1 | /* k0.c |
---|
2 | * |
---|
3 | * Modified Bessel function, third kind, order zero |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double x, y, k0(); |
---|
10 | * |
---|
11 | * y = k0( x ); |
---|
12 | * |
---|
13 | * |
---|
14 | * |
---|
15 | * DESCRIPTION: |
---|
16 | * |
---|
17 | * Returns modified Bessel function of the third kind |
---|
18 | * of order zero of the argument. |
---|
19 | * |
---|
20 | * The range is partitioned into the two intervals [0,8] and |
---|
21 | * (8, infinity). Chebyshev polynomial expansions are employed |
---|
22 | * in each interval. |
---|
23 | * |
---|
24 | * |
---|
25 | * |
---|
26 | * ACCURACY: |
---|
27 | * |
---|
28 | * Tested at 2000 random points between 0 and 8. Peak absolute |
---|
29 | * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. |
---|
30 | * Relative error: |
---|
31 | * arithmetic domain # trials peak rms |
---|
32 | * DEC 0, 30 3100 1.3e-16 2.1e-17 |
---|
33 | * IEEE 0, 30 30000 1.2e-15 1.6e-16 |
---|
34 | * |
---|
35 | * ERROR MESSAGES: |
---|
36 | * |
---|
37 | * message condition value returned |
---|
38 | * K0 domain x <= 0 MAXNUM |
---|
39 | * |
---|
40 | */ |
---|
41 | /* k0e() |
---|
42 | * |
---|
43 | * Modified Bessel function, third kind, order zero, |
---|
44 | * exponentially scaled |
---|
45 | * |
---|
46 | * |
---|
47 | * |
---|
48 | * SYNOPSIS: |
---|
49 | * |
---|
50 | * double x, y, k0e(); |
---|
51 | * |
---|
52 | * y = k0e( x ); |
---|
53 | * |
---|
54 | * |
---|
55 | * |
---|
56 | * DESCRIPTION: |
---|
57 | * |
---|
58 | * Returns exponentially scaled modified Bessel function |
---|
59 | * of the third kind of order zero of the argument. |
---|
60 | * |
---|
61 | * |
---|
62 | * |
---|
63 | * ACCURACY: |
---|
64 | * |
---|
65 | * Relative error: |
---|
66 | * arithmetic domain # trials peak rms |
---|
67 | * IEEE 0, 30 30000 1.4e-15 1.4e-16 |
---|
68 | * See k0(). |
---|
69 | * |
---|
70 | */ |
---|
71 | |
---|
72 | /* |
---|
73 | Cephes Math Library Release 2.8: June, 2000 |
---|
74 | Copyright 1984, 1987, 2000 by Stephen L. Moshier |
---|
75 | */ |
---|
76 | |
---|
77 | #include "mconf.h" |
---|
78 | |
---|
79 | /* Chebyshev coefficients for K0(x) + log(x/2) I0(x) |
---|
80 | * in the interval [0,2]. The odd order coefficients are all |
---|
81 | * zero; only the even order coefficients are listed. |
---|
82 | * |
---|
83 | * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL. |
---|
84 | */ |
---|
85 | |
---|
86 | #ifdef UNK |
---|
87 | static double A[] = |
---|
88 | { |
---|
89 | 1.37446543561352307156E-16, |
---|
90 | 4.25981614279661018399E-14, |
---|
91 | 1.03496952576338420167E-11, |
---|
92 | 1.90451637722020886025E-9, |
---|
93 | 2.53479107902614945675E-7, |
---|
94 | 2.28621210311945178607E-5, |
---|
95 | 1.26461541144692592338E-3, |
---|
96 | 3.59799365153615016266E-2, |
---|
97 | 3.44289899924628486886E-1, |
---|
98 | -5.35327393233902768720E-1 |
---|
99 | }; |
---|
100 | #endif |
---|
101 | |
---|
102 | #ifdef DEC |
---|
103 | static unsigned short A[] = { |
---|
104 | 0023036,0073417,0032477,0165673, |
---|
105 | 0025077,0154126,0016046,0012517, |
---|
106 | 0027066,0011342,0035211,0005041, |
---|
107 | 0031002,0160233,0037454,0050224, |
---|
108 | 0032610,0012747,0037712,0173741, |
---|
109 | 0034277,0144007,0172147,0162375, |
---|
110 | 0035645,0140563,0125431,0165626, |
---|
111 | 0037023,0057662,0125124,0102051, |
---|
112 | 0037660,0043304,0004411,0166707, |
---|
113 | 0140011,0005467,0047227,0130370 |
---|
114 | }; |
---|
115 | #endif |
---|
116 | |
---|
117 | #ifdef IBMPC |
---|
118 | static unsigned short A[] = { |
---|
119 | 0xfd77,0xe6a7,0xcee1,0x3ca3, |
---|
120 | 0xc2aa,0xc384,0xfb0a,0x3d27, |
---|
121 | 0x2144,0x4751,0xc25c,0x3da6, |
---|
122 | 0x8a13,0x67e5,0x5c13,0x3e20, |
---|
123 | 0x5efc,0xe7f9,0x02bc,0x3e91, |
---|
124 | 0xfca0,0xfe8c,0xf900,0x3ef7, |
---|
125 | 0x3d73,0x7563,0xb82e,0x3f54, |
---|
126 | 0x9085,0x554a,0x6bf6,0x3fa2, |
---|
127 | 0x3db9,0x8121,0x08d8,0x3fd6, |
---|
128 | 0xf61f,0xe9d2,0x2166,0xbfe1 |
---|
129 | }; |
---|
130 | #endif |
---|
131 | |
---|
132 | #ifdef MIEEE |
---|
133 | static unsigned short A[] = { |
---|
134 | 0x3ca3,0xcee1,0xe6a7,0xfd77, |
---|
135 | 0x3d27,0xfb0a,0xc384,0xc2aa, |
---|
136 | 0x3da6,0xc25c,0x4751,0x2144, |
---|
137 | 0x3e20,0x5c13,0x67e5,0x8a13, |
---|
138 | 0x3e91,0x02bc,0xe7f9,0x5efc, |
---|
139 | 0x3ef7,0xf900,0xfe8c,0xfca0, |
---|
140 | 0x3f54,0xb82e,0x7563,0x3d73, |
---|
141 | 0x3fa2,0x6bf6,0x554a,0x9085, |
---|
142 | 0x3fd6,0x08d8,0x8121,0x3db9, |
---|
143 | 0xbfe1,0x2166,0xe9d2,0xf61f |
---|
144 | }; |
---|
145 | #endif |
---|
146 | |
---|
147 | |
---|
148 | |
---|
149 | /* Chebyshev coefficients for exp(x) sqrt(x) K0(x) |
---|
150 | * in the inverted interval [2,infinity]. |
---|
151 | * |
---|
152 | * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2). |
---|
153 | */ |
---|
154 | |
---|
155 | #ifdef UNK |
---|
156 | static double B[] = { |
---|
157 | 5.30043377268626276149E-18, |
---|
158 | -1.64758043015242134646E-17, |
---|
159 | 5.21039150503902756861E-17, |
---|
160 | -1.67823109680541210385E-16, |
---|
161 | 5.51205597852431940784E-16, |
---|
162 | -1.84859337734377901440E-15, |
---|
163 | 6.34007647740507060557E-15, |
---|
164 | -2.22751332699166985548E-14, |
---|
165 | 8.03289077536357521100E-14, |
---|
166 | -2.98009692317273043925E-13, |
---|
167 | 1.14034058820847496303E-12, |
---|
168 | -4.51459788337394416547E-12, |
---|
169 | 1.85594911495471785253E-11, |
---|
170 | -7.95748924447710747776E-11, |
---|
171 | 3.57739728140030116597E-10, |
---|
172 | -1.69753450938905987466E-9, |
---|
173 | 8.57403401741422608519E-9, |
---|
174 | -4.66048989768794782956E-8, |
---|
175 | 2.76681363944501510342E-7, |
---|
176 | -1.83175552271911948767E-6, |
---|
177 | 1.39498137188764993662E-5, |
---|
178 | -1.28495495816278026384E-4, |
---|
179 | 1.56988388573005337491E-3, |
---|
180 | -3.14481013119645005427E-2, |
---|
181 | 2.44030308206595545468E0 |
---|
182 | }; |
---|
183 | #endif |
---|
184 | |
---|
185 | #ifdef DEC |
---|
186 | static unsigned short B[] = { |
---|
187 | 0021703,0106456,0076144,0173406, |
---|
188 | 0122227,0173144,0116011,0030033, |
---|
189 | 0022560,0044562,0006506,0067642, |
---|
190 | 0123101,0076243,0123273,0131013, |
---|
191 | 0023436,0157713,0056243,0141331, |
---|
192 | 0124005,0032207,0063726,0164664, |
---|
193 | 0024344,0066342,0051756,0162300, |
---|
194 | 0124710,0121365,0154053,0077022, |
---|
195 | 0025264,0161166,0066246,0077420, |
---|
196 | 0125647,0141671,0006443,0103212, |
---|
197 | 0026240,0076431,0077147,0160445, |
---|
198 | 0126636,0153741,0174002,0105031, |
---|
199 | 0027243,0040102,0035375,0163073, |
---|
200 | 0127656,0176256,0113476,0044653, |
---|
201 | 0030304,0125544,0006377,0130104, |
---|
202 | 0130751,0047257,0110537,0127324, |
---|
203 | 0031423,0046400,0014772,0012164, |
---|
204 | 0132110,0025240,0155247,0112570, |
---|
205 | 0032624,0105314,0007437,0021574, |
---|
206 | 0133365,0155243,0174306,0116506, |
---|
207 | 0034152,0004776,0061643,0102504, |
---|
208 | 0135006,0136277,0036104,0175023, |
---|
209 | 0035715,0142217,0162474,0115022, |
---|
210 | 0137000,0147671,0065177,0134356, |
---|
211 | 0040434,0026754,0175163,0044070 |
---|
212 | }; |
---|
213 | #endif |
---|
214 | |
---|
215 | #ifdef IBMPC |
---|
216 | static unsigned short B[] = { |
---|
217 | 0x9ee1,0xcf8c,0x71a5,0x3c58, |
---|
218 | 0x2603,0x9381,0xfecc,0xbc72, |
---|
219 | 0xcdf4,0x41a8,0x092e,0x3c8e, |
---|
220 | 0x7641,0x74d7,0x2f94,0xbca8, |
---|
221 | 0x785b,0x6b94,0xdbf9,0x3cc3, |
---|
222 | 0xdd36,0xecfa,0xa690,0xbce0, |
---|
223 | 0xdc98,0x4a7d,0x8d9c,0x3cfc, |
---|
224 | 0x6fc2,0xbb05,0x145e,0xbd19, |
---|
225 | 0xcfe2,0xcd94,0x9c4e,0x3d36, |
---|
226 | 0x70d1,0x21a4,0xf877,0xbd54, |
---|
227 | 0xfc25,0x2fcc,0x0fa3,0x3d74, |
---|
228 | 0x5143,0x3f00,0xdafc,0xbd93, |
---|
229 | 0xbcc7,0x475f,0x6808,0x3db4, |
---|
230 | 0xc935,0xd2e7,0xdf95,0xbdd5, |
---|
231 | 0xf608,0x819f,0x956c,0x3df8, |
---|
232 | 0xf5db,0xf22b,0x29d5,0xbe1d, |
---|
233 | 0x428e,0x033f,0x69a0,0x3e42, |
---|
234 | 0xf2af,0x1b54,0x0554,0xbe69, |
---|
235 | 0xe46f,0x81e3,0x9159,0x3e92, |
---|
236 | 0xd3a9,0x7f18,0xbb54,0xbebe, |
---|
237 | 0x70a9,0xcc74,0x413f,0x3eed, |
---|
238 | 0x9f42,0xe788,0xd797,0xbf20, |
---|
239 | 0x9342,0xfca7,0xb891,0x3f59, |
---|
240 | 0xf71e,0x2d4f,0x19f7,0xbfa0, |
---|
241 | 0x6907,0x9f4e,0x85bd,0x4003 |
---|
242 | }; |
---|
243 | #endif |
---|
244 | |
---|
245 | #ifdef MIEEE |
---|
246 | static unsigned short B[] = { |
---|
247 | 0x3c58,0x71a5,0xcf8c,0x9ee1, |
---|
248 | 0xbc72,0xfecc,0x9381,0x2603, |
---|
249 | 0x3c8e,0x092e,0x41a8,0xcdf4, |
---|
250 | 0xbca8,0x2f94,0x74d7,0x7641, |
---|
251 | 0x3cc3,0xdbf9,0x6b94,0x785b, |
---|
252 | 0xbce0,0xa690,0xecfa,0xdd36, |
---|
253 | 0x3cfc,0x8d9c,0x4a7d,0xdc98, |
---|
254 | 0xbd19,0x145e,0xbb05,0x6fc2, |
---|
255 | 0x3d36,0x9c4e,0xcd94,0xcfe2, |
---|
256 | 0xbd54,0xf877,0x21a4,0x70d1, |
---|
257 | 0x3d74,0x0fa3,0x2fcc,0xfc25, |
---|
258 | 0xbd93,0xdafc,0x3f00,0x5143, |
---|
259 | 0x3db4,0x6808,0x475f,0xbcc7, |
---|
260 | 0xbdd5,0xdf95,0xd2e7,0xc935, |
---|
261 | 0x3df8,0x956c,0x819f,0xf608, |
---|
262 | 0xbe1d,0x29d5,0xf22b,0xf5db, |
---|
263 | 0x3e42,0x69a0,0x033f,0x428e, |
---|
264 | 0xbe69,0x0554,0x1b54,0xf2af, |
---|
265 | 0x3e92,0x9159,0x81e3,0xe46f, |
---|
266 | 0xbebe,0xbb54,0x7f18,0xd3a9, |
---|
267 | 0x3eed,0x413f,0xcc74,0x70a9, |
---|
268 | 0xbf20,0xd797,0xe788,0x9f42, |
---|
269 | 0x3f59,0xb891,0xfca7,0x9342, |
---|
270 | 0xbfa0,0x19f7,0x2d4f,0xf71e, |
---|
271 | 0x4003,0x85bd,0x9f4e,0x6907 |
---|
272 | }; |
---|
273 | #endif |
---|
274 | |
---|
275 | /* k0.c */ |
---|
276 | #ifdef ANSIPROT |
---|
277 | extern double chbevl ( double, void *, int ); |
---|
278 | extern double exp ( double ); |
---|
279 | extern double i0 ( double ); |
---|
280 | extern double log ( double ); |
---|
281 | extern double sqrt ( double ); |
---|
282 | #else |
---|
283 | double chbevl(), exp(), i0(), log(), sqrt(); |
---|
284 | #endif |
---|
285 | extern double PI; |
---|
286 | extern double MAXNUM; |
---|
287 | |
---|
288 | double k0(x) |
---|
289 | double x; |
---|
290 | { |
---|
291 | double y, z; |
---|
292 | |
---|
293 | if( x <= 0.0 ) |
---|
294 | { |
---|
295 | mtherr( "k0", DOMAIN ); |
---|
296 | return( MAXNUM ); |
---|
297 | } |
---|
298 | |
---|
299 | if( x <= 2.0 ) |
---|
300 | { |
---|
301 | y = x * x - 2.0; |
---|
302 | y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x); |
---|
303 | return( y ); |
---|
304 | } |
---|
305 | z = 8.0/x - 2.0; |
---|
306 | y = exp(-x) * chbevl( z, B, 25 ) / sqrt(x); |
---|
307 | return(y); |
---|
308 | } |
---|
309 | |
---|
310 | |
---|
311 | |
---|
312 | |
---|
313 | double k0e( x ) |
---|
314 | double x; |
---|
315 | { |
---|
316 | double y; |
---|
317 | |
---|
318 | if( x <= 0.0 ) |
---|
319 | { |
---|
320 | mtherr( "k0e", DOMAIN ); |
---|
321 | return( MAXNUM ); |
---|
322 | } |
---|
323 | |
---|
324 | if( x <= 2.0 ) |
---|
325 | { |
---|
326 | y = x * x - 2.0; |
---|
327 | y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x); |
---|
328 | return( y * exp(x) ); |
---|
329 | } |
---|
330 | |
---|
331 | y = chbevl( 8.0/x - 2.0, B, 25 ) / sqrt(x); |
---|
332 | return(y); |
---|
333 | } |
---|