1 | /** |
---|
2 | This software was developed by Institut Laue-Langevin as part of |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE). |
---|
4 | |
---|
5 | Copyright 2012 Institut Laue-Langevin |
---|
6 | |
---|
7 | **/ |
---|
8 | |
---|
9 | #include <math.h> |
---|
10 | #include "parameters.hh" |
---|
11 | #include "teubner_strey.h" |
---|
12 | |
---|
13 | TeubnerStreyModel::TeubnerStreyModel() { |
---|
14 | scale = Parameter(0.1); |
---|
15 | c1 = Parameter(-30.0); |
---|
16 | c2 = Parameter(5000.0); |
---|
17 | background = Parameter(0.0); |
---|
18 | } |
---|
19 | |
---|
20 | double TeubnerStreyModel::operator()(double q) { |
---|
21 | double d_scale = scale(); |
---|
22 | double d_c1 = c1(); |
---|
23 | double d_c2 = c2(); |
---|
24 | double d_background = background(); |
---|
25 | |
---|
26 | double term1 = d_c1 * pow(q,2); |
---|
27 | double term2 = d_c2 * pow(q,4); |
---|
28 | |
---|
29 | return 1/(d_scale + term1 + term2) + d_background; |
---|
30 | |
---|
31 | } |
---|
32 | |
---|
33 | |
---|
34 | double TeubnerStreyModel::operator()(double qx,double qy) { |
---|
35 | double q = sqrt(qx*qx + qy*qy); |
---|
36 | return this->operator()(q); |
---|
37 | } |
---|
38 | |
---|
39 | double TeubnerStreyModel::calculate_ER() { |
---|
40 | // not implemented yet |
---|
41 | return 0.0; |
---|
42 | } |
---|
43 | |
---|
44 | double TeubnerStreyModel::calculate_VR() { |
---|
45 | return 1.0; |
---|
46 | } |
---|
47 | |
---|
48 | double TeubnerStreyModel::evaluate_rphi(double q,double phi) { |
---|
49 | double qx = q*cos(phi); |
---|
50 | double qy = q*sin(phi); |
---|
51 | return this->operator()(qx, qy); |
---|
52 | } |
---|
53 | |
---|
54 | |
---|
55 | |
---|
56 | /*** |
---|
57 | Notes |
---|
58 | |
---|
59 | This file was ported from python to C++ at ILL Grenoble in |
---|
60 | July 2012. In the original python file were two functions, |
---|
61 | teubnerStreyLengths and teubnerStreyDistance that did not appear |
---|
62 | to be used anywhere in the code. The source for them is below: |
---|
63 | |
---|
64 | def teubnerStreyLengths(self): |
---|
65 | """ |
---|
66 | Calculate the correlation length (L) |
---|
67 | @return L: the correlation distance |
---|
68 | """ |
---|
69 | return math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\ |
---|
70 | +(self.params['c1']/(4*self.params['c2'])),-1/2 ) |
---|
71 | def teubnerStreyDistance(self): |
---|
72 | """ |
---|
73 | Calculate the quasi-periodic repeat distance (D/(2*pi)) |
---|
74 | @return D: quasi-periodic repeat distance |
---|
75 | """ |
---|
76 | return math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\ |
---|
77 | -(self.params['c1']/(4*self.params['c2'])),-1/2 ) |
---|
78 | |
---|
79 | |
---|
80 | ***/ |
---|