1 | /* chbevl.c |
---|
2 | * |
---|
3 | * Evaluate Chebyshev series |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * int N; |
---|
10 | * double x, y, coef[N], chebevl(); |
---|
11 | * |
---|
12 | * y = chbevl( x, coef, N ); |
---|
13 | * |
---|
14 | * |
---|
15 | * |
---|
16 | * DESCRIPTION: |
---|
17 | * |
---|
18 | * Evaluates the series |
---|
19 | * |
---|
20 | * N-1 |
---|
21 | * - ' |
---|
22 | * y = > coef[i] T (x/2) |
---|
23 | * - i |
---|
24 | * i=0 |
---|
25 | * |
---|
26 | * of Chebyshev polynomials Ti at argument x/2. |
---|
27 | * |
---|
28 | * Coefficients are stored in reverse order, i.e. the zero |
---|
29 | * order term is last in the array. Note N is the number of |
---|
30 | * coefficients, not the order. |
---|
31 | * |
---|
32 | * If coefficients are for the interval a to b, x must |
---|
33 | * have been transformed to x -> 2(2x - b - a)/(b-a) before |
---|
34 | * entering the routine. This maps x from (a, b) to (-1, 1), |
---|
35 | * over which the Chebyshev polynomials are defined. |
---|
36 | * |
---|
37 | * If the coefficients are for the inverted interval, in |
---|
38 | * which (a, b) is mapped to (1/b, 1/a), the transformation |
---|
39 | * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, |
---|
40 | * this becomes x -> 4a/x - 1. |
---|
41 | * |
---|
42 | * |
---|
43 | * |
---|
44 | * SPEED: |
---|
45 | * |
---|
46 | * Taking advantage of the recurrence properties of the |
---|
47 | * Chebyshev polynomials, the routine requires one more |
---|
48 | * addition per loop than evaluating a nested polynomial of |
---|
49 | * the same degree. |
---|
50 | * |
---|
51 | */ |
---|
52 | /* chbevl.c */ |
---|
53 | |
---|
54 | /* |
---|
55 | Cephes Math Library Release 2.0: April, 1987 |
---|
56 | Copyright 1985, 1987 by Stephen L. Moshier |
---|
57 | Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
---|
58 | */ |
---|
59 | |
---|
60 | double chbevl( x, array, n ) |
---|
61 | double x; |
---|
62 | double array[]; |
---|
63 | int n; |
---|
64 | { |
---|
65 | double b0, b1, b2, *p; |
---|
66 | int i; |
---|
67 | |
---|
68 | p = array; |
---|
69 | b0 = *p++; |
---|
70 | b1 = 0.0; |
---|
71 | i = n - 1; |
---|
72 | |
---|
73 | do |
---|
74 | { |
---|
75 | b2 = b1; |
---|
76 | b1 = b0; |
---|
77 | b0 = x * b1 - b2 + *p++; |
---|
78 | } |
---|
79 | while( --i ); |
---|
80 | |
---|
81 | return( 0.5*(b0-b2) ); |
---|
82 | } |
---|