[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | #include <stdlib.h> |
---|
| 26 | using namespace std; |
---|
| 27 | #include "spheroid.h" |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
| 31 | #include "libStructureFactor.h" |
---|
| 32 | } |
---|
| 33 | |
---|
| 34 | typedef struct { |
---|
| 35 | double scale; |
---|
| 36 | double equat_core; |
---|
| 37 | double polar_core; |
---|
| 38 | double equat_shell; |
---|
| 39 | double polar_shell; |
---|
| 40 | double sld_core; |
---|
| 41 | double sld_shell; |
---|
| 42 | double sld_solvent; |
---|
| 43 | double background; |
---|
| 44 | double axis_theta; |
---|
| 45 | double axis_phi; |
---|
| 46 | |
---|
| 47 | } SpheroidParameters; |
---|
| 48 | |
---|
| 49 | /** |
---|
| 50 | * Function to evaluate 2D scattering function |
---|
| 51 | * @param pars: parameters of the prolate |
---|
| 52 | * @param q: q-value |
---|
| 53 | * @param q_x: q_x / q |
---|
| 54 | * @param q_y: q_y / q |
---|
| 55 | * @return: function value |
---|
| 56 | */ |
---|
| 57 | static double spheroid_analytical_2D_scaled(SpheroidParameters *pars, double q, double q_x, double q_y) { |
---|
| 58 | |
---|
| 59 | double cyl_x, cyl_y;//, cyl_z; |
---|
| 60 | //double q_z; |
---|
| 61 | double alpha, vol, cos_val; |
---|
| 62 | double answer; |
---|
| 63 | double Pi = 4.0*atan(1.0); |
---|
| 64 | double sldcs,sldss; |
---|
| 65 | |
---|
| 66 | //convert angle degree to radian |
---|
| 67 | double theta = pars->axis_theta * Pi/180.0; |
---|
| 68 | double phi = pars->axis_phi * Pi/180.0; |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | // ellipsoid orientation, the axis of the rotation is consistent with the ploar axis. |
---|
| 72 | cyl_x = cos(theta) * cos(phi); |
---|
| 73 | cyl_y = sin(theta); |
---|
| 74 | //cyl_z = -cos(theta) * sin(phi); |
---|
| 75 | //del sld |
---|
| 76 | sldcs = pars->sld_core - pars->sld_shell; |
---|
| 77 | sldss = pars->sld_shell- pars->sld_solvent; |
---|
| 78 | |
---|
| 79 | // q vector |
---|
| 80 | //q_z = 0; |
---|
| 81 | |
---|
| 82 | // Compute the angle btw vector q and the |
---|
| 83 | // axis of the cylinder |
---|
| 84 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
| 85 | |
---|
| 86 | // The following test should always pass |
---|
| 87 | if (fabs(cos_val)>1.0) { |
---|
| 88 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 89 | return 0; |
---|
| 90 | } |
---|
| 91 | |
---|
| 92 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 93 | // undefined value from CylKernel |
---|
| 94 | alpha = acos( cos_val ); |
---|
| 95 | |
---|
| 96 | // Call the IGOR library function to get the kernel: MUST use gfn4 not gf2 because of the def of params. |
---|
| 97 | answer = gfn4(cos_val,pars->equat_core,pars->polar_core,pars->equat_shell,pars->polar_shell,sldcs,sldss,q); |
---|
| 98 | //It seems that it should be normalized somehow. How??? |
---|
| 99 | |
---|
| 100 | //normalize by cylinder volume |
---|
| 101 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 102 | vol = 4.0*Pi/3.0*pars->equat_shell*pars->equat_shell*pars->polar_shell; |
---|
| 103 | answer /= vol; |
---|
| 104 | |
---|
| 105 | //convert to [cm-1] |
---|
| 106 | answer *= 1.0e8; |
---|
| 107 | |
---|
| 108 | //Scale |
---|
| 109 | answer *= pars->scale; |
---|
| 110 | |
---|
| 111 | // add in the background |
---|
| 112 | answer += pars->background; |
---|
| 113 | |
---|
| 114 | return answer; |
---|
| 115 | } |
---|
| 116 | |
---|
| 117 | CoreShellEllipsoidModel :: CoreShellEllipsoidModel() { |
---|
| 118 | scale = Parameter(1.0); |
---|
| 119 | equat_core = Parameter(200.0, true); |
---|
| 120 | equat_core.set_min(0.0); |
---|
| 121 | polar_core = Parameter(20.0, true); |
---|
| 122 | polar_core.set_min(0.0); |
---|
| 123 | equat_shell = Parameter(250.0, true); |
---|
| 124 | equat_shell.set_min(0.0); |
---|
| 125 | polar_shell = Parameter(30.0, true); |
---|
| 126 | polar_shell.set_min(0.0); |
---|
| 127 | sld_core = Parameter(2e-6); |
---|
| 128 | sld_shell = Parameter(1e-6); |
---|
| 129 | sld_solvent = Parameter(6.3e-6); |
---|
| 130 | background = Parameter(0.0); |
---|
| 131 | axis_theta = Parameter(0.0, true); |
---|
| 132 | axis_phi = Parameter(0.0, true); |
---|
| 133 | |
---|
| 134 | } |
---|
| 135 | |
---|
| 136 | |
---|
| 137 | /** |
---|
| 138 | * Function to evaluate 2D scattering function |
---|
| 139 | * @param pars: parameters of the prolate |
---|
| 140 | * @param q: q-value |
---|
| 141 | * @return: function value |
---|
| 142 | */ |
---|
| 143 | static double spheroid_analytical_2DXY(SpheroidParameters *pars, double qx, double qy) { |
---|
| 144 | double q; |
---|
| 145 | q = sqrt(qx*qx+qy*qy); |
---|
| 146 | return spheroid_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | /** |
---|
| 150 | * Function to evaluate 1D scattering function |
---|
| 151 | * The NIST IGOR library is used for the actual calculation. |
---|
| 152 | * @param q: q-value |
---|
| 153 | * @return: function value |
---|
| 154 | */ |
---|
| 155 | double CoreShellEllipsoidModel :: operator()(double q) { |
---|
| 156 | double dp[9]; |
---|
| 157 | |
---|
| 158 | // Fill parameter array for IGOR library |
---|
| 159 | // Add the background after averaging |
---|
| 160 | dp[0] = scale(); |
---|
| 161 | dp[1] = equat_core(); |
---|
| 162 | dp[2] = polar_core(); |
---|
| 163 | dp[3] = equat_shell(); |
---|
| 164 | dp[4] = polar_shell(); |
---|
| 165 | dp[5] = sld_core(); |
---|
| 166 | dp[6] = sld_shell(); |
---|
| 167 | dp[7] = sld_solvent(); |
---|
| 168 | dp[8] = 0.0; |
---|
| 169 | |
---|
| 170 | // Get the dispersion points for the major core |
---|
| 171 | vector<WeightPoint> weights_equat_core; |
---|
| 172 | equat_core.get_weights(weights_equat_core); |
---|
| 173 | |
---|
| 174 | // Get the dispersion points for the minor core |
---|
| 175 | vector<WeightPoint> weights_polar_core; |
---|
| 176 | polar_core.get_weights(weights_polar_core); |
---|
| 177 | |
---|
| 178 | // Get the dispersion points for the major shell |
---|
| 179 | vector<WeightPoint> weights_equat_shell; |
---|
| 180 | equat_shell.get_weights(weights_equat_shell); |
---|
| 181 | |
---|
| 182 | // Get the dispersion points for the minor_shell |
---|
| 183 | vector<WeightPoint> weights_polar_shell; |
---|
| 184 | polar_shell.get_weights(weights_polar_shell); |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | // Perform the computation, with all weight points |
---|
| 188 | double sum = 0.0; |
---|
| 189 | double norm = 0.0; |
---|
| 190 | double vol = 0.0; |
---|
| 191 | |
---|
| 192 | // Loop over major core weight points |
---|
| 193 | for(int i=0; i<(int)weights_equat_core.size(); i++) { |
---|
| 194 | dp[1] = weights_equat_core[i].value; |
---|
| 195 | |
---|
| 196 | // Loop over minor core weight points |
---|
| 197 | for(int j=0; j<(int)weights_polar_core.size(); j++) { |
---|
| 198 | dp[2] = weights_polar_core[j].value; |
---|
| 199 | |
---|
| 200 | // Loop over major shell weight points |
---|
| 201 | for(int k=0; k<(int)weights_equat_shell.size(); k++) { |
---|
| 202 | dp[3] = weights_equat_shell[k].value; |
---|
| 203 | |
---|
| 204 | // Loop over minor shell weight points |
---|
| 205 | for(int l=0; l<(int)weights_polar_shell.size(); l++) { |
---|
| 206 | dp[4] = weights_polar_shell[l].value; |
---|
| 207 | //Un-normalize by volume |
---|
| 208 | sum += weights_equat_core[i].weight* weights_polar_core[j].weight * weights_equat_shell[k].weight |
---|
| 209 | * weights_polar_shell[l].weight * OblateForm(dp, q) |
---|
| 210 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
| 211 | //Find average volume |
---|
| 212 | vol += weights_equat_core[i].weight* weights_polar_core[j].weight |
---|
| 213 | * weights_equat_shell[k].weight |
---|
| 214 | * weights_polar_shell[l].weight |
---|
| 215 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
| 216 | norm += weights_equat_core[i].weight* weights_polar_core[j].weight * weights_equat_shell[k].weight |
---|
| 217 | * weights_polar_shell[l].weight; |
---|
| 218 | } |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | if (vol != 0.0 && norm != 0.0) { |
---|
| 223 | //Re-normalize by avg volume |
---|
| 224 | sum = sum/(vol/norm);} |
---|
| 225 | return sum/norm + background(); |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /** |
---|
| 229 | * Function to evaluate 2D scattering function |
---|
| 230 | * @param q_x: value of Q along x |
---|
| 231 | * @param q_y: value of Q along y |
---|
| 232 | * @return: function value |
---|
| 233 | */ |
---|
| 234 | /* |
---|
| 235 | double OblateModel :: operator()(double qx, double qy) { |
---|
| 236 | double q = sqrt(qx*qx + qy*qy); |
---|
| 237 | |
---|
| 238 | return (*this).operator()(q); |
---|
| 239 | } |
---|
| 240 | */ |
---|
| 241 | |
---|
| 242 | /** |
---|
| 243 | * Function to evaluate 2D scattering function |
---|
| 244 | * @param pars: parameters of the oblate |
---|
| 245 | * @param q: q-value |
---|
| 246 | * @param phi: angle phi |
---|
| 247 | * @return: function value |
---|
| 248 | */ |
---|
| 249 | double CoreShellEllipsoidModel :: evaluate_rphi(double q, double phi) { |
---|
| 250 | double qx = q*cos(phi); |
---|
| 251 | double qy = q*sin(phi); |
---|
| 252 | return (*this).operator()(qx, qy); |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | /** |
---|
| 256 | * Function to evaluate 2D scattering function |
---|
| 257 | * @param q_x: value of Q along x |
---|
| 258 | * @param q_y: value of Q along y |
---|
| 259 | * @return: function value |
---|
| 260 | */ |
---|
| 261 | double CoreShellEllipsoidModel :: operator()(double qx, double qy) { |
---|
| 262 | SpheroidParameters dp; |
---|
| 263 | // Fill parameter array |
---|
| 264 | dp.scale = scale(); |
---|
| 265 | dp.equat_core = equat_core(); |
---|
| 266 | dp.polar_core = polar_core(); |
---|
| 267 | dp.equat_shell = equat_shell(); |
---|
| 268 | dp.polar_shell = polar_shell(); |
---|
| 269 | dp.sld_core = sld_core(); |
---|
| 270 | dp.sld_shell = sld_shell(); |
---|
| 271 | dp.sld_solvent = sld_solvent(); |
---|
| 272 | dp.background = 0.0; |
---|
| 273 | dp.axis_theta = axis_theta(); |
---|
| 274 | dp.axis_phi = axis_phi(); |
---|
| 275 | |
---|
| 276 | // Get the dispersion points for the major core |
---|
| 277 | vector<WeightPoint> weights_equat_core; |
---|
| 278 | equat_core.get_weights(weights_equat_core); |
---|
| 279 | |
---|
| 280 | // Get the dispersion points for the minor core |
---|
| 281 | vector<WeightPoint> weights_polar_core; |
---|
| 282 | polar_core.get_weights(weights_polar_core); |
---|
| 283 | |
---|
| 284 | // Get the dispersion points for the major shell |
---|
| 285 | vector<WeightPoint> weights_equat_shell; |
---|
| 286 | equat_shell.get_weights(weights_equat_shell); |
---|
| 287 | |
---|
| 288 | // Get the dispersion points for the minor shell |
---|
| 289 | vector<WeightPoint> weights_polar_shell; |
---|
| 290 | polar_shell.get_weights(weights_polar_shell); |
---|
| 291 | |
---|
| 292 | |
---|
| 293 | // Get angular averaging for theta |
---|
| 294 | vector<WeightPoint> weights_theta; |
---|
| 295 | axis_theta.get_weights(weights_theta); |
---|
| 296 | |
---|
| 297 | // Get angular averaging for phi |
---|
| 298 | vector<WeightPoint> weights_phi; |
---|
| 299 | axis_phi.get_weights(weights_phi); |
---|
| 300 | |
---|
| 301 | // Perform the computation, with all weight points |
---|
| 302 | double sum = 0.0; |
---|
| 303 | double norm = 0.0; |
---|
| 304 | double norm_vol = 0.0; |
---|
| 305 | double vol = 0.0; |
---|
| 306 | double pi = 4.0*atan(1.0); |
---|
| 307 | // Loop over major core weight points |
---|
| 308 | for(int i=0; i< (int)weights_equat_core.size(); i++) { |
---|
| 309 | dp.equat_core = weights_equat_core[i].value; |
---|
| 310 | |
---|
| 311 | // Loop over minor core weight points |
---|
| 312 | for(int j=0; j< (int)weights_polar_core.size(); j++) { |
---|
| 313 | dp.polar_core = weights_polar_core[j].value; |
---|
| 314 | |
---|
| 315 | // Loop over major shell weight points |
---|
| 316 | for(int k=0; k< (int)weights_equat_shell.size(); k++) { |
---|
| 317 | dp.equat_shell = weights_equat_shell[i].value; |
---|
| 318 | |
---|
| 319 | // Loop over minor shell weight points |
---|
| 320 | for(int l=0; l< (int)weights_polar_shell.size(); l++) { |
---|
| 321 | dp.polar_shell = weights_polar_shell[l].value; |
---|
| 322 | |
---|
| 323 | // Average over theta distribution |
---|
| 324 | for(int m=0; m< (int)weights_theta.size(); m++) { |
---|
| 325 | dp.axis_theta = weights_theta[m].value; |
---|
| 326 | |
---|
| 327 | // Average over phi distribution |
---|
| 328 | for(int n=0; n< (int)weights_phi.size(); n++) { |
---|
| 329 | dp.axis_phi = weights_phi[n].value; |
---|
| 330 | //Un-normalize by volume |
---|
| 331 | double _ptvalue = weights_equat_core[i].weight *weights_polar_core[j].weight |
---|
| 332 | * weights_equat_shell[k].weight * weights_polar_shell[l].weight |
---|
| 333 | * weights_theta[m].weight |
---|
| 334 | * weights_phi[n].weight |
---|
| 335 | * spheroid_analytical_2DXY(&dp, qx, qy) |
---|
| 336 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
| 337 | if (weights_theta.size()>1) { |
---|
| 338 | _ptvalue *= fabs(cos(weights_theta[m].value*pi/180.0)); |
---|
| 339 | } |
---|
| 340 | sum += _ptvalue; |
---|
| 341 | //Find average volume |
---|
| 342 | vol += weights_equat_shell[k].weight |
---|
| 343 | * weights_polar_shell[l].weight |
---|
| 344 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
| 345 | //Find norm for volume |
---|
| 346 | norm_vol += weights_equat_shell[k].weight |
---|
| 347 | * weights_polar_shell[l].weight; |
---|
| 348 | |
---|
| 349 | norm += weights_equat_core[i].weight *weights_polar_core[j].weight |
---|
| 350 | * weights_equat_shell[k].weight * weights_polar_shell[l].weight |
---|
| 351 | * weights_theta[m].weight * weights_phi[n].weight; |
---|
| 352 | } |
---|
| 353 | } |
---|
| 354 | } |
---|
| 355 | } |
---|
| 356 | } |
---|
| 357 | } |
---|
| 358 | // Averaging in theta needs an extra normalization |
---|
| 359 | // factor to account for the sin(theta) term in the |
---|
| 360 | // integration (see documentation). |
---|
| 361 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 362 | |
---|
| 363 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 364 | //Re-normalize by avg volume |
---|
| 365 | sum = sum/(vol/norm_vol);} |
---|
| 366 | |
---|
| 367 | return sum/norm + background(); |
---|
| 368 | } |
---|
| 369 | |
---|
| 370 | /** |
---|
| 371 | * Function to calculate effective radius |
---|
| 372 | * @return: effective radius value |
---|
| 373 | */ |
---|
| 374 | double CoreShellEllipsoidModel :: calculate_ER() { |
---|
| 375 | SpheroidParameters dp; |
---|
| 376 | |
---|
| 377 | dp.equat_shell = equat_shell(); |
---|
| 378 | dp.polar_shell = polar_shell(); |
---|
| 379 | |
---|
| 380 | double rad_out = 0.0; |
---|
| 381 | |
---|
| 382 | // Perform the computation, with all weight points |
---|
| 383 | double sum = 0.0; |
---|
| 384 | double norm = 0.0; |
---|
| 385 | |
---|
| 386 | // Get the dispersion points for the major shell |
---|
| 387 | vector<WeightPoint> weights_equat_shell; |
---|
| 388 | equat_shell.get_weights(weights_equat_shell); |
---|
| 389 | |
---|
| 390 | // Get the dispersion points for the minor shell |
---|
| 391 | vector<WeightPoint> weights_polar_shell; |
---|
| 392 | polar_shell.get_weights(weights_polar_shell); |
---|
| 393 | |
---|
| 394 | // Loop over major shell weight points |
---|
| 395 | for(int i=0; i< (int)weights_equat_shell.size(); i++) { |
---|
| 396 | dp.equat_shell = weights_equat_shell[i].value; |
---|
| 397 | for(int k=0; k< (int)weights_polar_shell.size(); k++) { |
---|
| 398 | dp.polar_shell = weights_polar_shell[k].value; |
---|
| 399 | //Note: output of "DiamEllip(dp.polar_shell,dp.equat_shell)" is DIAMETER. |
---|
| 400 | sum +=weights_equat_shell[i].weight |
---|
| 401 | * weights_polar_shell[k].weight*DiamEllip(dp.polar_shell,dp.equat_shell)/2.0; |
---|
| 402 | norm += weights_equat_shell[i].weight* weights_polar_shell[k].weight; |
---|
| 403 | } |
---|
| 404 | } |
---|
| 405 | if (norm != 0){ |
---|
| 406 | //return the averaged value |
---|
| 407 | rad_out = sum/norm;} |
---|
| 408 | else{ |
---|
| 409 | //return normal value |
---|
| 410 | //Note: output of "DiamEllip(dp.polar_shell,dp.equat_shell)" is DIAMETER. |
---|
| 411 | rad_out = DiamEllip(dp.polar_shell,dp.equat_shell)/2.0;} |
---|
| 412 | |
---|
| 413 | return rad_out; |
---|
| 414 | } |
---|
| 415 | double CoreShellEllipsoidModel :: calculate_VR() { |
---|
| 416 | return 1.0; |
---|
| 417 | } |
---|