0010641, |
---|
300 | 0031326,0062541,0101304,0077706, |
---|
301 | }; |
---|
302 | static unsigned short Q2[32] = { |
---|
303 | /*0040200,0000000,0000000,0000000,*/ |
---|
304 | 0040700,0143322,0132137,0040501, |
---|
305 | 0040553,0101155,0053221,0140257, |
---|
306 | 0040260,0041071,0052573,0010004, |
---|
307 | 0037535,0066472,0177261,0162330, |
---|
308 | 0036533,0160475,0066666,0036132, |
---|
309 | 0035253,0174533,0027771,0044027, |
---|
310 | 0033502,0016147,0117666,0063671, |
---|
311 | 0031351,0047455,0141663,0054751, |
---|
312 | }; |
---|
313 | #endif |
---|
314 | #ifdef IBMPC |
---|
315 | static unsigned short P2[36] = { |
---|
316 | 0xd574,0xe793,0xe6e8,0x4009, |
---|
317 | 0x780b,0xc327,0xa931,0x401b, |
---|
318 | 0xb0ac,0xf32b,0x82ae,0x400f, |
---|
319 | 0x9a0c,0x18e7,0x541c,0x3ff5, |
---|
320 | 0x2651,0xf35e,0xca45,0x3fc9, |
---|
321 | 0x354d,0x9069,0x5650,0x3f89, |
---|
322 | 0x1812,0xe8ce,0xc3b2,0x3f33, |
---|
323 | 0x2234,0x4c0c,0x4c29,0x3ec6, |
---|
324 | 0x8ff9,0x3058,0xccac,0x3e3a, |
---|
325 | }; |
---|
326 | static unsigned short Q2[32] = { |
---|
327 | /*0x0000,0x0000,0x0000,0x3ff0,*/ |
---|
328 | 0xe828,0x568b,0x18da,0x4018, |
---|
329 | 0x3816,0xaad2,0x704d,0x400d, |
---|
330 | 0x6200,0x2aaf,0x0847,0x3ff6, |
---|
331 | 0x3c9b,0x5fd6,0xada7,0x3fcb, |
---|
332 | 0xc78b,0xadb6,0x7c27,0x3f8b, |
---|
333 | 0x2903,0x65ff,0x7f2b,0x3f35, |
---|
334 | 0xccf7,0xf3f6,0x438c,0x3ec8, |
---|
335 | 0x6b3d,0xb876,0x29e5,0x3e3d, |
---|
336 | }; |
---|
337 | #endif |
---|
338 | #ifdef MIEEE |
---|
339 | static unsigned short P2[36] = { |
---|
340 | 0x4009,0xe6e8,0xe793,0xd574, |
---|
341 | 0x401b,0xa931,0xc327,0x780b, |
---|
342 | 0x400f,0x82ae,0xf32b,0xb0ac, |
---|
343 | 0x3ff5,0x541c,0x18e7,0x9a0c, |
---|
344 | 0x3fc9,0xca45,0xf35e,0x2651, |
---|
345 | 0x3f89,0x5650,0x9069,0x354d, |
---|
346 | 0x3f33,0xc3b2,0xe8ce,0x1812, |
---|
347 | 0x3ec6,0x4c29,0x4c0c,0x2234, |
---|
348 | 0x3e3a,0xccac,0x3058,0x8ff9, |
---|
349 | }; |
---|
350 | static unsigned short Q2[32] = { |
---|
351 | /*0x3ff0,0x0000,0x0000,0x0000,*/ |
---|
352 | 0x4018,0x18da,0x568b,0xe828, |
---|
353 | 0x400d,0x704d,0xaad2,0x3816, |
---|
354 | 0x3ff6,0x0847,0x2aaf,0x6200, |
---|
355 | 0x3fcb,0xada7,0x5fd6,0x3c9b, |
---|
356 | 0x3f8b,0x7c27,0xadb6,0xc78b, |
---|
357 | 0x3f35,0x7f2b,0x65ff,0x2903, |
---|
358 | 0x3ec8,0x438c,0xf3f6,0xccf7, |
---|
359 | 0x3e3d,0x29e5,0xb876,0x6b3d, |
---|
360 | }; |
---|
361 | #endif |
---|
362 | |
---|
363 | #ifdef ANSIPROT |
---|
364 | extern double polevl ( double, void *, int ); |
---|
365 | extern double p1evl ( double, void *, int ); |
---|
366 | extern double log ( double ); |
---|
367 | extern double sqrt ( double ); |
---|
368 | #else |
---|
369 | double polevl(), p1evl(), log(), sqrt(); |
---|
370 | #endif |
---|
371 | |
---|
372 | double ndtri(y0) |
---|
373 | double y0; |
---|
374 | { |
---|
375 | double x, y, z, y2, x0, x1; |
---|
376 | int code; |
---|
377 | |
---|
378 | if( y0 <= 0.0 ) |
---|
379 | { |
---|
380 | mtherr( "ndtri", DOMAIN ); |
---|
381 | return( -MAXNUM ); |
---|
382 | } |
---|
383 | if( y0 >= 1.0 ) |
---|
384 | { |
---|
385 | mtherr( "ndtri", DOMAIN ); |
---|
386 | return( MAXNUM ); |
---|
387 | } |
---|
388 | code = 1; |
---|
389 | y = y0; |
---|
390 | if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */ |
---|
391 | { |
---|
392 | y = 1.0 - y; |
---|
393 | code = 0; |
---|
394 | } |
---|
395 | |
---|
396 | if( y > 0.13533528323661269189 ) |
---|
397 | { |
---|
398 | y = y - 0.5; |
---|
399 | y2 = y * y; |
---|
400 | x = y + y * (y2 * polevl( y2, P0, 4)/p1evl( y2, Q0, 8 )); |
---|
401 | x = x * s2pi; |
---|
402 | return(x); |
---|
403 | } |
---|
404 | |
---|
405 | x = sqrt( -2.0 * log(y) ); |
---|
406 | x0 = x - log(x)/x; |
---|
407 | |
---|
408 | z = 1.0/x; |
---|
409 | if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */ |
---|
410 | x1 = z * polevl( z, P1, 8 )/p1evl( z, Q1, 8 ); |
---|
411 | else |
---|
412 | x1 = z * polevl( z, P2, 8 )/p1evl( z, Q2, 8 ); |
---|
413 | x = x0 - x1; |
---|
414 | if( code != 0 ) |
---|
415 | x = -x; |
---|
416 | return( x ); |
---|
417 | } |
---|