1 | /* igam.c |
---|
2 | * |
---|
3 | * Incomplete gamma integral |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double a, x, y, igam(); |
---|
10 | * |
---|
11 | * y = igam( a, x ); |
---|
12 | * |
---|
13 | * DESCRIPTION: |
---|
14 | * |
---|
15 | * The function is defined by |
---|
16 | * |
---|
17 | * x |
---|
18 | * - |
---|
19 | * 1 | | -t a-1 |
---|
20 | * igam(a,x) = ----- | e t dt. |
---|
21 | * - | | |
---|
22 | * | (a) - |
---|
23 | * 0 |
---|
24 | * |
---|
25 | * |
---|
26 | * In this implementation both arguments must be positive. |
---|
27 | * The integral is evaluated by either a power series or |
---|
28 | * continued fraction expansion, depending on the relative |
---|
29 | * values of a and x. |
---|
30 | * |
---|
31 | * ACCURACY: |
---|
32 | * |
---|
33 | * Relative error: |
---|
34 | * arithmetic domain # trials peak rms |
---|
35 | * IEEE 0,30 200000 3.6e-14 2.9e-15 |
---|
36 | * IEEE 0,100 300000 9.9e-14 1.5e-14 |
---|
37 | */ |
---|
38 | /* igamc() |
---|
39 | * |
---|
40 | * Complemented incomplete gamma integral |
---|
41 | * |
---|
42 | * |
---|
43 | * |
---|
44 | * SYNOPSIS: |
---|
45 | * |
---|
46 | * double a, x, y, igamc(); |
---|
47 | * |
---|
48 | * y = igamc( a, x ); |
---|
49 | * |
---|
50 | * DESCRIPTION: |
---|
51 | * |
---|
52 | * The function is defined by |
---|
53 | * |
---|
54 | * |
---|
55 | * igamc(a,x) = 1 - igam(a,x) |
---|
56 | * |
---|
57 | * inf. |
---|
58 | * - |
---|
59 | * 1 | | -t a-1 |
---|
60 | * = ----- | e t dt. |
---|
61 | * - | | |
---|
62 | * | (a) - |
---|
63 | * x |
---|
64 | * |
---|
65 | * |
---|
66 | * In this implementation both arguments must be positive. |
---|
67 | * The integral is evaluated by either a power series or |
---|
68 | * continued fraction expansion, depending on the relative |
---|
69 | * values of a and x. |
---|
70 | * |
---|
71 | * ACCURACY: |
---|
72 | * |
---|
73 | * Tested at random a, x. |
---|
74 | * a x Relative error: |
---|
75 | * arithmetic domain domain # trials peak rms |
---|
76 | * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 |
---|
77 | * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 |
---|
78 | */ |
---|
79 | |
---|
80 | /* |
---|
81 | Cephes Math Library Release 2.8: June, 2000 |
---|
82 | Copyright 1985, 1987, 2000 by Stephen L. Moshier |
---|
83 | */ |
---|
84 | |
---|
85 | #include "mconf.h" |
---|
86 | #ifdef ANSIPROT |
---|
87 | extern double lgam ( double ); |
---|
88 | extern double exp ( double ); |
---|
89 | extern double log ( double ); |
---|
90 | extern double fabs ( double ); |
---|
91 | extern double igam ( double, double ); |
---|
92 | extern double igamc ( double, double ); |
---|
93 | #else |
---|
94 | double lgam(), exp(), log(), fabs(), igam(), igamc(); |
---|
95 | #endif |
---|
96 | |
---|
97 | extern double MACHEP, MAXLOG; |
---|
98 | static double big = 4.503599627370496e15; |
---|
99 | static double biginv = 2.22044604925031308085e-16; |
---|
100 | |
---|
101 | double igamc( a, x ) |
---|
102 | double a, x; |
---|
103 | { |
---|
104 | double ans, ax, c, yc, r, t, y, z; |
---|
105 | double pk, pkm1, pkm2, qk, qkm1, qkm2; |
---|
106 | |
---|
107 | if( (x <= 0) || ( a <= 0) ) |
---|
108 | return( 1.0 ); |
---|
109 | |
---|
110 | if( (x < 1.0) || (x < a) ) |
---|
111 | return( 1.0 - igam(a,x) ); |
---|
112 | |
---|
113 | ax = a * log(x) - x - lgam(a); |
---|
114 | if( ax < -MAXLOG ) |
---|
115 | { |
---|
116 | mtherr( "igamc", UNDERFLOW ); |
---|
117 | return( 0.0 ); |
---|
118 | } |
---|
119 | ax = exp(ax); |
---|
120 | |
---|
121 | /* continued fraction */ |
---|
122 | y = 1.0 - a; |
---|
123 | z = x + y + 1.0; |
---|
124 | c = 0.0; |
---|
125 | pkm2 = 1.0; |
---|
126 | qkm2 = x; |
---|
127 | pkm1 = x + 1.0; |
---|
128 | qkm1 = z * x; |
---|
129 | ans = pkm1/qkm1; |
---|
130 | |
---|
131 | do |
---|
132 | { |
---|
133 | c += 1.0; |
---|
134 | y += 1.0; |
---|
135 | z += 2.0; |
---|
136 | yc = y * c; |
---|
137 | pk = pkm1 * z - pkm2 * yc; |
---|
138 | qk = qkm1 * z - qkm2 * yc; |
---|
139 | if( qk != 0 ) |
---|
140 | { |
---|
141 | r = pk/qk; |
---|
142 | t = fabs( (ans - r)/r ); |
---|
143 | ans = r; |
---|
144 | } |
---|
145 | else |
---|
146 | t = 1.0; |
---|
147 | pkm2 = pkm1; |
---|
148 | pkm1 = pk; |
---|
149 | qkm2 = qkm1; |
---|
150 | qkm1 = qk; |
---|
151 | if( fabs(pk) > big ) |
---|
152 | { |
---|
153 | pkm2 *= biginv; |
---|
154 | pkm1 *= biginv; |
---|
155 | qkm2 *= biginv; |
---|
156 | qkm1 *= biginv; |
---|
157 | } |
---|
158 | } |
---|
159 | while( t > MACHEP ); |
---|
160 | |
---|
161 | return( ans * ax ); |
---|
162 | } |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | /* left tail of incomplete gamma function: |
---|
167 | * |
---|
168 | * inf. k |
---|
169 | * a -x - x |
---|
170 | * x e > ---------- |
---|
171 | * - - |
---|
172 | * k=0 | (a+k+1) |
---|
173 | * |
---|
174 | */ |
---|
175 | |
---|
176 | double igam( a, x ) |
---|
177 | double a, x; |
---|
178 | { |
---|
179 | double ans, ax, c, r; |
---|
180 | |
---|
181 | if( (x <= 0) || ( a <= 0) ) |
---|
182 | return( 0.0 ); |
---|
183 | |
---|
184 | if( (x > 1.0) && (x > a ) ) |
---|
185 | return( 1.0 - igamc(a,x) ); |
---|
186 | |
---|
187 | /* Compute x**a * exp(-x) / gamma(a) */ |
---|
188 | ax = a * log(x) - x - lgam(a); |
---|
189 | if( ax < -MAXLOG ) |
---|
190 | { |
---|
191 | mtherr( "igam", UNDERFLOW ); |
---|
192 | return( 0.0 ); |
---|
193 | } |
---|
194 | ax = exp(ax); |
---|
195 | |
---|
196 | /* power series */ |
---|
197 | r = a; |
---|
198 | c = 1.0; |
---|
199 | ans = 1.0; |
---|
200 | |
---|
201 | do |
---|
202 | { |
---|
203 | r += 1.0; |
---|
204 | c *= x/r; |
---|
205 | ans += c; |
---|
206 | } |
---|
207 | while( c/ans > MACHEP ); |
---|
208 | |
---|
209 | return( ans * ax/a ); |
---|
210 | } |
---|