1 | /* iv.c |
---|
2 | * |
---|
3 | * Modified Bessel function of noninteger order |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double v, x, y, iv(); |
---|
10 | * |
---|
11 | * y = iv( v, x ); |
---|
12 | * |
---|
13 | * |
---|
14 | * |
---|
15 | * DESCRIPTION: |
---|
16 | * |
---|
17 | * Returns modified Bessel function of order v of the |
---|
18 | * argument. If x is negative, v must be integer valued. |
---|
19 | * |
---|
20 | * The function is defined as Iv(x) = Jv( ix ). It is |
---|
21 | * here computed in terms of the confluent hypergeometric |
---|
22 | * function, according to the formula |
---|
23 | * |
---|
24 | * v -x |
---|
25 | * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1) |
---|
26 | * |
---|
27 | * If v is a negative integer, then v is replaced by -v. |
---|
28 | * |
---|
29 | * |
---|
30 | * ACCURACY: |
---|
31 | * |
---|
32 | * Tested at random points (v, x), with v between 0 and |
---|
33 | * 30, x between 0 and 28. |
---|
34 | * Relative error: |
---|
35 | * arithmetic domain # trials peak rms |
---|
36 | * DEC 0,30 2000 3.1e-15 5.4e-16 |
---|
37 | * IEEE 0,30 10000 1.7e-14 2.7e-15 |
---|
38 | * |
---|
39 | * Accuracy is diminished if v is near a negative integer. |
---|
40 | * |
---|
41 | * See also hyperg.c. |
---|
42 | * |
---|
43 | */ |
---|
44 | /* iv.c */ |
---|
45 | /* Modified Bessel function of noninteger order */ |
---|
46 | /* If x < 0, then v must be an integer. */ |
---|
47 | |
---|
48 | |
---|
49 | /* |
---|
50 | Cephes Math Library Release 2.8: June, 2000 |
---|
51 | Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier |
---|
52 | */ |
---|
53 | |
---|
54 | |
---|
55 | #include "mconf.h" |
---|
56 | #ifdef ANSIPROT |
---|
57 | extern double hyperg ( double, double, double ); |
---|
58 | extern double exp ( double ); |
---|
59 | extern double gamma ( double ); |
---|
60 | extern double log ( double ); |
---|
61 | extern double fabs ( double ); |
---|
62 | extern double floor ( double ); |
---|
63 | #else |
---|
64 | double hyperg(), exp(), gamma(), log(), fabs(), floor(); |
---|
65 | #endif |
---|
66 | extern double MACHEP, MAXNUM; |
---|
67 | |
---|
68 | double iv( v, x ) |
---|
69 | double v, x; |
---|
70 | { |
---|
71 | int sign; |
---|
72 | double t, ax; |
---|
73 | |
---|
74 | /* If v is a negative integer, invoke symmetry */ |
---|
75 | t = floor(v); |
---|
76 | if( v < 0.0 ) |
---|
77 | { |
---|
78 | if( t == v ) |
---|
79 | { |
---|
80 | v = -v; /* symmetry */ |
---|
81 | t = -t; |
---|
82 | } |
---|
83 | } |
---|
84 | /* If x is negative, require v to be an integer */ |
---|
85 | sign = 1; |
---|
86 | if( x < 0.0 ) |
---|
87 | { |
---|
88 | if( t != v ) |
---|
89 | { |
---|
90 | mtherr( "iv", DOMAIN ); |
---|
91 | return( 0.0 ); |
---|
92 | } |
---|
93 | if( v != 2.0 * floor(v/2.0) ) |
---|
94 | sign = -1; |
---|
95 | } |
---|
96 | |
---|
97 | /* Avoid logarithm singularity */ |
---|
98 | if( x == 0.0 ) |
---|
99 | { |
---|
100 | if( v == 0.0 ) |
---|
101 | return( 1.0 ); |
---|
102 | if( v < 0.0 ) |
---|
103 | { |
---|
104 | mtherr( "iv", OVERFLOW ); |
---|
105 | return( MAXNUM ); |
---|
106 | } |
---|
107 | else |
---|
108 | return( 0.0 ); |
---|
109 | } |
---|
110 | |
---|
111 | ax = fabs(x); |
---|
112 | t = v * log( 0.5 * ax ) - x; |
---|
113 | t = sign * exp(t) / gamma( v + 1.0 ); |
---|
114 | ax = v + 0.5; |
---|
115 | return( t * hyperg( ax, 2.0 * ax, 2.0 * x ) ); |
---|
116 | } |
---|