1 | /* nbdtr.c |
---|
2 | * |
---|
3 | * Negative binomial distribution |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * int k, n; |
---|
10 | * double p, y, nbdtr(); |
---|
11 | * |
---|
12 | * y = nbdtr( k, n, p ); |
---|
13 | * |
---|
14 | * DESCRIPTION: |
---|
15 | * |
---|
16 | * Returns the sum of the terms 0 through k of the negative |
---|
17 | * binomial distribution: |
---|
18 | * |
---|
19 | * k |
---|
20 | * -- ( n+j-1 ) n j |
---|
21 | * > ( ) p (1-p) |
---|
22 | * -- ( j ) |
---|
23 | * j=0 |
---|
24 | * |
---|
25 | * In a sequence of Bernoulli trials, this is the probability |
---|
26 | * that k or fewer failures precede the nth success. |
---|
27 | * |
---|
28 | * The terms are not computed individually; instead the incomplete |
---|
29 | * beta integral is employed, according to the formula |
---|
30 | * |
---|
31 | * y = nbdtr( k, n, p ) = incbet( n, k+1, p ). |
---|
32 | * |
---|
33 | * The arguments must be positive, with p ranging from 0 to 1. |
---|
34 | * |
---|
35 | * ACCURACY: |
---|
36 | * |
---|
37 | * Tested at random points (a,b,p), with p between 0 and 1. |
---|
38 | * |
---|
39 | * a,b Relative error: |
---|
40 | * arithmetic domain # trials peak rms |
---|
41 | * IEEE 0,100 100000 1.7e-13 8.8e-15 |
---|
42 | * See also incbet.c. |
---|
43 | * |
---|
44 | */ |
---|
45 | /* nbdtr.c |
---|
46 | * |
---|
47 | * Complemented negative binomial distribution |
---|
48 | * |
---|
49 | * |
---|
50 | * |
---|
51 | * SYNOPSIS: |
---|
52 | * |
---|
53 | * int k, n; |
---|
54 | * double p, y, nbdtrc(); |
---|
55 | * |
---|
56 | * y = nbdtrc( k, n, p ); |
---|
57 | * |
---|
58 | * DESCRIPTION: |
---|
59 | * |
---|
60 | * Returns the sum of the terms k+1 to infinity of the negative |
---|
61 | * binomial distribution: |
---|
62 | * |
---|
63 | * inf |
---|
64 | * -- ( n+j-1 ) n j |
---|
65 | * > ( ) p (1-p) |
---|
66 | * -- ( j ) |
---|
67 | * j=k+1 |
---|
68 | * |
---|
69 | * The terms are not computed individually; instead the incomplete |
---|
70 | * beta integral is employed, according to the formula |
---|
71 | * |
---|
72 | * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ). |
---|
73 | * |
---|
74 | * The arguments must be positive, with p ranging from 0 to 1. |
---|
75 | * |
---|
76 | * ACCURACY: |
---|
77 | * |
---|
78 | * Tested at random points (a,b,p), with p between 0 and 1. |
---|
79 | * |
---|
80 | * a,b Relative error: |
---|
81 | * arithmetic domain # trials peak rms |
---|
82 | * IEEE 0,100 100000 1.7e-13 8.8e-15 |
---|
83 | * See also incbet.c. |
---|
84 | */ |
---|
85 | /* nbdtr.c |
---|
86 | * |
---|
87 | * Functional inverse of negative binomial distribution |
---|
88 | * |
---|
89 | * |
---|
90 | * |
---|
91 | * SYNOPSIS: |
---|
92 | * |
---|
93 | * int k, n; |
---|
94 | * double p, y, nbdtri(); |
---|
95 | * |
---|
96 | * p = nbdtri( k, n, y ); |
---|
97 | * |
---|
98 | * DESCRIPTION: |
---|
99 | * |
---|
100 | * Finds the argument p such that nbdtr(k,n,p) is equal to y. |
---|
101 | * |
---|
102 | * ACCURACY: |
---|
103 | * |
---|
104 | * Tested at random points (a,b,y), with y between 0 and 1. |
---|
105 | * |
---|
106 | * a,b Relative error: |
---|
107 | * arithmetic domain # trials peak rms |
---|
108 | * IEEE 0,100 100000 1.5e-14 8.5e-16 |
---|
109 | * See also incbi.c. |
---|
110 | */ |
---|
111 | |
---|
112 | /* |
---|
113 | Cephes Math Library Release 2.8: June, 2000 |
---|
114 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
115 | */ |
---|
116 | |
---|
117 | #include "mconf.h" |
---|
118 | #ifdef ANSIPROT |
---|
119 | extern double incbet ( double, double, double ); |
---|
120 | extern double incbi ( double, double, double ); |
---|
121 | #else |
---|
122 | double incbet(), incbi(); |
---|
123 | #endif |
---|
124 | |
---|
125 | double nbdtrc( k, n, p ) |
---|
126 | int k, n; |
---|
127 | double p; |
---|
128 | { |
---|
129 | double dk, dn; |
---|
130 | |
---|
131 | if( (p < 0.0) || (p > 1.0) ) |
---|
132 | goto domerr; |
---|
133 | if( k < 0 ) |
---|
134 | { |
---|
135 | domerr: |
---|
136 | mtherr( "nbdtr", DOMAIN ); |
---|
137 | return( 0.0 ); |
---|
138 | } |
---|
139 | |
---|
140 | dk = k+1; |
---|
141 | dn = n; |
---|
142 | return( incbet( dk, dn, 1.0 - p ) ); |
---|
143 | } |
---|
144 | |
---|
145 | |
---|
146 | |
---|
147 | double nbdtr( k, n, p ) |
---|
148 | int k, n; |
---|
149 | double p; |
---|
150 | { |
---|
151 | double dk, dn; |
---|
152 | |
---|
153 | if( (p < 0.0) || (p > 1.0) ) |
---|
154 | goto domerr; |
---|
155 | if( k < 0 ) |
---|
156 | { |
---|
157 | domerr: |
---|
158 | mtherr( "nbdtr", DOMAIN ); |
---|
159 | return( 0.0 ); |
---|
160 | } |
---|
161 | dk = k+1; |
---|
162 | dn = n; |
---|
163 | return( incbet( dn, dk, p ) ); |
---|
164 | } |
---|
165 | |
---|
166 | |
---|
167 | |
---|
168 | double nbdtri( k, n, p ) |
---|
169 | int k, n; |
---|
170 | double p; |
---|
171 | { |
---|
172 | double dk, dn, w; |
---|
173 | |
---|
174 | if( (p < 0.0) || (p > 1.0) ) |
---|
175 | goto domerr; |
---|
176 | if( k < 0 ) |
---|
177 | { |
---|
178 | domerr: |
---|
179 | mtherr( "nbdtri", DOMAIN ); |
---|
180 | return( 0.0 ); |
---|
181 | } |
---|
182 | dk = k+1; |
---|
183 | dn = n; |
---|
184 | w = incbi( dn, dk, p ); |
---|
185 | return( w ); |
---|
186 | } |
---|