1 | /* igami() |
---|
2 | * |
---|
3 | * Inverse of complemented imcomplete gamma integral |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double a, x, p, igami(); |
---|
10 | * |
---|
11 | * x = igami( a, p ); |
---|
12 | * |
---|
13 | * DESCRIPTION: |
---|
14 | * |
---|
15 | * Given p, the function finds x such that |
---|
16 | * |
---|
17 | * igamc( a, x ) = p. |
---|
18 | * |
---|
19 | * Starting with the approximate value |
---|
20 | * |
---|
21 | * 3 |
---|
22 | * x = a t |
---|
23 | * |
---|
24 | * where |
---|
25 | * |
---|
26 | * t = 1 - d - ndtri(p) sqrt(d) |
---|
27 | * |
---|
28 | * and |
---|
29 | * |
---|
30 | * d = 1/9a, |
---|
31 | * |
---|
32 | * the routine performs up to 10 Newton iterations to find the |
---|
33 | * root of igamc(a,x) - p = 0. |
---|
34 | * |
---|
35 | * ACCURACY: |
---|
36 | * |
---|
37 | * Tested at random a, p in the intervals indicated. |
---|
38 | * |
---|
39 | * a p Relative error: |
---|
40 | * arithmetic domain domain # trials peak rms |
---|
41 | * IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15 |
---|
42 | * IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15 |
---|
43 | * IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14 |
---|
44 | */ |
---|
45 | |
---|
46 | /* |
---|
47 | Cephes Math Library Release 2.8: June, 2000 |
---|
48 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
49 | */ |
---|
50 | |
---|
51 | #include "mconf.h" |
---|
52 | |
---|
53 | extern double MACHEP, MAXNUM, MAXLOG, MINLOG; |
---|
54 | #ifdef ANSIPROT |
---|
55 | extern double igamc ( double, double ); |
---|
56 | extern double ndtri ( double ); |
---|
57 | extern double exp ( double ); |
---|
58 | extern double fabs ( double ); |
---|
59 | extern double log ( double ); |
---|
60 | extern double sqrt ( double ); |
---|
61 | extern double lgam ( double ); |
---|
62 | #else |
---|
63 | double igamc(), ndtri(), exp(), fabs(), log(), sqrt(), lgam(); |
---|
64 | #endif |
---|
65 | |
---|
66 | double igami( a, y0 ) |
---|
67 | double a, y0; |
---|
68 | { |
---|
69 | double x0, x1, x, yl, yh, y, d, lgm, dithresh; |
---|
70 | int i, dir; |
---|
71 | |
---|
72 | /* bound the solution */ |
---|
73 | x0 = MAXNUM; |
---|
74 | yl = 0; |
---|
75 | x1 = 0; |
---|
76 | yh = 1.0; |
---|
77 | dithresh = 5.0 * MACHEP; |
---|
78 | |
---|
79 | /* approximation to inverse function */ |
---|
80 | d = 1.0/(9.0*a); |
---|
81 | y = ( 1.0 - d - ndtri(y0) * sqrt(d) ); |
---|
82 | x = a * y * y * y; |
---|
83 | |
---|
84 | lgm = lgam(a); |
---|
85 | |
---|
86 | for( i=0; i<10; i++ ) |
---|
87 | { |
---|
88 | if( x > x0 || x < x1 ) |
---|
89 | goto ihalve; |
---|
90 | y = igamc(a,x); |
---|
91 | if( y < yl || y > yh ) |
---|
92 | goto ihalve; |
---|
93 | if( y < y0 ) |
---|
94 | { |
---|
95 | x0 = x; |
---|
96 | yl = y; |
---|
97 | } |
---|
98 | else |
---|
99 | { |
---|
100 | x1 = x; |
---|
101 | yh = y; |
---|
102 | } |
---|
103 | /* compute the derivative of the function at this point */ |
---|
104 | d = (a - 1.0) * log(x) - x - lgm; |
---|
105 | if( d < -MAXLOG ) |
---|
106 | goto ihalve; |
---|
107 | d = -exp(d); |
---|
108 | /* compute the step to the next approximation of x */ |
---|
109 | d = (y - y0)/d; |
---|
110 | if( fabs(d/x) < MACHEP ) |
---|
111 | goto done; |
---|
112 | x = x - d; |
---|
113 | } |
---|
114 | |
---|
115 | /* Resort to interval halving if Newton iteration did not converge. */ |
---|
116 | ihalve: |
---|
117 | |
---|
118 | d = 0.0625; |
---|
119 | if( x0 == MAXNUM ) |
---|
120 | { |
---|
121 | if( x <= 0.0 ) |
---|
122 | x = 1.0; |
---|
123 | while( x0 == MAXNUM ) |
---|
124 | { |
---|
125 | x = (1.0 + d) * x; |
---|
126 | y = igamc( a, x ); |
---|
127 | if( y < y0 ) |
---|
128 | { |
---|
129 | x0 = x; |
---|
130 | yl = y; |
---|
131 | break; |
---|
132 | } |
---|
133 | d = d + d; |
---|
134 | } |
---|
135 | } |
---|
136 | d = 0.5; |
---|
137 | dir = 0; |
---|
138 | |
---|
139 | for( i=0; i<400; i++ ) |
---|
140 | { |
---|
141 | x = x1 + d * (x0 - x1); |
---|
142 | y = igamc( a, x ); |
---|
143 | lgm = (x0 - x1)/(x1 + x0); |
---|
144 | if( fabs(lgm) < dithresh ) |
---|
145 | break; |
---|
146 | lgm = (y - y0)/y0; |
---|
147 | if( fabs(lgm) < dithresh ) |
---|
148 | break; |
---|
149 | if( x <= 0.0 ) |
---|
150 | break; |
---|
151 | if( y >= y0 ) |
---|
152 | { |
---|
153 | x1 = x; |
---|
154 | yh = y; |
---|
155 | if( dir < 0 ) |
---|
156 | { |
---|
157 | dir = 0; |
---|
158 | d = 0.5; |
---|
159 | } |
---|
160 | else if( dir > 1 ) |
---|
161 | d = 0.5 * d + 0.5; |
---|
162 | else |
---|
163 | d = (y0 - yl)/(yh - yl); |
---|
164 | dir += 1; |
---|
165 | } |
---|
166 | else |
---|
167 | { |
---|
168 | x0 = x; |
---|
169 | yl = y; |
---|
170 | if( dir > 0 ) |
---|
171 | { |
---|
172 | dir = 0; |
---|
173 | d = 0.5; |
---|
174 | } |
---|
175 | else if( dir < -1 ) |
---|
176 | d = 0.5 * d; |
---|
177 | else |
---|
178 | d = (y0 - yl)/(yh - yl); |
---|
179 | dir -= 1; |
---|
180 | } |
---|
181 | } |
---|
182 | if( x == 0.0 ) |
---|
183 | mtherr( "igami", UNDERFLOW ); |
---|
184 | |
---|
185 | done: |
---|
186 | return( x ); |
---|
187 | } |
---|