source: sasview/src/sas/models/c_extension/cephes/k0.c @ e8e3e38

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since e8e3e38 was 79492222, checked in by krzywon, 10 years ago

Changed the file and folder names to remove all SANS references.

  • Property mode set to 100644
File size: 7.2 KB
RevLine 
[230f479]1/*                                                      k0.c
2 *
3 *      Modified Bessel function, third kind, order zero
4 *
5 *
6 *
7 * SYNOPSIS:
8 *
9 * double x, y, k0();
10 *
11 * y = k0( x );
12 *
13 *
14 *
15 * DESCRIPTION:
16 *
17 * Returns modified Bessel function of the third kind
18 * of order zero of the argument.
19 *
20 * The range is partitioned into the two intervals [0,8] and
21 * (8, infinity).  Chebyshev polynomial expansions are employed
22 * in each interval.
23 *
24 *
25 *
26 * ACCURACY:
27 *
28 * Tested at 2000 random points between 0 and 8.  Peak absolute
29 * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
30 *                      Relative error:
31 * arithmetic   domain     # trials      peak         rms
32 *    DEC       0, 30        3100       1.3e-16     2.1e-17
33 *    IEEE      0, 30       30000       1.2e-15     1.6e-16
34 *
35 * ERROR MESSAGES:
36 *
37 *   message         condition      value returned
38 *  K0 domain          x <= 0          MAXNUM
39 *
40 */
41/*                                                     k0e()
42 *
43 *      Modified Bessel function, third kind, order zero,
44 *      exponentially scaled
45 *
46 *
47 *
48 * SYNOPSIS:
49 *
50 * double x, y, k0e();
51 *
52 * y = k0e( x );
53 *
54 *
55 *
56 * DESCRIPTION:
57 *
58 * Returns exponentially scaled modified Bessel function
59 * of the third kind of order zero of the argument.
60 *
61 *
62 *
63 * ACCURACY:
64 *
65 *                      Relative error:
66 * arithmetic   domain     # trials      peak         rms
67 *    IEEE      0, 30       30000       1.4e-15     1.4e-16
68 * See k0().
69 *
70 */
71
72/*
73Cephes Math Library Release 2.8:  June, 2000
74Copyright 1984, 1987, 2000 by Stephen L. Moshier
75*/
76
77#include "mconf.h"
78
79/* Chebyshev coefficients for K0(x) + log(x/2) I0(x)
80 * in the interval [0,2].  The odd order coefficients are all
81 * zero; only the even order coefficients are listed.
82 *
83 * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL.
84 */
85
86#ifdef UNK
87static double A[] =
88{
89 1.37446543561352307156E-16,
90 4.25981614279661018399E-14,
91 1.03496952576338420167E-11,
92 1.90451637722020886025E-9,
93 2.53479107902614945675E-7,
94 2.28621210311945178607E-5,
95 1.26461541144692592338E-3,
96 3.59799365153615016266E-2,
97 3.44289899924628486886E-1,
98-5.35327393233902768720E-1
99};
100#endif
101
102#ifdef DEC
103static unsigned short A[] = {
1040023036,0073417,0032477,0165673,
1050025077,0154126,0016046,0012517,
1060027066,0011342,0035211,0005041,
1070031002,0160233,0037454,0050224,
1080032610,0012747,0037712,0173741,
1090034277,0144007,0172147,0162375,
1100035645,0140563,0125431,0165626,
1110037023,0057662,0125124,0102051,
1120037660,0043304,0004411,0166707,
1130140011,0005467,0047227,0130370
114};
115#endif
116
117#ifdef IBMPC
118static unsigned short A[] = {
1190xfd77,0xe6a7,0xcee1,0x3ca3,
1200xc2aa,0xc384,0xfb0a,0x3d27,
1210x2144,0x4751,0xc25c,0x3da6,
1220x8a13,0x67e5,0x5c13,0x3e20,
1230x5efc,0xe7f9,0x02bc,0x3e91,
1240xfca0,0xfe8c,0xf900,0x3ef7,
1250x3d73,0x7563,0xb82e,0x3f54,
1260x9085,0x554a,0x6bf6,0x3fa2,
1270x3db9,0x8121,0x08d8,0x3fd6,
1280xf61f,0xe9d2,0x2166,0xbfe1
129};
130#endif
131
132#ifdef MIEEE
133static unsigned short A[] = {
1340x3ca3,0xcee1,0xe6a7,0xfd77,
1350x3d27,0xfb0a,0xc384,0xc2aa,
1360x3da6,0xc25c,0x4751,0x2144,
1370x3e20,0x5c13,0x67e5,0x8a13,
1380x3e91,0x02bc,0xe7f9,0x5efc,
1390x3ef7,0xf900,0xfe8c,0xfca0,
1400x3f54,0xb82e,0x7563,0x3d73,
1410x3fa2,0x6bf6,0x554a,0x9085,
1420x3fd6,0x08d8,0x8121,0x3db9,
1430xbfe1,0x2166,0xe9d2,0xf61f
144};
145#endif
146
147
148
149/* Chebyshev coefficients for exp(x) sqrt(x) K0(x)
150 * in the inverted interval [2,infinity].
151 *
152 * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2).
153 */
154
155#ifdef UNK
156static double B[] = {
157 5.30043377268626276149E-18,
158-1.64758043015242134646E-17,
159 5.21039150503902756861E-17,
160-1.67823109680541210385E-16,
161 5.51205597852431940784E-16,
162-1.84859337734377901440E-15,
163 6.34007647740507060557E-15,
164-2.22751332699166985548E-14,
165 8.03289077536357521100E-14,
166-2.98009692317273043925E-13,
167 1.14034058820847496303E-12,
168-4.51459788337394416547E-12,
169 1.85594911495471785253E-11,
170-7.95748924447710747776E-11,
171 3.57739728140030116597E-10,
172-1.69753450938905987466E-9,
173 8.57403401741422608519E-9,
174-4.66048989768794782956E-8,
175 2.76681363944501510342E-7,
176-1.83175552271911948767E-6,
177 1.39498137188764993662E-5,
178-1.28495495816278026384E-4,
179 1.56988388573005337491E-3,
180-3.14481013119645005427E-2,
181 2.44030308206595545468E0
182};
183#endif
184
185#ifdef DEC
186static unsigned short B[] = {
1870021703,0106456,0076144,0173406,
1880122227,0173144,0116011,0030033,
1890022560,0044562,0006506,0067642,
1900123101,0076243,0123273,0131013,
1910023436,0157713,0056243,0141331,
1920124005,0032207,0063726,0164664,
1930024344,0066342,0051756,0162300,
1940124710,0121365,0154053,0077022,
1950025264,0161166,0066246,0077420,
1960125647,0141671,0006443,0103212,
1970026240,0076431,0077147,0160445,
1980126636,0153741,0174002,0105031,
1990027243,0040102,0035375,0163073,
2000127656,0176256,0113476,0044653,
2010030304,0125544,0006377,0130104,
2020130751,0047257,0110537,0127324,
2030031423,0046400,0014772,0012164,
2040132110,0025240,0155247,0112570,
2050032624,0105314,0007437,0021574,
2060133365,0155243,0174306,0116506,
2070034152,0004776,0061643,0102504,
2080135006,0136277,0036104,0175023,
2090035715,0142217,0162474,0115022,
2100137000,0147671,0065177,0134356,
2110040434,0026754,0175163,0044070
212};
213#endif
214
215#ifdef IBMPC
216static unsigned short B[] = {
2170x9ee1,0xcf8c,0x71a5,0x3c58,
2180x2603,0x9381,0xfecc,0xbc72,
2190xcdf4,0x41a8,0x092e,0x3c8e,
2200x7641,0x74d7,0x2f94,0xbca8,
2210x785b,0x6b94,0xdbf9,0x3cc3,
2220xdd36,0xecfa,0xa690,0xbce0,
2230xdc98,0x4a7d,0x8d9c,0x3cfc,
2240x6fc2,0xbb05,0x145e,0xbd19,
2250xcfe2,0xcd94,0x9c4e,0x3d36,
2260x70d1,0x21a4,0xf877,0xbd54,
2270xfc25,0x2fcc,0x0fa3,0x3d74,
2280x5143,0x3f00,0xdafc,0xbd93,
2290xbcc7,0x475f,0x6808,0x3db4,
2300xc935,0xd2e7,0xdf95,0xbdd5,
2310xf608,0x819f,0x956c,0x3df8,
2320xf5db,0xf22b,0x29d5,0xbe1d,
2330x428e,0x033f,0x69a0,0x3e42,
2340xf2af,0x1b54,0x0554,0xbe69,
2350xe46f,0x81e3,0x9159,0x3e92,
2360xd3a9,0x7f18,0xbb54,0xbebe,
2370x70a9,0xcc74,0x413f,0x3eed,
2380x9f42,0xe788,0xd797,0xbf20,
2390x9342,0xfca7,0xb891,0x3f59,
2400xf71e,0x2d4f,0x19f7,0xbfa0,
2410x6907,0x9f4e,0x85bd,0x4003
242};
243#endif
244
245#ifdef MIEEE
246static unsigned short B[] = {
2470x3c58,0x71a5,0xcf8c,0x9ee1,
2480xbc72,0xfecc,0x9381,0x2603,
2490x3c8e,0x092e,0x41a8,0xcdf4,
2500xbca8,0x2f94,0x74d7,0x7641,
2510x3cc3,0xdbf9,0x6b94,0x785b,
2520xbce0,0xa690,0xecfa,0xdd36,
2530x3cfc,0x8d9c,0x4a7d,0xdc98,
2540xbd19,0x145e,0xbb05,0x6fc2,
2550x3d36,0x9c4e,0xcd94,0xcfe2,
2560xbd54,0xf877,0x21a4,0x70d1,
2570x3d74,0x0fa3,0x2fcc,0xfc25,
2580xbd93,0xdafc,0x3f00,0x5143,
2590x3db4,0x6808,0x475f,0xbcc7,
2600xbdd5,0xdf95,0xd2e7,0xc935,
2610x3df8,0x956c,0x819f,0xf608,
2620xbe1d,0x29d5,0xf22b,0xf5db,
2630x3e42,0x69a0,0x033f,0x428e,
2640xbe69,0x0554,0x1b54,0xf2af,
2650x3e92,0x9159,0x81e3,0xe46f,
2660xbebe,0xbb54,0x7f18,0xd3a9,
2670x3eed,0x413f,0xcc74,0x70a9,
2680xbf20,0xd797,0xe788,0x9f42,
2690x3f59,0xb891,0xfca7,0x9342,
2700xbfa0,0x19f7,0x2d4f,0xf71e,
2710x4003,0x85bd,0x9f4e,0x6907
272};
273#endif
274
275/*                                                      k0.c    */
276#ifdef ANSIPROT
277extern double chbevl ( double, void *, int );
278extern double exp ( double );
279extern double i0 ( double );
280extern double log ( double );
281extern double sqrt ( double );
282#else
283double chbevl(), exp(), i0(), log(), sqrt();
284#endif
285extern double PI;
286extern double MAXNUM;
287
288double k0(x)
289double x;
290{
291double y, z;
292
293if( x <= 0.0 )
294        {
295        mtherr( "k0", DOMAIN );
296        return( MAXNUM );
297        }
298
299if( x <= 2.0 )
300        {
301        y = x * x - 2.0;
302        y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x);
303        return( y );
304        }
305z = 8.0/x - 2.0;
306y = exp(-x) * chbevl( z, B, 25 ) / sqrt(x);
307return(y);
308}
309
310
311
312
313double k0e( x )
314double x;
315{
316double y;
317
318if( x <= 0.0 )
319        {
320        mtherr( "k0e", DOMAIN );
321        return( MAXNUM );
322        }
323
324if( x <= 2.0 )
325        {
326        y = x * x - 2.0;
327        y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x);
328        return( y * exp(x) );
329        }
330
331y = chbevl( 8.0/x - 2.0, B, 25 ) / sqrt(x);
332return(y);
333}
Note: See TracBrowser for help on using the repository browser.