[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | #include <stdlib.h> |
---|
| 26 | using namespace std; |
---|
| 27 | #include "triaxial_ellipsoid.h" |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
| 31 | #include "libStructureFactor.h" |
---|
| 32 | } |
---|
| 33 | |
---|
| 34 | typedef struct { |
---|
| 35 | double scale; |
---|
| 36 | double semi_axisA; |
---|
| 37 | double semi_axisB; |
---|
| 38 | double semi_axisC; |
---|
| 39 | double sldEll; |
---|
| 40 | double sldSolv; |
---|
| 41 | double background; |
---|
| 42 | double axis_theta; |
---|
| 43 | double axis_phi; |
---|
| 44 | double axis_psi; |
---|
| 45 | |
---|
| 46 | } TriaxialEllipsoidParameters; |
---|
| 47 | |
---|
| 48 | static double triaxial_ellipsoid_kernel(TriaxialEllipsoidParameters *pars, double q, double cos_val, double cos_nu, double cos_mu) { |
---|
| 49 | double t,a,b,c; |
---|
| 50 | double kernel; |
---|
| 51 | |
---|
| 52 | a = pars->semi_axisA ; |
---|
| 53 | b = pars->semi_axisB ; |
---|
| 54 | c = pars->semi_axisC ; |
---|
| 55 | |
---|
| 56 | t = q * sqrt(a*a*cos_nu*cos_nu+b*b*cos_mu*cos_mu+c*c*cos_val*cos_val); |
---|
| 57 | if (t==0.0){ |
---|
| 58 | kernel = 1.0; |
---|
| 59 | }else{ |
---|
| 60 | kernel = 3.0*(sin(t)-t*cos(t))/(t*t*t); |
---|
| 61 | } |
---|
| 62 | return kernel*kernel; |
---|
| 63 | } |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | /** |
---|
| 67 | * Function to evaluate 2D scattering function |
---|
| 68 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 69 | * @param q: q-value |
---|
| 70 | * @param q_x: q_x / q |
---|
| 71 | * @param q_y: q_y / q |
---|
| 72 | * @return: function value |
---|
| 73 | */ |
---|
| 74 | static double triaxial_ellipsoid_analytical_2D_scaled(TriaxialEllipsoidParameters *pars, double q, double q_x, double q_y) { |
---|
| 75 | double cyl_x, cyl_y, ella_x, ella_y, ellb_x, ellb_y; |
---|
| 76 | //double q_z; |
---|
| 77 | double cos_nu, cos_mu; |
---|
| 78 | double vol, cos_val; |
---|
| 79 | double answer; |
---|
| 80 | double pi = 4.0*atan(1.0); |
---|
| 81 | |
---|
| 82 | //convert angle degree to radian |
---|
| 83 | double theta = pars->axis_theta * pi/180.0; |
---|
| 84 | double phi = pars->axis_phi * pi/180.0; |
---|
| 85 | double psi = pars->axis_psi * pi/180.0; |
---|
| 86 | |
---|
| 87 | // Cylinder orientation |
---|
| 88 | cyl_x = cos(theta) * cos(phi); |
---|
| 89 | cyl_y = sin(theta); |
---|
| 90 | //cyl_z = -cos(theta) * sin(phi); |
---|
| 91 | |
---|
| 92 | // q vector |
---|
| 93 | //q_z = 0.0; |
---|
| 94 | |
---|
| 95 | //dx = 1.0; |
---|
| 96 | //dy = 1.0; |
---|
| 97 | // Compute the angle btw vector q and the |
---|
| 98 | // axis of the cylinder |
---|
| 99 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
| 100 | |
---|
| 101 | // The following test should always pass |
---|
| 102 | if (fabs(cos_val)>1.0) { |
---|
| 103 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 104 | return 0; |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 108 | // undefined value from CylKernel |
---|
| 109 | //alpha = acos( cos_val ); |
---|
| 110 | |
---|
| 111 | //ellipse orientation: |
---|
| 112 | // the elliptical corss section was transformed and projected |
---|
| 113 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
| 114 | // on the detector plane. |
---|
| 115 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
| 116 | // the wave vector q. |
---|
| 117 | |
---|
| 118 | //x- y- component of a-axis on the detector plane. |
---|
| 119 | ella_x = -cos(phi)*sin(psi) * sin(theta)+sin(phi)*cos(psi); |
---|
| 120 | ella_y = sin(psi)*cos(theta); |
---|
| 121 | |
---|
| 122 | //x- y- component of b-axis on the detector plane. |
---|
| 123 | ellb_x = -sin(theta)*cos(psi)*cos(phi)-sin(psi)*sin(phi); |
---|
| 124 | ellb_y = cos(theta)*cos(psi); |
---|
| 125 | |
---|
| 126 | // calculate the axis of the ellipse wrt q-coord. |
---|
| 127 | cos_nu = ella_x*q_x + ella_y*q_y; |
---|
| 128 | cos_mu = ellb_x*q_x + ellb_y*q_y; |
---|
| 129 | |
---|
| 130 | // The following test should always pass |
---|
| 131 | if (fabs(cos_val)>1.0) { |
---|
| 132 | //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 133 | cos_val = 1.0; |
---|
| 134 | } |
---|
| 135 | if (fabs(cos_nu)>1.0) { |
---|
| 136 | //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 137 | cos_nu = 1.0; |
---|
| 138 | } |
---|
| 139 | if (fabs(cos_mu)>1.0) { |
---|
| 140 | //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 141 | cos_mu = 1.0; |
---|
| 142 | } |
---|
| 143 | // Call the IGOR library function to get the kernel |
---|
| 144 | answer = triaxial_ellipsoid_kernel(pars, q, cos_val, cos_nu, cos_mu); |
---|
| 145 | |
---|
| 146 | // Multiply by contrast^2 |
---|
| 147 | answer *= (pars->sldEll- pars->sldSolv)*(pars->sldEll- pars->sldSolv); |
---|
| 148 | |
---|
| 149 | //normalize by cylinder volume |
---|
| 150 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 151 | vol = 4.0* pi/3.0 * pars->semi_axisA * pars->semi_axisB * pars->semi_axisC; |
---|
| 152 | answer *= vol; |
---|
| 153 | //convert to [cm-1] |
---|
| 154 | answer *= 1.0e8; |
---|
| 155 | //Scale |
---|
| 156 | answer *= pars->scale; |
---|
| 157 | |
---|
| 158 | // add in the background |
---|
| 159 | answer += pars->background; |
---|
| 160 | |
---|
| 161 | return answer; |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * Function to evaluate 2D scattering function |
---|
| 166 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 167 | * @param q: q-value |
---|
| 168 | * @return: function value |
---|
| 169 | */ |
---|
| 170 | static double triaxial_ellipsoid_analytical_2DXY(TriaxialEllipsoidParameters *pars, double qx, double qy) { |
---|
| 171 | double q; |
---|
| 172 | q = sqrt(qx*qx+qy*qy); |
---|
| 173 | return triaxial_ellipsoid_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | TriaxialEllipsoidModel :: TriaxialEllipsoidModel() { |
---|
| 179 | scale = Parameter(1.0); |
---|
| 180 | semi_axisA = Parameter(35.0, true); |
---|
| 181 | semi_axisA.set_min(0.0); |
---|
| 182 | semi_axisB = Parameter(100.0, true); |
---|
| 183 | semi_axisB.set_min(0.0); |
---|
| 184 | semi_axisC = Parameter(400.0, true); |
---|
| 185 | semi_axisC.set_min(0.0); |
---|
| 186 | sldEll = Parameter(1.0e-6); |
---|
| 187 | sldSolv = Parameter(6.3e-6); |
---|
| 188 | background = Parameter(0.0); |
---|
| 189 | axis_theta = Parameter(57.325, true); |
---|
| 190 | axis_phi = Parameter(57.325, true); |
---|
| 191 | axis_psi = Parameter(0.0, true); |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | /** |
---|
| 195 | * Function to evaluate 1D scattering function |
---|
| 196 | * The NIST IGOR library is used for the actual calculation. |
---|
| 197 | * @param q: q-value |
---|
| 198 | * @return: function value |
---|
| 199 | */ |
---|
| 200 | double TriaxialEllipsoidModel :: operator()(double q) { |
---|
| 201 | double dp[7]; |
---|
| 202 | |
---|
| 203 | // Fill parameter array for IGOR library |
---|
| 204 | // Add the background after averaging |
---|
| 205 | dp[0] = scale(); |
---|
| 206 | dp[1] = semi_axisA(); |
---|
| 207 | dp[2] = semi_axisB(); |
---|
| 208 | dp[3] = semi_axisC(); |
---|
| 209 | dp[4] = sldEll(); |
---|
| 210 | dp[5] = sldSolv(); |
---|
| 211 | dp[6] = 0.0; |
---|
| 212 | |
---|
| 213 | // Get the dispersion points for the semi axis A |
---|
| 214 | vector<WeightPoint> weights_semi_axisA; |
---|
| 215 | semi_axisA.get_weights(weights_semi_axisA); |
---|
| 216 | |
---|
| 217 | // Get the dispersion points for the semi axis B |
---|
| 218 | vector<WeightPoint> weights_semi_axisB; |
---|
| 219 | semi_axisB.get_weights(weights_semi_axisB); |
---|
| 220 | |
---|
| 221 | // Get the dispersion points for the semi axis C |
---|
| 222 | vector<WeightPoint> weights_semi_axisC; |
---|
| 223 | semi_axisC.get_weights(weights_semi_axisC); |
---|
| 224 | |
---|
| 225 | // Perform the computation, with all weight points |
---|
| 226 | double sum = 0.0; |
---|
| 227 | double norm = 0.0; |
---|
| 228 | double vol = 0.0; |
---|
| 229 | |
---|
| 230 | // Loop over semi axis A weight points |
---|
| 231 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
| 232 | dp[1] = weights_semi_axisA[i].value; |
---|
| 233 | |
---|
| 234 | // Loop over semi axis B weight points |
---|
| 235 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
| 236 | dp[2] = weights_semi_axisB[j].value; |
---|
| 237 | |
---|
| 238 | // Loop over semi axis C weight points |
---|
| 239 | for(int k=0; k< (int)weights_semi_axisC.size(); k++) { |
---|
| 240 | dp[3] = weights_semi_axisC[k].value; |
---|
| 241 | //Un-normalize by volume |
---|
| 242 | sum += weights_semi_axisA[i].weight |
---|
| 243 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight* TriaxialEllipsoid(dp, q) |
---|
| 244 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 245 | //Find average volume |
---|
| 246 | vol += weights_semi_axisA[i].weight |
---|
| 247 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight |
---|
| 248 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 249 | |
---|
| 250 | norm += weights_semi_axisA[i].weight |
---|
| 251 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; |
---|
| 252 | } |
---|
| 253 | } |
---|
| 254 | } |
---|
| 255 | if (vol != 0.0 && norm != 0.0) { |
---|
| 256 | //Re-normalize by avg volume |
---|
| 257 | sum = sum/(vol/norm);} |
---|
| 258 | |
---|
| 259 | return sum/norm + background(); |
---|
| 260 | } |
---|
| 261 | |
---|
| 262 | /** |
---|
| 263 | * Function to evaluate 2D scattering function |
---|
| 264 | * @param q_x: value of Q along x |
---|
| 265 | * @param q_y: value of Q along y |
---|
| 266 | * @return: function value |
---|
| 267 | */ |
---|
| 268 | double TriaxialEllipsoidModel :: operator()(double qx, double qy) { |
---|
| 269 | TriaxialEllipsoidParameters dp; |
---|
| 270 | // Fill parameter array |
---|
| 271 | dp.scale = scale(); |
---|
| 272 | dp.semi_axisA = semi_axisA(); |
---|
| 273 | dp.semi_axisB = semi_axisB(); |
---|
| 274 | dp.semi_axisC = semi_axisC(); |
---|
| 275 | dp.sldEll = sldEll(); |
---|
| 276 | dp.sldSolv = sldSolv(); |
---|
| 277 | dp.background = 0.0; |
---|
| 278 | dp.axis_theta = axis_theta(); |
---|
| 279 | dp.axis_phi = axis_phi(); |
---|
| 280 | dp.axis_psi = axis_psi(); |
---|
| 281 | |
---|
| 282 | // Get the dispersion points for the semi_axis A |
---|
| 283 | vector<WeightPoint> weights_semi_axisA; |
---|
| 284 | semi_axisA.get_weights(weights_semi_axisA); |
---|
| 285 | |
---|
| 286 | // Get the dispersion points for the semi_axis B |
---|
| 287 | vector<WeightPoint> weights_semi_axisB; |
---|
| 288 | semi_axisB.get_weights(weights_semi_axisB); |
---|
| 289 | |
---|
| 290 | // Get the dispersion points for the semi_axis C |
---|
| 291 | vector<WeightPoint> weights_semi_axisC; |
---|
| 292 | semi_axisC.get_weights(weights_semi_axisC); |
---|
| 293 | |
---|
| 294 | // Get angular averaging for theta |
---|
| 295 | vector<WeightPoint> weights_theta; |
---|
| 296 | axis_theta.get_weights(weights_theta); |
---|
| 297 | |
---|
| 298 | // Get angular averaging for phi |
---|
| 299 | vector<WeightPoint> weights_phi; |
---|
| 300 | axis_phi.get_weights(weights_phi); |
---|
| 301 | |
---|
| 302 | // Get angular averaging for psi |
---|
| 303 | vector<WeightPoint> weights_psi; |
---|
| 304 | axis_psi.get_weights(weights_psi); |
---|
| 305 | |
---|
| 306 | // Perform the computation, with all weight points |
---|
| 307 | double sum = 0.0; |
---|
| 308 | double norm = 0.0; |
---|
| 309 | double norm_vol = 0.0; |
---|
| 310 | double vol = 0.0; |
---|
| 311 | double pi = 4.0*atan(1.0); |
---|
| 312 | // Loop over semi axis A weight points |
---|
| 313 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
| 314 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
| 315 | |
---|
| 316 | // Loop over semi axis B weight points |
---|
| 317 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
| 318 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
| 319 | |
---|
| 320 | // Loop over semi axis C weight points |
---|
| 321 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
| 322 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
| 323 | |
---|
| 324 | // Average over theta distribution |
---|
| 325 | for(int l=0; l< (int)weights_theta.size(); l++) { |
---|
| 326 | dp.axis_theta = weights_theta[l].value; |
---|
| 327 | |
---|
| 328 | // Average over phi distribution |
---|
| 329 | for(int m=0; m <(int)weights_phi.size(); m++) { |
---|
| 330 | dp.axis_phi = weights_phi[m].value; |
---|
| 331 | // Average over psi distribution |
---|
| 332 | for(int n=0; n <(int)weights_psi.size(); n++) { |
---|
| 333 | dp.axis_psi = weights_psi[n].value; |
---|
| 334 | //Un-normalize by volume |
---|
| 335 | double _ptvalue = weights_semi_axisA[i].weight |
---|
| 336 | * weights_semi_axisB[j].weight |
---|
| 337 | * weights_semi_axisC[k].weight |
---|
| 338 | * weights_theta[l].weight |
---|
| 339 | * weights_phi[m].weight |
---|
| 340 | * weights_psi[n].weight |
---|
| 341 | * triaxial_ellipsoid_analytical_2DXY(&dp, qx, qy) |
---|
| 342 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 343 | if (weights_theta.size()>1) { |
---|
[2b875e4c] | 344 | _ptvalue *= fabs(cos(weights_theta[l].value*pi/180.0)); |
---|
[230f479] | 345 | } |
---|
| 346 | sum += _ptvalue; |
---|
| 347 | //Find average volume |
---|
| 348 | vol += weights_semi_axisA[i].weight |
---|
| 349 | * weights_semi_axisB[j].weight |
---|
| 350 | * weights_semi_axisC[k].weight |
---|
| 351 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 352 | //Find norm for volume |
---|
| 353 | norm_vol += weights_semi_axisA[i].weight |
---|
| 354 | * weights_semi_axisB[j].weight |
---|
| 355 | * weights_semi_axisC[k].weight; |
---|
| 356 | |
---|
| 357 | norm += weights_semi_axisA[i].weight |
---|
| 358 | * weights_semi_axisB[j].weight |
---|
| 359 | * weights_semi_axisC[k].weight |
---|
| 360 | * weights_theta[l].weight |
---|
| 361 | * weights_phi[m].weight |
---|
| 362 | * weights_psi[n].weight; |
---|
| 363 | } |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | } |
---|
| 367 | } |
---|
| 368 | } |
---|
| 369 | } |
---|
| 370 | // Averaging in theta needs an extra normalization |
---|
| 371 | // factor to account for the sin(theta) term in the |
---|
| 372 | // integration (see documentation). |
---|
| 373 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 374 | |
---|
| 375 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 376 | //Re-normalize by avg volume |
---|
| 377 | sum = sum/(vol/norm_vol);} |
---|
| 378 | |
---|
| 379 | return sum/norm + background(); |
---|
| 380 | } |
---|
| 381 | |
---|
| 382 | /** |
---|
| 383 | * Function to evaluate 2D scattering function |
---|
| 384 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 385 | * @param q: q-value |
---|
| 386 | * @param phi: angle phi |
---|
| 387 | * @return: function value |
---|
| 388 | */ |
---|
| 389 | double TriaxialEllipsoidModel :: evaluate_rphi(double q, double phi) { |
---|
| 390 | double qx = q*cos(phi); |
---|
| 391 | double qy = q*sin(phi); |
---|
| 392 | return (*this).operator()(qx, qy); |
---|
| 393 | } |
---|
| 394 | /** |
---|
| 395 | * Function to calculate effective radius |
---|
| 396 | * @return: effective radius value |
---|
| 397 | */ |
---|
| 398 | double TriaxialEllipsoidModel :: calculate_ER() { |
---|
| 399 | TriaxialEllipsoidParameters dp; |
---|
| 400 | |
---|
| 401 | dp.semi_axisA = semi_axisA(); |
---|
| 402 | dp.semi_axisB = semi_axisB(); |
---|
| 403 | //polar axis C |
---|
| 404 | dp.semi_axisC = semi_axisC(); |
---|
| 405 | |
---|
| 406 | double rad_out = 0.0; |
---|
| 407 | //Surface average radius at the equat. cross section. |
---|
| 408 | double suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
| 409 | |
---|
| 410 | // Perform the computation, with all weight points |
---|
| 411 | double sum = 0.0; |
---|
| 412 | double norm = 0.0; |
---|
| 413 | |
---|
| 414 | // Get the dispersion points for the semi_axis A |
---|
| 415 | vector<WeightPoint> weights_semi_axisA; |
---|
| 416 | semi_axisA.get_weights(weights_semi_axisA); |
---|
| 417 | |
---|
| 418 | // Get the dispersion points for the semi_axis B |
---|
| 419 | vector<WeightPoint> weights_semi_axisB; |
---|
| 420 | semi_axisB.get_weights(weights_semi_axisB); |
---|
| 421 | |
---|
| 422 | // Get the dispersion points for the semi_axis C |
---|
| 423 | vector<WeightPoint> weights_semi_axisC; |
---|
| 424 | semi_axisC.get_weights(weights_semi_axisC); |
---|
| 425 | |
---|
| 426 | // Loop over semi axis A weight points |
---|
| 427 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
| 428 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
| 429 | |
---|
| 430 | // Loop over semi axis B weight points |
---|
| 431 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
| 432 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
| 433 | |
---|
| 434 | // Loop over semi axis C weight points |
---|
| 435 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
| 436 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
| 437 | |
---|
| 438 | //Calculate surface averaged radius |
---|
| 439 | suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
| 440 | |
---|
| 441 | //Sum |
---|
| 442 | sum += weights_semi_axisA[i].weight |
---|
| 443 | * weights_semi_axisB[j].weight |
---|
| 444 | * weights_semi_axisC[k].weight * DiamEllip(dp.semi_axisC, suf_rad)/2.0; |
---|
| 445 | //Norm |
---|
| 446 | norm += weights_semi_axisA[i].weight* weights_semi_axisB[j].weight |
---|
| 447 | * weights_semi_axisC[k].weight; |
---|
| 448 | } |
---|
| 449 | } |
---|
| 450 | } |
---|
| 451 | if (norm != 0){ |
---|
| 452 | //return the averaged value |
---|
| 453 | rad_out = sum/norm;} |
---|
| 454 | else{ |
---|
| 455 | //return normal value |
---|
| 456 | rad_out = DiamEllip(dp.semi_axisC, suf_rad)/2.0;} |
---|
| 457 | |
---|
| 458 | return rad_out; |
---|
| 459 | } |
---|
| 460 | double TriaxialEllipsoidModel :: calculate_VR() { |
---|
| 461 | return 1.0; |
---|
| 462 | } |
---|