1 | /* ndtr.c |
---|
2 | * |
---|
3 | * Normal distribution function |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double x, y, ndtr(); |
---|
10 | * |
---|
11 | * y = ndtr( x ); |
---|
12 | * |
---|
13 | * |
---|
14 | * |
---|
15 | * DESCRIPTION: |
---|
16 | * |
---|
17 | * Returns the area under the Gaussian probability density |
---|
18 | * function, integrated from minus infinity to x: |
---|
19 | * |
---|
20 | * x |
---|
21 | * - |
---|
22 | * 1 | | 2 |
---|
23 | * ndtr(x) = --------- | exp( - t /2 ) dt |
---|
24 | * sqrt(2pi) | | |
---|
25 | * - |
---|
26 | * -inf. |
---|
27 | * |
---|
28 | * = ( 1 + erf(z) ) / 2 |
---|
29 | * = erfc(z) / 2 |
---|
30 | * |
---|
31 | * where z = x/sqrt(2). Computation is via the functions |
---|
32 | * erf and erfc with care to avoid error amplification in computing exp(-x^2). |
---|
33 | * |
---|
34 | * |
---|
35 | * ACCURACY: |
---|
36 | * |
---|
37 | * Relative error: |
---|
38 | * arithmetic domain # trials peak rms |
---|
39 | * IEEE -13,0 30000 1.3e-15 2.2e-16 |
---|
40 | * |
---|
41 | * |
---|
42 | * ERROR MESSAGES: |
---|
43 | * |
---|
44 | * message condition value returned |
---|
45 | * erfc underflow x > 37.519379347 0.0 |
---|
46 | * |
---|
47 | */ |
---|
48 | /* erf.c |
---|
49 | * |
---|
50 | * Error function |
---|
51 | * |
---|
52 | * |
---|
53 | * |
---|
54 | * SYNOPSIS: |
---|
55 | * |
---|
56 | * double x, y, erf(); |
---|
57 | * |
---|
58 | * y = erf( x ); |
---|
59 | * |
---|
60 | * |
---|
61 | * |
---|
62 | * DESCRIPTION: |
---|
63 | * |
---|
64 | * The integral is |
---|
65 | * |
---|
66 | * x |
---|
67 | * - |
---|
68 | * 2 | | 2 |
---|
69 | * erf(x) = -------- | exp( - t ) dt. |
---|
70 | * sqrt(pi) | | |
---|
71 | * - |
---|
72 | * 0 |
---|
73 | * |
---|
74 | * The magnitude of x is limited to 9.231948545 for DEC |
---|
75 | * arithmetic; 1 or -1 is returned outside this range. |
---|
76 | * |
---|
77 | * For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise |
---|
78 | * erf(x) = 1 - erfc(x). |
---|
79 | * |
---|
80 | * |
---|
81 | * |
---|
82 | * ACCURACY: |
---|
83 | * |
---|
84 | * Relative error: |
---|
85 | * arithmetic domain # trials peak rms |
---|
86 | * DEC 0,1 14000 4.7e-17 1.5e-17 |
---|
87 | * IEEE 0,1 30000 3.7e-16 1.0e-16 |
---|
88 | * |
---|
89 | */ |
---|
90 | /* erfc.c |
---|
91 | * |
---|
92 | * Complementary error function |
---|
93 | * |
---|
94 | * |
---|
95 | * |
---|
96 | * SYNOPSIS: |
---|
97 | * |
---|
98 | * double x, y, erfc(); |
---|
99 | * |
---|
100 | * y = erfc( x ); |
---|
101 | * |
---|
102 | * |
---|
103 | * |
---|
104 | * DESCRIPTION: |
---|
105 | * |
---|
106 | * |
---|
107 | * 1 - erf(x) = |
---|
108 | * |
---|
109 | * inf. |
---|
110 | * - |
---|
111 | * 2 | | 2 |
---|
112 | * erfc(x) = -------- | exp( - t ) dt |
---|
113 | * sqrt(pi) | | |
---|
114 | * - |
---|
115 | * x |
---|
116 | * |
---|
117 | * |
---|
118 | * For small x, erfc(x) = 1 - erf(x); otherwise rational |
---|
119 | * approximations are computed. |
---|
120 | * |
---|
121 | * A special function expx2.c is used to suppress error amplification |
---|
122 | * in computing exp(-x^2). |
---|
123 | * |
---|
124 | * |
---|
125 | * ACCURACY: |
---|
126 | * |
---|
127 | * Relative error: |
---|
128 | * arithmetic domain # trials peak rms |
---|
129 | * IEEE 0,26.6417 30000 1.3e-15 2.2e-16 |
---|
130 | * |
---|
131 | * |
---|
132 | * ERROR MESSAGES: |
---|
133 | * |
---|
134 | * message condition value returned |
---|
135 | * erfc underflow x > 9.231948545 (DEC) 0.0 |
---|
136 | * |
---|
137 | * |
---|
138 | */ |
---|
139 | |
---|
140 | |
---|
141 | /* |
---|
142 | Cephes Math Library Release 2.9: November, 2000 |
---|
143 | Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier |
---|
144 | */ |
---|
145 | |
---|
146 | |
---|
147 | #include "mconf.h" |
---|
148 | |
---|
149 | extern double SQRTH; |
---|
150 | extern double MAXLOG; |
---|
151 | |
---|
152 | /* Define this macro to suppress error propagation in exp(x^2) |
---|
153 | by using the expx2 function. The tradeoff is that doing so |
---|
154 | generates two calls to the exponential function instead of one. */ |
---|
155 | #define USE_EXPXSQ 1 |
---|
156 | |
---|
157 | #ifdef UNK |
---|
158 | static double P[] = { |
---|
159 | 2.46196981473530512524E-10, |
---|
160 | 5.64189564831068821977E-1, |
---|
161 | 7.46321056442269912687E0, |
---|
162 | 4.86371970985681366614E1, |
---|
163 | 1.96520832956077098242E2, |
---|
164 | 5.26445194995477358631E2, |
---|
165 | 9.34528527171957607540E2, |
---|
166 | 1.02755188689515710272E3, |
---|
167 | 5.57535335369399327526E2 |
---|
168 | }; |
---|
169 | static double Q[] = { |
---|
170 | /* 1.00000000000000000000E0,*/ |
---|
171 | 1.32281951154744992508E1, |
---|
172 | 8.67072140885989742329E1, |
---|
173 | 3.54937778887819891062E2, |
---|
174 | 9.75708501743205489753E2, |
---|
175 | 1.82390916687909736289E3, |
---|
176 | 2.24633760818710981792E3, |
---|
177 | 1.65666309194161350182E3, |
---|
178 | 5.57535340817727675546E2 |
---|
179 | }; |
---|
180 | static double R[] = { |
---|
181 | 5.64189583547755073984E-1, |
---|
182 | 1.27536670759978104416E0, |
---|
183 | 5.01905042251180477414E0, |
---|
184 | 6.16021097993053585195E0, |
---|
185 | 7.40974269950448939160E0, |
---|
186 | 2.97886665372100240670E0 |
---|
187 | }; |
---|
188 | static double S[] = { |
---|
189 | /* 1.00000000000000000000E0,*/ |
---|
190 | 2.26052863220117276590E0, |
---|
191 | 9.39603524938001434673E0, |
---|
192 | 1.20489539808096656605E1, |
---|
193 | 1.70814450747565897222E1, |
---|
194 | 9.60896809063285878198E0, |
---|
195 | 3.36907645100081516050E0 |
---|
196 | }; |
---|
197 | static double T[] = { |
---|
198 | 9.60497373987051638749E0, |
---|
199 | 9.00260197203842689217E1, |
---|
200 | 2.23200534594684319226E3, |
---|
201 | 7.00332514112805075473E3, |
---|
202 | 5.55923013010394962768E4 |
---|
203 | }; |
---|
204 | static double U[] = { |
---|
205 | /* 1.00000000000000000000E0,*/ |
---|
206 | 3.35617141647503099647E1, |
---|
207 | 5.21357949780152679795E2, |
---|
208 | 4.59432382970980127987E3, |
---|
209 | 2.26290000613890934246E4, |
---|
210 | 4.92673942608635921086E4 |
---|
211 | }; |
---|
212 | |
---|
213 | #define UTHRESH 37.519379347 |
---|
214 | #endif |
---|
215 | |
---|
216 | #ifdef DEC |
---|
217 | static unsigned short P[] = { |
---|
218 | 0030207,0054445,0011173,0021706, |
---|
219 | 0040020,0067272,0030661,0122075, |
---|
220 | 0040756,0151236,0173053,0067042, |
---|
221 | 0041502,0106175,0062555,0151457, |
---|
222 | 0042104,0102525,0047401,0003667, |
---|
223 | 0042403,0116176,0011446,0075303, |
---|
224 | 0042551,0120723,0061641,0123275, |
---|
225 | 0042600,0070651,0007264,0134516, |
---|
226 | 0042413,0061102,0167507,0176625 |
---|
227 | }; |
---|
228 | static unsigned short Q[] = { |
---|
229 | /*0040200,0000000,0000000,0000000,*/ |
---|
230 | 0041123,0123257,0165741,0017142, |
---|
231 | 0041655,0065027,0173413,0115450, |
---|
232 | 0042261,0074011,0021573,0004150, |
---|
233 | 0042563,0166530,0013662,0007200, |
---|
234 | 0042743,0176427,0162443,0105214, |
---|
235 | 0043014,0062546,0153727,0123772, |
---|
236 | 0042717,0012470,0006227,0067424, |
---|
237 | 0042413,0061103,0003042,0013254 |
---|
238 | }; |
---|
239 | static unsigned short R[] = { |
---|
240 | 0040020,0067272,0101024,0155421, |
---|
241 | 0040243,0037467,0056706,0026462, |
---|
242 | 0040640,0116017,0120665,0034315, |
---|
243 | 0040705,0020162,0143350,0060137, |
---|
244 | 0040755,0016234,0134304,0130157, |
---|
245 | 0040476,0122700,0051070,0015473 |
---|
246 | }; |
---|
247 | static unsigned short S[] = { |
---|
248 | /*0040200,0000000,0000000,0000000,*/ |
---|
249 | 0040420,0126200,0044276,0070413, |
---|
250 | 0041026,0053051,0007302,0063746, |
---|
251 | 0041100,0144203,0174051,0061151, |
---|
252 | 0041210,0123314,0126343,0177646, |
---|
253 | 0041031,0137125,0051431,0033011, |
---|
254 | 0040527,0117362,0152661,0066201 |
---|
255 | }; |
---|
256 | static unsigned short T[] = { |
---|
257 | 0041031,0126770,0170672,0166101, |
---|
258 | 0041664,0006522,0072360,0031770, |
---|
259 | 0043013,0100025,0162641,0126671, |
---|
260 | 0043332,0155231,0161627,0076200, |
---|
261 | 0044131,0024115,0021020,0117343 |
---|
262 | }; |
---|
263 | static unsigned short U[] = { |
---|
264 | /*0040200,0000000,0000000,0000000,*/ |
---|
265 | 0041406,0037461,0177575,0032714, |
---|
266 | 0042402,0053350,0123061,0153557, |
---|
267 | 0043217,0111227,0032007,0164217, |
---|
268 | 0043660,0145000,0004013,0160114, |
---|
269 | 0044100,0071544,0167107,0125471 |
---|
270 | }; |
---|
271 | #define UTHRESH 14.0 |
---|
272 | #endif |
---|
273 | |
---|
274 | #ifdef IBMPC |
---|
275 | static unsigned short P[] = { |
---|
276 | 0x6479,0xa24f,0xeb24,0x3df0, |
---|
277 | 0x3488,0x4636,0x0dd7,0x3fe2, |
---|
278 | 0x6dc4,0xdec5,0xda53,0x401d, |
---|
279 | 0xba66,0xacad,0x518f,0x4048, |
---|
280 | 0x20f7,0xa9e0,0x90aa,0x4068, |
---|
281 | 0xcf58,0xc264,0x738f,0x4080, |
---|
282 | 0x34d8,0x6c74,0x343a,0x408d, |
---|
283 | 0x972a,0x21d6,0x0e35,0x4090, |
---|
284 | 0xffb3,0x5de8,0x6c48,0x4081 |
---|
285 | }; |
---|
286 | static unsigned short Q[] = { |
---|
287 | /*0x0000,0x0000,0x0000,0x3ff0,*/ |
---|
288 | 0x23cc,0xfd7c,0x74d5,0x402a, |
---|
289 | 0x7365,0xfee1,0xad42,0x4055, |
---|
290 | 0x610d,0x246f,0x2f01,0x4076, |
---|
291 | 0x41d0,0x02f6,0x7dab,0x408e, |
---|
292 | 0x7151,0xfca4,0x7fa2,0x409c, |
---|
293 | 0xf4ff,0xdafa,0x8cac,0x40a1, |
---|
294 | 0xede2,0x0192,0xe2a7,0x4099, |
---|
295 | 0x42d6,0x60c4,0x6c48,0x4081 |
---|
296 | }; |
---|
297 | static unsigned short R[] = { |
---|
298 | 0x9b62,0x5042,0x0dd7,0x3fe2, |
---|
299 | 0xc5a6,0xebb8,0x67e6,0x3ff4, |
---|
300 | 0xa71a,0xf436,0x1381,0x4014, |
---|
301 | 0x0c0c,0x58dd,0xa40e,0x4018, |
---|
302 | 0x960e,0x9718,0xa393,0x401d, |
---|
303 | 0x0367,0x0a47,0xd4b8,0x4007 |
---|
304 | }; |
---|
305 | static unsigned short S[] = { |
---|
306 | /*0x0000,0x0000,0x0000,0x3ff0,*/ |
---|
307 | 0xce21,0x0917,0x1590,0x4002, |
---|
308 | 0x4cfd,0x21d8,0xcac5,0x4022, |
---|
309 | 0x2c4d,0x7f05,0x1910,0x4028, |
---|
310 | 0x7ff5,0x959c,0x14d9,0x4031, |
---|
311 | 0x26c1,0xaa63,0x37ca,0x4023, |
---|
312 | 0x2d90,0x5ab6,0xf3de,0x400a |
---|
313 | }; |
---|
314 | static unsigned short T[] = { |
---|
315 | 0x5d88,0x1e37,0x35bf,0x4023, |
---|
316 | 0x067f,0x4e9e,0x81aa,0x4056, |
---|
317 | 0x35b7,0xbcb4,0x7002,0x40a1, |
---|
318 | 0xef90,0x3c72,0x5b53,0x40bb, |
---|
319 | 0x13dc,0xa442,0x2509,0x40eb |
---|
320 | }; |
---|
321 | static unsigned short U[] = { |
---|
322 | /*0x0000,0x0000,0x0000,0x3ff0,*/ |
---|
323 | 0xa6ba,0x3fef,0xc7e6,0x4040, |
---|
324 | 0x3aee,0x14c6,0x4add,0x4080, |
---|
325 | 0xfd12,0xe680,0xf252,0x40b1, |
---|
326 | 0x7c0a,0x0101,0x1940,0x40d6, |
---|
327 | 0xf567,0x9dc8,0x0e6c,0x40e8 |
---|
328 | }; |
---|
329 | #define UTHRESH 37.519379347 |
---|
330 | #endif |
---|
331 | |
---|
332 | #ifdef MIEEE |
---|
333 | static unsigned short P[] = { |
---|
334 | 0x3df0,0xeb24,0xa24f,0x6479, |
---|
335 | 0x3fe2,0x0dd7,0x4636,0x3488, |
---|
336 | 0x401d,0xda53,0xdec5,0x6dc4, |
---|
337 | 0x4048,0x518f,0xacad,0xba66, |
---|
338 | 0x4068,0x90aa,0xa9e0,0x20f7, |
---|
339 | 0x4080,0x738f,0xc264,0xcf58, |
---|
340 | 0x408d,0x343a,0x6c74,0x34d8, |
---|
341 | 0x4090,0x0e35,0x21d6,0x972a, |
---|
342 | 0x4081,0x6c48,0x5de8,0xffb3 |
---|
343 | }; |
---|
344 | static unsigned short Q[] = { |
---|
345 | 0x402a,0x74d5,0xfd7c,0x23cc, |
---|
346 | 0x4055,0xad42,0xfee1,0x7365, |
---|
347 | 0x4076,0x2f01,0x246f,0x610d, |
---|
348 | 0x408e,0x7dab,0x02f6,0x41d0, |
---|
349 | 0x409c,0x7fa2,0xfca4,0x7151, |
---|
350 | 0x40a1,0x8cac,0xdafa,0xf4ff, |
---|
351 | 0x4099,0xe2a7,0x0192,0xede2, |
---|
352 | 0x4081,0x6c48,0x60c4,0x42d6 |
---|
353 | }; |
---|
354 | static unsigned short R[] = { |
---|
355 | 0x3fe2,0x0dd7,0x5042,0x9b62, |
---|
356 | 0x3ff4,0x67e6,0xebb8,0xc5a6, |
---|
357 | 0x4014,0x1381,0xf436,0xa71a, |
---|
358 | 0x4018,0xa40e,0x58dd,0x0c0c, |
---|
359 | 0x401d,0xa393,0x9718,0x960e, |
---|
360 | 0x4007,0xd4b8,0x0a47,0x0367 |
---|
361 | }; |
---|
362 | static unsigned short S[] = { |
---|
363 | 0x4002,0x1590,0x0917,0xce21, |
---|
364 | 0x4022,0xcac5,0x21d8,0x4cfd, |
---|
365 | 0x4028,0x1910,0x7f05,0x2c4d, |
---|
366 | 0x4031,0x14d9,0x959c,0x7ff5, |
---|
367 | 0x4023,0x37ca,0xaa63,0x26c1, |
---|
368 | 0x400a,0xf3de,0x5ab6,0x2d90 |
---|
369 | }; |
---|
370 | static unsigned short T[] = { |
---|
371 | 0x4023,0x35bf,0x1e37,0x5d88, |
---|
372 | 0x4056,0x81aa,0x4e9e,0x067f, |
---|
373 | 0x40a1,0x7002,0xbcb4,0x35b7, |
---|
374 | 0x40bb,0x5b53,0x3c72,0xef90, |
---|
375 | 0x40eb,0x2509,0xa442,0x13dc |
---|
376 | }; |
---|
377 | static unsigned short U[] = { |
---|
378 | 0x4040,0xc7e6,0x3fef,0xa6ba, |
---|
379 | 0x4080,0x4add,0x14c6,0x3aee, |
---|
380 | 0x40b1,0xf252,0xe680,0xfd12, |
---|
381 | 0x40d6,0x1940,0x0101,0x7c0a, |
---|
382 | 0x40e8,0x0e6c,0x9dc8,0xf567 |
---|
383 | }; |
---|
384 | #define UTHRESH 37.519379347 |
---|
385 | #endif |
---|
386 | |
---|
387 | #ifdef ANSIPROT |
---|
388 | extern double polevl ( double, void *, int ); |
---|
389 | extern double p1evl ( double, void *, int ); |
---|
390 | extern double exp ( double ); |
---|
391 | extern double log ( double ); |
---|
392 | extern double fabs ( double ); |
---|
393 | extern double sqrt ( double ); |
---|
394 | extern double expx2 ( double, int ); |
---|
395 | double erf ( double ); |
---|
396 | double erfc ( double ); |
---|
397 | static double erfce ( double ); |
---|
398 | #else |
---|
399 | double polevl(), p1evl(), exp(), log(), fabs(); |
---|
400 | double erf(), erfc(), expx2(), sqrt(); |
---|
401 | static double erfce(); |
---|
402 | #endif |
---|
403 | |
---|
404 | double ndtr(a) |
---|
405 | double a; |
---|
406 | { |
---|
407 | double x, y, z; |
---|
408 | |
---|
409 | x = a * SQRTH; |
---|
410 | z = fabs(x); |
---|
411 | |
---|
412 | /* if( z < SQRTH ) */ |
---|
413 | if( z < 1.0 ) |
---|
414 | y = 0.5 + 0.5 * erf(x); |
---|
415 | |
---|
416 | else |
---|
417 | { |
---|
418 | #ifdef USE_EXPXSQ |
---|
419 | /* See below for erfce. */ |
---|
420 | y = 0.5 * erfce(z); |
---|
421 | /* Multiply by exp(-x^2 / 2) */ |
---|
422 | z = expx2(a, -1); |
---|
423 | y = y * sqrt(z); |
---|
424 | #else |
---|
425 | y = 0.5 * erfc(z); |
---|
426 | #endif |
---|
427 | if( x > 0 ) |
---|
428 | y = 1.0 - y; |
---|
429 | } |
---|
430 | |
---|
431 | return(y); |
---|
432 | } |
---|
433 | |
---|
434 | |
---|
435 | double erfc(a) |
---|
436 | double a; |
---|
437 | { |
---|
438 | double p,q,x,y,z; |
---|
439 | |
---|
440 | |
---|
441 | if( a < 0.0 ) |
---|
442 | x = -a; |
---|
443 | else |
---|
444 | x = a; |
---|
445 | |
---|
446 | if( x < 1.0 ) |
---|
447 | return( 1.0 - erf(a) ); |
---|
448 | |
---|
449 | z = -a * a; |
---|
450 | |
---|
451 | if( z < -MAXLOG ) |
---|
452 | { |
---|
453 | under: |
---|
454 | mtherr( "erfc", UNDERFLOW ); |
---|
455 | if( a < 0 ) |
---|
456 | return( 2.0 ); |
---|
457 | else |
---|
458 | return( 0.0 ); |
---|
459 | } |
---|
460 | |
---|
461 | #ifdef USE_EXPXSQ |
---|
462 | /* Compute z = exp(z). */ |
---|
463 | z = expx2(a, -1); |
---|
464 | #else |
---|
465 | z = exp(z); |
---|
466 | #endif |
---|
467 | if( x < 8.0 ) |
---|
468 | { |
---|
469 | p = polevl( x, P, 8 ); |
---|
470 | q = p1evl( x, Q, 8 ); |
---|
471 | } |
---|
472 | else |
---|
473 | { |
---|
474 | p = polevl( x, R, 5 ); |
---|
475 | q = p1evl( x, S, 6 ); |
---|
476 | } |
---|
477 | y = (z * p)/q; |
---|
478 | |
---|
479 | if( a < 0 ) |
---|
480 | y = 2.0 - y; |
---|
481 | |
---|
482 | if( y == 0.0 ) |
---|
483 | goto under; |
---|
484 | |
---|
485 | return(y); |
---|
486 | } |
---|
487 | |
---|
488 | |
---|
489 | /* Exponentially scaled erfc function |
---|
490 | exp(x^2) erfc(x) |
---|
491 | valid for x > 1. |
---|
492 | Use with ndtr and expx2. */ |
---|
493 | static double erfce(x) |
---|
494 | double x; |
---|
495 | { |
---|
496 | double p,q; |
---|
497 | |
---|
498 | if( x < 8.0 ) |
---|
499 | { |
---|
500 | p = polevl( x, P, 8 ); |
---|
501 | q = p1evl( x, Q, 8 ); |
---|
502 | } |
---|
503 | else |
---|
504 | { |
---|
505 | p = polevl( x, R, 5 ); |
---|
506 | q = p1evl( x, S, 6 ); |
---|
507 | } |
---|
508 | return (p/q); |
---|
509 | } |
---|
510 | |
---|
511 | |
---|
512 | |
---|
513 | double erf(x) |
---|
514 | double x; |
---|
515 | { |
---|
516 | double y, z; |
---|
517 | |
---|
518 | if( fabs(x) > 1.0 ) |
---|
519 | return( 1.0 - erfc(x) ); |
---|
520 | z = x * x; |
---|
521 | y = x * polevl( z, T, 4 ) / p1evl( z, U, 5 ); |
---|
522 | return( y ); |
---|
523 | |
---|
524 | } |
---|