1 | /* drand.c |
---|
2 | * |
---|
3 | * Pseudorandom number generator |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * double y, drand(); |
---|
10 | * |
---|
11 | * drand( &y ); |
---|
12 | * |
---|
13 | * |
---|
14 | * |
---|
15 | * DESCRIPTION: |
---|
16 | * |
---|
17 | * Yields a random number 1.0 <= y < 2.0. |
---|
18 | * |
---|
19 | * The three-generator congruential algorithm by Brian |
---|
20 | * Wichmann and David Hill (BYTE magazine, March, 1987, |
---|
21 | * pp 127-8) is used. The period, given by them, is |
---|
22 | * 6953607871644. |
---|
23 | * |
---|
24 | * Versions invoked by the different arithmetic compile |
---|
25 | * time options DEC, IBMPC, and MIEEE, produce |
---|
26 | * approximately the same sequences, differing only in the |
---|
27 | * least significant bits of the numbers. The UNK option |
---|
28 | * implements the algorithm as recommended in the BYTE |
---|
29 | * article. It may be used on all computers. However, |
---|
30 | * the low order bits of a double precision number may |
---|
31 | * not be adequately random, and may vary due to arithmetic |
---|
32 | * implementation details on different computers. |
---|
33 | * |
---|
34 | * The other compile options generate an additional random |
---|
35 | * integer that overwrites the low order bits of the double |
---|
36 | * precision number. This reduces the period by a factor of |
---|
37 | * two but tends to overcome the problems mentioned. |
---|
38 | * |
---|
39 | */ |
---|
40 | |
---|
41 | |
---|
42 | /* Three-generator random number algorithm |
---|
43 | * of Brian Wichmann and David Hill |
---|
44 | * BYTE magazine, March, 1987 pp 127-8 |
---|
45 | * |
---|
46 | * The period, given by them, is (p-1)(q-1)(r-1)/4 = 6.95e12. |
---|
47 | */ |
---|
48 | |
---|
49 | #include "mconf.h" |
---|
50 | #ifdef ANSIPROT |
---|
51 | static int ranwh ( void ); |
---|
52 | #else |
---|
53 | static int ranwh(); |
---|
54 | #endif |
---|
55 | |
---|
56 | static int sx = 1; |
---|
57 | static int sy = 10000; |
---|
58 | static int sz = 3000; |
---|
59 | |
---|
60 | static union { |
---|
61 | double d; |
---|
62 | unsigned short s[4]; |
---|
63 | } unkans; |
---|
64 | |
---|
65 | /* This function implements the three |
---|
66 | * congruential generators. |
---|
67 | */ |
---|
68 | |
---|
69 | static int ranwh() |
---|
70 | { |
---|
71 | int r, s; |
---|
72 | |
---|
73 | /* sx = sx * 171 mod 30269 */ |
---|
74 | r = sx/177; |
---|
75 | s = sx - 177 * r; |
---|
76 | sx = 171 * s - 2 * r; |
---|
77 | if( sx < 0 ) |
---|
78 | sx += 30269; |
---|
79 | |
---|
80 | |
---|
81 | /* sy = sy * 172 mod 30307 */ |
---|
82 | r = sy/176; |
---|
83 | s = sy - 176 * r; |
---|
84 | sy = 172 * s - 35 * r; |
---|
85 | if( sy < 0 ) |
---|
86 | sy += 30307; |
---|
87 | |
---|
88 | /* sz = 170 * sz mod 30323 */ |
---|
89 | r = sz/178; |
---|
90 | s = sz - 178 * r; |
---|
91 | sz = 170 * s - 63 * r; |
---|
92 | if( sz < 0 ) |
---|
93 | sz += 30323; |
---|
94 | /* The results are in static sx, sy, sz. */ |
---|
95 | return 0; |
---|
96 | } |
---|
97 | |
---|
98 | /* drand.c |
---|
99 | * |
---|
100 | * Random double precision floating point number between 1 and 2. |
---|
101 | * |
---|
102 | * C callable: |
---|
103 | * drand( &x ); |
---|
104 | */ |
---|
105 | |
---|
106 | int drand( a ) |
---|
107 | double *a; |
---|
108 | { |
---|
109 | unsigned short r; |
---|
110 | #ifdef DEC |
---|
111 | unsigned short s, t; |
---|
112 | #endif |
---|
113 | |
---|
114 | /* This algorithm of Wichmann and Hill computes a floating point |
---|
115 | * result: |
---|
116 | */ |
---|
117 | ranwh(); |
---|
118 | unkans.d = sx/30269.0 + sy/30307.0 + sz/30323.0; |
---|
119 | r = unkans.d; |
---|
120 | unkans.d -= r; |
---|
121 | unkans.d += 1.0; |
---|
122 | |
---|
123 | /* if UNK option, do nothing further. |
---|
124 | * Otherwise, make a random 16 bit integer |
---|
125 | * to overwrite the least significant word |
---|
126 | * of unkans. |
---|
127 | */ |
---|
128 | #ifdef UNK |
---|
129 | /* do nothing */ |
---|
130 | #else |
---|
131 | ranwh(); |
---|
132 | r = sx * sy + sz; |
---|
133 | #endif |
---|
134 | |
---|
135 | #ifdef DEC |
---|
136 | /* To make the numbers as similar as possible |
---|
137 | * in all arithmetics, the random integer has |
---|
138 | * to be inserted 3 bits higher up in a DEC number. |
---|
139 | * An alternative would be put it 3 bits lower down |
---|
140 | * in all the other number types. |
---|
141 | */ |
---|
142 | s = unkans.s[2]; |
---|
143 | t = s & 07; /* save these bits to put in at the bottom */ |
---|
144 | s &= 0177770; |
---|
145 | s |= (r >> 13) & 07; |
---|
146 | unkans.s[2] = s; |
---|
147 | t |= r << 3; |
---|
148 | unkans.s[3] = t; |
---|
149 | #endif |
---|
150 | |
---|
151 | #ifdef IBMPC |
---|
152 | unkans.s[0] = r; |
---|
153 | #endif |
---|
154 | |
---|
155 | #ifdef MIEEE |
---|
156 | unkans.s[3] = r; |
---|
157 | #endif |
---|
158 | |
---|
159 | *a = unkans.d; |
---|
160 | return 0; |
---|
161 | } |
---|