1 | /* bdtr.c |
---|
2 | * |
---|
3 | * Binomial distribution |
---|
4 | * |
---|
5 | * |
---|
6 | * |
---|
7 | * SYNOPSIS: |
---|
8 | * |
---|
9 | * int k, n; |
---|
10 | * double p, y, bdtr(); |
---|
11 | * |
---|
12 | * y = bdtr( k, n, p ); |
---|
13 | * |
---|
14 | * DESCRIPTION: |
---|
15 | * |
---|
16 | * Returns the sum of the terms 0 through k of the Binomial |
---|
17 | * probability density: |
---|
18 | * |
---|
19 | * k |
---|
20 | * -- ( n ) j n-j |
---|
21 | * > ( ) p (1-p) |
---|
22 | * -- ( j ) |
---|
23 | * j=0 |
---|
24 | * |
---|
25 | * The terms are not summed directly; instead the incomplete |
---|
26 | * beta integral is employed, according to the formula |
---|
27 | * |
---|
28 | * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). |
---|
29 | * |
---|
30 | * The arguments must be positive, with p ranging from 0 to 1. |
---|
31 | * |
---|
32 | * ACCURACY: |
---|
33 | * |
---|
34 | * Tested at random points (a,b,p), with p between 0 and 1. |
---|
35 | * |
---|
36 | * a,b Relative error: |
---|
37 | * arithmetic domain # trials peak rms |
---|
38 | * For p between 0.001 and 1: |
---|
39 | * IEEE 0,100 100000 4.3e-15 2.6e-16 |
---|
40 | * See also incbet.c. |
---|
41 | * |
---|
42 | * ERROR MESSAGES: |
---|
43 | * |
---|
44 | * message condition value returned |
---|
45 | * bdtr domain k < 0 0.0 |
---|
46 | * n < k |
---|
47 | * x < 0, x > 1 |
---|
48 | */ |
---|
49 | /* bdtrc() |
---|
50 | * |
---|
51 | * Complemented binomial distribution |
---|
52 | * |
---|
53 | * |
---|
54 | * |
---|
55 | * SYNOPSIS: |
---|
56 | * |
---|
57 | * int k, n; |
---|
58 | * double p, y, bdtrc(); |
---|
59 | * |
---|
60 | * y = bdtrc( k, n, p ); |
---|
61 | * |
---|
62 | * DESCRIPTION: |
---|
63 | * |
---|
64 | * Returns the sum of the terms k+1 through n of the Binomial |
---|
65 | * probability density: |
---|
66 | * |
---|
67 | * n |
---|
68 | * -- ( n ) j n-j |
---|
69 | * > ( ) p (1-p) |
---|
70 | * -- ( j ) |
---|
71 | * j=k+1 |
---|
72 | * |
---|
73 | * The terms are not summed directly; instead the incomplete |
---|
74 | * beta integral is employed, according to the formula |
---|
75 | * |
---|
76 | * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). |
---|
77 | * |
---|
78 | * The arguments must be positive, with p ranging from 0 to 1. |
---|
79 | * |
---|
80 | * ACCURACY: |
---|
81 | * |
---|
82 | * Tested at random points (a,b,p). |
---|
83 | * |
---|
84 | * a,b Relative error: |
---|
85 | * arithmetic domain # trials peak rms |
---|
86 | * For p between 0.001 and 1: |
---|
87 | * IEEE 0,100 100000 6.7e-15 8.2e-16 |
---|
88 | * For p between 0 and .001: |
---|
89 | * IEEE 0,100 100000 1.5e-13 2.7e-15 |
---|
90 | * |
---|
91 | * ERROR MESSAGES: |
---|
92 | * |
---|
93 | * message condition value returned |
---|
94 | * bdtrc domain x<0, x>1, n<k 0.0 |
---|
95 | */ |
---|
96 | /* bdtri() |
---|
97 | * |
---|
98 | * Inverse binomial distribution |
---|
99 | * |
---|
100 | * |
---|
101 | * |
---|
102 | * SYNOPSIS: |
---|
103 | * |
---|
104 | * int k, n; |
---|
105 | * double p, y, bdtri(); |
---|
106 | * |
---|
107 | * p = bdtr( k, n, y ); |
---|
108 | * |
---|
109 | * DESCRIPTION: |
---|
110 | * |
---|
111 | * Finds the event probability p such that the sum of the |
---|
112 | * terms 0 through k of the Binomial probability density |
---|
113 | * is equal to the given cumulative probability y. |
---|
114 | * |
---|
115 | * This is accomplished using the inverse beta integral |
---|
116 | * function and the relation |
---|
117 | * |
---|
118 | * 1 - p = incbi( n-k, k+1, y ). |
---|
119 | * |
---|
120 | * ACCURACY: |
---|
121 | * |
---|
122 | * Tested at random points (a,b,p). |
---|
123 | * |
---|
124 | * a,b Relative error: |
---|
125 | * arithmetic domain # trials peak rms |
---|
126 | * For p between 0.001 and 1: |
---|
127 | * IEEE 0,100 100000 2.3e-14 6.4e-16 |
---|
128 | * IEEE 0,10000 100000 6.6e-12 1.2e-13 |
---|
129 | * For p between 10^-6 and 0.001: |
---|
130 | * IEEE 0,100 100000 2.0e-12 1.3e-14 |
---|
131 | * IEEE 0,10000 100000 1.5e-12 3.2e-14 |
---|
132 | * See also incbi.c. |
---|
133 | * |
---|
134 | * ERROR MESSAGES: |
---|
135 | * |
---|
136 | * message condition value returned |
---|
137 | * bdtri domain k < 0, n <= k 0.0 |
---|
138 | * x < 0, x > 1 |
---|
139 | */ |
---|
140 | |
---|
141 | /* bdtr() */ |
---|
142 | |
---|
143 | |
---|
144 | /* |
---|
145 | Cephes Math Library Release 2.8: June, 2000 |
---|
146 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
147 | */ |
---|
148 | |
---|
149 | #include "mconf.h" |
---|
150 | #ifdef ANSIPROT |
---|
151 | extern double incbet ( double, double, double ); |
---|
152 | extern double incbi ( double, double, double ); |
---|
153 | extern double pow ( double, double ); |
---|
154 | extern double log1p ( double ); |
---|
155 | extern double expm1 ( double ); |
---|
156 | #else |
---|
157 | double incbet(), incbi(), pow(), log1p(), expm1(); |
---|
158 | #endif |
---|
159 | |
---|
160 | double bdtrc( k, n, p ) |
---|
161 | int k, n; |
---|
162 | double p; |
---|
163 | { |
---|
164 | double dk, dn; |
---|
165 | |
---|
166 | if( (p < 0.0) || (p > 1.0) ) |
---|
167 | goto domerr; |
---|
168 | if( k < 0 ) |
---|
169 | return( 1.0 ); |
---|
170 | |
---|
171 | if( n < k ) |
---|
172 | { |
---|
173 | domerr: |
---|
174 | mtherr( "bdtrc", DOMAIN ); |
---|
175 | return( 0.0 ); |
---|
176 | } |
---|
177 | |
---|
178 | if( k == n ) |
---|
179 | return( 0.0 ); |
---|
180 | dn = n - k; |
---|
181 | if( k == 0 ) |
---|
182 | { |
---|
183 | if( p < .01 ) |
---|
184 | dk = -expm1( dn * log1p(-p) ); |
---|
185 | else |
---|
186 | dk = 1.0 - pow( 1.0-p, dn ); |
---|
187 | } |
---|
188 | else |
---|
189 | { |
---|
190 | dk = k + 1; |
---|
191 | dk = incbet( dk, dn, p ); |
---|
192 | } |
---|
193 | return( dk ); |
---|
194 | } |
---|
195 | |
---|
196 | |
---|
197 | |
---|
198 | double bdtr( k, n, p ) |
---|
199 | int k, n; |
---|
200 | double p; |
---|
201 | { |
---|
202 | double dk, dn; |
---|
203 | |
---|
204 | if( (p < 0.0) || (p > 1.0) ) |
---|
205 | goto domerr; |
---|
206 | if( (k < 0) || (n < k) ) |
---|
207 | { |
---|
208 | domerr: |
---|
209 | mtherr( "bdtr", DOMAIN ); |
---|
210 | return( 0.0 ); |
---|
211 | } |
---|
212 | |
---|
213 | if( k == n ) |
---|
214 | return( 1.0 ); |
---|
215 | |
---|
216 | dn = n - k; |
---|
217 | if( k == 0 ) |
---|
218 | { |
---|
219 | dk = pow( 1.0-p, dn ); |
---|
220 | } |
---|
221 | else |
---|
222 | { |
---|
223 | dk = k + 1; |
---|
224 | dk = incbet( dn, dk, 1.0 - p ); |
---|
225 | } |
---|
226 | return( dk ); |
---|
227 | } |
---|
228 | |
---|
229 | |
---|
230 | double bdtri( k, n, y ) |
---|
231 | int k, n; |
---|
232 | double y; |
---|
233 | { |
---|
234 | double dk, dn, p; |
---|
235 | |
---|
236 | if( (y < 0.0) || (y > 1.0) ) |
---|
237 | goto domerr; |
---|
238 | if( (k < 0) || (n <= k) ) |
---|
239 | { |
---|
240 | domerr: |
---|
241 | mtherr( "bdtri", DOMAIN ); |
---|
242 | return( 0.0 ); |
---|
243 | } |
---|
244 | |
---|
245 | dn = n - k; |
---|
246 | if( k == 0 ) |
---|
247 | { |
---|
248 | if( y > 0.8 ) |
---|
249 | p = -expm1( log1p(y-1.0) / dn ); |
---|
250 | else |
---|
251 | p = 1.0 - pow( y, 1.0/dn ); |
---|
252 | } |
---|
253 | else |
---|
254 | { |
---|
255 | dk = k + 1; |
---|
256 | p = incbet( dn, dk, 0.5 ); |
---|
257 | if( p > 0.5 ) |
---|
258 | p = incbi( dk, dn, 1.0-y ); |
---|
259 | else |
---|
260 | p = 1.0 - incbi( dn, dk, y ); |
---|
261 | } |
---|
262 | return( p ); |
---|
263 | } |
---|