[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
| 21 | * TODO: add 2d |
---|
| 22 | */ |
---|
| 23 | |
---|
| 24 | #include <math.h> |
---|
| 25 | #include "parameters.hh" |
---|
| 26 | #include <stdio.h> |
---|
| 27 | using namespace std; |
---|
| 28 | #include "stacked_disks.h" |
---|
| 29 | |
---|
| 30 | extern "C" { |
---|
| 31 | #include "libCylinder.h" |
---|
| 32 | #include "libStructureFactor.h" |
---|
| 33 | } |
---|
| 34 | |
---|
| 35 | typedef struct { |
---|
| 36 | double scale; |
---|
| 37 | double radius; |
---|
| 38 | double core_thick; |
---|
| 39 | double layer_thick; |
---|
| 40 | double core_sld; |
---|
| 41 | double layer_sld; |
---|
| 42 | double solvent_sld; |
---|
| 43 | double n_stacking; |
---|
| 44 | double sigma_d; |
---|
| 45 | double background; |
---|
| 46 | double axis_theta; |
---|
| 47 | double axis_phi; |
---|
| 48 | } StackedDisksParameters; |
---|
| 49 | |
---|
| 50 | |
---|
| 51 | /** |
---|
| 52 | * Function to evaluate 2D scattering function |
---|
| 53 | * @param pars: parameters of the staked disks |
---|
| 54 | * @param q: q-value |
---|
| 55 | * @param q_x: q_x / q |
---|
| 56 | * @param q_y: q_y / q |
---|
| 57 | * @return: function value |
---|
| 58 | */ |
---|
| 59 | static double stacked_disks_analytical_2D_scaled(StackedDisksParameters *pars, double q, double q_x, double q_y) { |
---|
| 60 | double cyl_x, cyl_y;//, cyl_z; |
---|
| 61 | //double q_z; |
---|
| 62 | double alpha, vol, cos_val; |
---|
| 63 | double d, dum, halfheight; |
---|
| 64 | double answer; |
---|
| 65 | double pi = 4.0*atan(1.0); |
---|
| 66 | double theta = pars->axis_theta * pi/180.0; |
---|
| 67 | double phi = pars->axis_phi * pi/180.0; |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | // parallelepiped orientation |
---|
| 71 | cyl_x = cos(theta) * cos(phi); |
---|
| 72 | cyl_y = sin(theta); |
---|
| 73 | |
---|
| 74 | // q vector |
---|
| 75 | //q_z = 0; |
---|
| 76 | |
---|
| 77 | // Compute the angle btw vector q and the |
---|
| 78 | // axis of the parallelepiped |
---|
| 79 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
| 80 | |
---|
| 81 | // The following test should always pass |
---|
| 82 | if (fabs(cos_val)>1.0) { |
---|
| 83 | printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 84 | return 0; |
---|
| 85 | } |
---|
| 86 | |
---|
| 87 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 88 | // undefined value from Stackdisc_kern |
---|
| 89 | alpha = acos( cos_val ); |
---|
| 90 | |
---|
| 91 | // Call the IGOR library function to get the kernel |
---|
| 92 | d = 2 * pars->layer_thick + pars->core_thick; |
---|
| 93 | halfheight = pars->core_thick/2.0; |
---|
| 94 | dum =alpha ; |
---|
| 95 | answer = Stackdisc_kern(q, pars->radius, pars->core_sld,pars->layer_sld, |
---|
| 96 | pars->solvent_sld, halfheight, pars->layer_thick, dum, pars->sigma_d, d, pars->n_stacking)/sin(alpha); |
---|
| 97 | |
---|
| 98 | // Multiply by contrast^2 |
---|
| 99 | //answer *= pars->contrast*pars->contrast; |
---|
| 100 | |
---|
| 101 | //normalize by staked disks volume |
---|
| 102 | vol = acos(-1.0) * pars->radius * pars->radius * d * pars->n_stacking; |
---|
| 103 | answer /= vol; |
---|
| 104 | |
---|
| 105 | //convert to [cm-1] |
---|
| 106 | answer *= 1.0e8; |
---|
| 107 | |
---|
| 108 | //Scale |
---|
| 109 | answer *= pars->scale; |
---|
| 110 | |
---|
| 111 | // add in the background |
---|
| 112 | answer += pars->background; |
---|
| 113 | |
---|
| 114 | return answer; |
---|
| 115 | } |
---|
| 116 | |
---|
| 117 | /** |
---|
| 118 | * Function to evaluate 2D scattering function |
---|
| 119 | * @param pars: parameters of the staked disks |
---|
| 120 | * @param q: q-value |
---|
| 121 | * @return: function value |
---|
| 122 | */ |
---|
| 123 | static double stacked_disks_analytical_2DXY(StackedDisksParameters *pars, double qx, double qy) { |
---|
| 124 | double q; |
---|
| 125 | q = sqrt(qx*qx+qy*qy); |
---|
| 126 | return stacked_disks_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | StackedDisksModel :: StackedDisksModel() { |
---|
| 130 | scale = Parameter(1.0); |
---|
| 131 | radius = Parameter(3000.0, true); |
---|
| 132 | radius.set_min(0.0); |
---|
| 133 | core_thick = Parameter(10.0, true); |
---|
| 134 | core_thick.set_min(0.0); |
---|
| 135 | layer_thick = Parameter(15.0); |
---|
| 136 | layer_thick.set_min(0.0); |
---|
| 137 | core_sld = Parameter(4.0e-6); |
---|
| 138 | layer_sld = Parameter(-4.0e-7); |
---|
| 139 | solvent_sld = Parameter(5.0e-6); |
---|
| 140 | n_stacking = Parameter(1); |
---|
| 141 | sigma_d = Parameter(0); |
---|
| 142 | background = Parameter(0.001); |
---|
| 143 | axis_theta = Parameter(0.0, true); |
---|
| 144 | axis_phi = Parameter(0.0, true); |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /** |
---|
| 148 | * Function to evaluate 1D scattering function |
---|
| 149 | * The NIST IGOR library is used for the actual calculation. |
---|
| 150 | * @param q: q-value |
---|
| 151 | * @return: function value |
---|
| 152 | */ |
---|
| 153 | double StackedDisksModel :: operator()(double q) { |
---|
| 154 | double dp[10]; |
---|
| 155 | |
---|
| 156 | // Fill parameter array for IGOR library |
---|
| 157 | // Add the background after averaging |
---|
| 158 | dp[0] = scale(); |
---|
| 159 | dp[1] = radius(); |
---|
| 160 | dp[2] = core_thick(); |
---|
| 161 | dp[3] = layer_thick(); |
---|
| 162 | dp[4] = core_sld(); |
---|
| 163 | dp[5] = layer_sld(); |
---|
| 164 | dp[6] = solvent_sld(); |
---|
| 165 | dp[7] = n_stacking(); |
---|
| 166 | dp[8] = sigma_d(); |
---|
| 167 | dp[9] = 0.0; |
---|
| 168 | |
---|
| 169 | // Get the dispersion points for the radius |
---|
| 170 | vector<WeightPoint> weights_radius; |
---|
| 171 | radius.get_weights(weights_radius); |
---|
| 172 | |
---|
| 173 | // Get the dispersion points for the core_thick |
---|
| 174 | vector<WeightPoint> weights_core_thick; |
---|
| 175 | core_thick.get_weights(weights_core_thick); |
---|
| 176 | |
---|
| 177 | // Get the dispersion points for the layer_thick |
---|
| 178 | vector<WeightPoint> weights_layer_thick; |
---|
| 179 | layer_thick.get_weights(weights_layer_thick); |
---|
| 180 | |
---|
| 181 | // Perform the computation, with all weight points |
---|
| 182 | double sum = 0.0; |
---|
| 183 | double norm = 0.0; |
---|
| 184 | double vol = 0.0; |
---|
| 185 | |
---|
| 186 | // Loop over length weight points |
---|
| 187 | for(int i=0; i< (int)weights_radius.size(); i++) { |
---|
| 188 | dp[1] = weights_radius[i].value; |
---|
| 189 | |
---|
| 190 | // Loop over radius weight points |
---|
| 191 | for(int j=0; j< (int)weights_core_thick.size(); j++) { |
---|
| 192 | dp[2] = weights_core_thick[j].value; |
---|
| 193 | |
---|
| 194 | // Loop over thickness weight points |
---|
| 195 | for(int k=0; k< (int)weights_layer_thick.size(); k++) { |
---|
| 196 | dp[3] = weights_layer_thick[k].value; |
---|
| 197 | //Un-normalize by volume |
---|
| 198 | sum += weights_radius[i].weight |
---|
| 199 | * weights_core_thick[j].weight * weights_layer_thick[k].weight* StackedDiscs(dp, q) |
---|
| 200 | *pow(weights_radius[i].value,2)*(weights_core_thick[j].value+2*weights_layer_thick[k].value); |
---|
| 201 | //Find average volume |
---|
| 202 | vol += weights_radius[i].weight |
---|
| 203 | * weights_core_thick[j].weight * weights_layer_thick[k].weight |
---|
| 204 | *pow(weights_radius[i].value,2)*(weights_core_thick[j].value+2*weights_layer_thick[k].value); |
---|
| 205 | norm += weights_radius[i].weight |
---|
| 206 | * weights_core_thick[j].weight* weights_layer_thick[k].weight; |
---|
| 207 | } |
---|
| 208 | } |
---|
| 209 | } |
---|
| 210 | if (vol != 0.0 && norm != 0.0) { |
---|
| 211 | //Re-normalize by avg volume |
---|
| 212 | sum = sum/(vol/norm);} |
---|
| 213 | |
---|
| 214 | return sum/norm + background(); |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | /** |
---|
| 218 | * Function to evaluate 2D scattering function |
---|
| 219 | * @param q_x: value of Q along x |
---|
| 220 | * @param q_y: value of Q along y |
---|
| 221 | * @return: function value |
---|
| 222 | */ |
---|
| 223 | double StackedDisksModel :: operator()(double qx, double qy) { |
---|
| 224 | StackedDisksParameters dp; |
---|
| 225 | // Fill parameter array |
---|
| 226 | dp.scale = scale(); |
---|
| 227 | dp.core_thick = core_thick(); |
---|
| 228 | dp.radius = radius(); |
---|
| 229 | dp.layer_thick = layer_thick(); |
---|
| 230 | dp.core_sld = core_sld(); |
---|
| 231 | dp.layer_sld = layer_sld(); |
---|
| 232 | dp.solvent_sld= solvent_sld(); |
---|
| 233 | dp.n_stacking = n_stacking(); |
---|
| 234 | dp.sigma_d = sigma_d(); |
---|
| 235 | dp.background = 0.0; |
---|
| 236 | dp.axis_theta = axis_theta(); |
---|
| 237 | dp.axis_phi = axis_phi(); |
---|
| 238 | |
---|
| 239 | // Get the dispersion points for the length |
---|
| 240 | vector<WeightPoint> weights_core_thick; |
---|
| 241 | core_thick.get_weights(weights_core_thick); |
---|
| 242 | |
---|
| 243 | // Get the dispersion points for the radius |
---|
| 244 | vector<WeightPoint> weights_radius; |
---|
| 245 | radius.get_weights(weights_radius); |
---|
| 246 | |
---|
| 247 | // Get the dispersion points for the thickness |
---|
| 248 | vector<WeightPoint> weights_layer_thick; |
---|
| 249 | layer_thick.get_weights(weights_layer_thick); |
---|
| 250 | |
---|
| 251 | // Get angular averaging for theta |
---|
| 252 | vector<WeightPoint> weights_theta; |
---|
| 253 | axis_theta.get_weights(weights_theta); |
---|
| 254 | |
---|
| 255 | // Get angular averaging for phi |
---|
| 256 | vector<WeightPoint> weights_phi; |
---|
| 257 | axis_phi.get_weights(weights_phi); |
---|
| 258 | |
---|
| 259 | // Perform the computation, with all weight points |
---|
| 260 | double sum = 0.0; |
---|
| 261 | double norm = 0.0; |
---|
| 262 | double norm_vol = 0.0; |
---|
| 263 | double vol = 0.0; |
---|
| 264 | double pi = 4.0*atan(1.0); |
---|
| 265 | |
---|
| 266 | // Loop over length weight points |
---|
| 267 | for(int i=0; i< (int)weights_core_thick.size(); i++) { |
---|
| 268 | dp.core_thick = weights_core_thick[i].value; |
---|
| 269 | |
---|
| 270 | // Loop over radius weight points |
---|
| 271 | for(int j=0; j< (int)weights_radius.size(); j++) { |
---|
| 272 | dp.radius = weights_radius[j].value; |
---|
| 273 | |
---|
| 274 | // Loop over thickness weight points |
---|
| 275 | for(int k=0; k< (int)weights_layer_thick.size(); k++) { |
---|
| 276 | dp.layer_thick = weights_layer_thick[k].value; |
---|
| 277 | |
---|
| 278 | for(int l=0; l< (int)weights_theta.size(); l++) { |
---|
| 279 | dp.axis_theta = weights_theta[l].value; |
---|
| 280 | |
---|
| 281 | // Average over phi distribution |
---|
| 282 | for(int m=0; m <(int)weights_phi.size(); m++) { |
---|
| 283 | dp.axis_phi = weights_phi[m].value; |
---|
| 284 | |
---|
| 285 | //Un-normalize by volume |
---|
| 286 | double _ptvalue = weights_core_thick[i].weight |
---|
| 287 | * weights_radius[j].weight |
---|
| 288 | * weights_layer_thick[k].weight |
---|
| 289 | * weights_theta[l].weight |
---|
| 290 | * weights_phi[m].weight |
---|
| 291 | * stacked_disks_analytical_2DXY(&dp, qx, qy) |
---|
| 292 | *pow(weights_radius[j].value,2)*(weights_core_thick[i].value+2*weights_layer_thick[k].value); |
---|
| 293 | if (weights_theta.size()>1) { |
---|
| 294 | _ptvalue *= fabs(cos(weights_theta[l].value*pi/180.0)); |
---|
| 295 | } |
---|
| 296 | sum += _ptvalue; |
---|
| 297 | //Find average volume |
---|
| 298 | vol += weights_radius[j].weight |
---|
| 299 | * weights_core_thick[i].weight * weights_layer_thick[k].weight |
---|
| 300 | *pow(weights_radius[j].value,2)*(weights_core_thick[i].value+2*weights_layer_thick[k].value); |
---|
| 301 | //Find norm for volume |
---|
| 302 | norm_vol += weights_radius[j].weight |
---|
| 303 | * weights_core_thick[i].weight * weights_layer_thick[k].weight; |
---|
| 304 | |
---|
| 305 | norm += weights_core_thick[i].weight |
---|
| 306 | * weights_radius[j].weight |
---|
| 307 | * weights_layer_thick[k].weight |
---|
| 308 | * weights_theta[l].weight |
---|
| 309 | * weights_phi[m].weight; |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | } |
---|
| 313 | } |
---|
| 314 | } |
---|
| 315 | // Averaging in theta needs an extra normalization |
---|
| 316 | // factor to account for the sin(theta) term in the |
---|
| 317 | // integration (see documentation). |
---|
| 318 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 319 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 320 | //Re-normalize by avg volume |
---|
| 321 | sum = sum/(vol/norm_vol);} |
---|
| 322 | return sum/norm + background(); |
---|
| 323 | } |
---|
| 324 | |
---|
| 325 | /** |
---|
| 326 | * Function to evaluate 2D scattering function |
---|
| 327 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 328 | * @param q: q-value |
---|
| 329 | * @param phi: angle phi |
---|
| 330 | * @return: function value |
---|
| 331 | */ |
---|
| 332 | double StackedDisksModel :: evaluate_rphi(double q, double phi) { |
---|
| 333 | double qx = q*cos(phi); |
---|
| 334 | double qy = q*sin(phi); |
---|
| 335 | return (*this).operator()(qx, qy); |
---|
| 336 | } |
---|
| 337 | /** |
---|
| 338 | * Function to calculate effective radius |
---|
| 339 | * @return: effective radius value |
---|
| 340 | */ |
---|
| 341 | double StackedDisksModel :: calculate_ER() { |
---|
| 342 | StackedDisksParameters dp; |
---|
| 343 | |
---|
| 344 | dp.core_thick = core_thick(); |
---|
| 345 | dp.radius = radius(); |
---|
| 346 | dp.layer_thick = layer_thick(); |
---|
| 347 | dp.n_stacking = n_stacking(); |
---|
| 348 | |
---|
| 349 | double rad_out = 0.0; |
---|
| 350 | if (dp.n_stacking <= 0.0){ |
---|
| 351 | return rad_out; |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | // Perform the computation, with all weight points |
---|
| 355 | double sum = 0.0; |
---|
| 356 | double norm = 0.0; |
---|
| 357 | |
---|
| 358 | // Get the dispersion points for the length |
---|
| 359 | vector<WeightPoint> weights_core_thick; |
---|
| 360 | core_thick.get_weights(weights_core_thick); |
---|
| 361 | |
---|
| 362 | // Get the dispersion points for the radius |
---|
| 363 | vector<WeightPoint> weights_radius; |
---|
| 364 | radius.get_weights(weights_radius); |
---|
| 365 | |
---|
| 366 | // Get the dispersion points for the thickness |
---|
| 367 | vector<WeightPoint> weights_layer_thick; |
---|
| 368 | layer_thick.get_weights(weights_layer_thick); |
---|
| 369 | |
---|
| 370 | // Loop over major shell weight points |
---|
| 371 | for(int i=0; i< (int)weights_core_thick.size(); i++) { |
---|
| 372 | dp.core_thick = weights_core_thick[i].value; |
---|
| 373 | for(int j=0; j< (int)weights_layer_thick.size(); j++) { |
---|
| 374 | dp.layer_thick = weights_layer_thick[j].value; |
---|
| 375 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 376 | dp.radius = weights_radius[k].value; |
---|
| 377 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 378 | sum +=weights_core_thick[i].weight*weights_layer_thick[j].weight |
---|
| 379 | * weights_radius[k].weight*DiamCyl(dp.n_stacking*(dp.layer_thick*2.0+dp.core_thick),dp.radius)/2.0; |
---|
| 380 | norm += weights_core_thick[i].weight*weights_layer_thick[j].weight* weights_radius[k].weight; |
---|
| 381 | } |
---|
| 382 | } |
---|
| 383 | } |
---|
| 384 | if (norm != 0){ |
---|
| 385 | //return the averaged value |
---|
| 386 | rad_out = sum/norm;} |
---|
| 387 | else{ |
---|
| 388 | //return normal value |
---|
| 389 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 390 | rad_out = DiamCyl(dp.n_stacking*(dp.layer_thick*2.0+dp.core_thick),dp.radius)/2.0;} |
---|
| 391 | |
---|
| 392 | return rad_out; |
---|
| 393 | } |
---|
| 394 | double StackedDisksModel :: calculate_VR() { |
---|
| 395 | return 1.0; |
---|
| 396 | } |
---|