[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | #include "rpa.h" |
---|
| 26 | |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | static double rpa_kernel(double dp[], double q) { |
---|
| 30 | int lCASE = dp[0]; |
---|
| 31 | |
---|
| 32 | double Na,Nb,Nc,Nd,Nab,Nac,Nad,Nbc,Nbd,Ncd; |
---|
| 33 | double Phia,Phib,Phic,Phid,Phiab,Phiac,Phiad; |
---|
| 34 | double Phibc,Phibd,Phicd; |
---|
| 35 | double va,vb,vc,vd,vab,vac,vad,vbc,vbd,vcd; |
---|
| 36 | double m; |
---|
| 37 | double ba,bb,bc,bd; |
---|
| 38 | double Xa,Xb,Xc,Xd; |
---|
| 39 | double Paa,S0aa,Pab,S0ab,Pac,S0ac,Pad,S0ad; |
---|
| 40 | double S0ba,Pbb,S0bb,Pbc,S0bc,Pbd,S0bd; |
---|
| 41 | double S0ca,S0cb,Pcc,S0cc,Pcd,S0cd; |
---|
| 42 | double S0da,S0db,S0dc,Pdd,S0dd; |
---|
| 43 | double Kaa,Kab,Kac,Kad,Kba,Kbb,Kbc,Kbd; |
---|
| 44 | double Kca,Kcb,Kcc,Kcd,Kda,Kdb,Kdc,Kdd; |
---|
| 45 | double Zaa,Zab,Zac,Zba,Zbb,Zbc,Zca,Zcb,Zcc; |
---|
| 46 | double DenT,T11,T12,T13,T21,T22,T23,T31,T32,T33; |
---|
| 47 | double Y1,Y2,Y3,X11,X12,X13,X21,X22,X23,X31,X32,X33; |
---|
| 48 | double ZZ,DenQ1,DenQ2,DenQ3,DenQ,Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33; |
---|
| 49 | double N11,N12,N13,N21,N22,N23,N31,N32,N33; |
---|
| 50 | double M11,M12,M13,M21,M22,M23,M31,M32,M33; |
---|
| 51 | double S11,S12,S13,S14,S21,S22,S23,S24; |
---|
| 52 | double S31,S32,S33,S34,S41,S42,S43,S44; |
---|
| 53 | double La,Lb,Lc,Ld,Lad,Lbd,Lcd,Nav,Intg; |
---|
| 54 | double scale, background; |
---|
| 55 | |
---|
| 56 | int ii=13; //dp[ii<13] = fittable, else fixed |
---|
| 57 | |
---|
| 58 | Na=1000.0; |
---|
| 59 | Nb=1000.0; |
---|
| 60 | Nc=1000.0; |
---|
| 61 | Nd=1000.0; //DEGREE OF POLYMERIZATION |
---|
| 62 | Phia=0.25; |
---|
| 63 | Phib=0.25; |
---|
| 64 | Phic=0.25; |
---|
| 65 | Phid=0.25 ; //VOL FRACTION |
---|
| 66 | Kab=-0.0004; |
---|
| 67 | Kac=-0.0004; |
---|
| 68 | Kad=-0.0004; //CHI PARAM |
---|
| 69 | Kbc=-0.0004; |
---|
| 70 | Kbd=-0.0004; |
---|
| 71 | Kcd=-0.0004; |
---|
| 72 | La=1.0e-12; |
---|
| 73 | Lb=1.0e-12; |
---|
| 74 | Lc=1.0e-12; |
---|
| 75 | Ld=0.0e-12; //SCATT. LENGTH |
---|
| 76 | va=100.0; |
---|
| 77 | vb=100.0; |
---|
| 78 | vc=100.0; |
---|
| 79 | vd=100.0 ; //SPECIFIC VOLUME |
---|
| 80 | ba=5.0; |
---|
| 81 | bb=5.0; |
---|
| 82 | bc=5.0; |
---|
| 83 | bd=5.0; //SEGMENT LENGTH |
---|
| 84 | |
---|
| 85 | //lCASE was shifted to N-1 from the original code |
---|
| 86 | if (lCASE <= 1){ |
---|
| 87 | Phia=0.0000001; |
---|
| 88 | Phib=0.0000001; |
---|
| 89 | Phic=0.5; |
---|
| 90 | Phid=0.5; |
---|
| 91 | Nc=dp[ii+8]; |
---|
| 92 | Phic=dp[ii+9]; |
---|
| 93 | vc=dp[ii+10]; |
---|
| 94 | Lc=dp[ii+11]; |
---|
| 95 | bc=dp[3]; |
---|
| 96 | Nd=dp[ii+12]; |
---|
| 97 | Phid=dp[ii+13]; |
---|
| 98 | vd=dp[ii+14]; |
---|
| 99 | Ld=dp[ii+15]; |
---|
| 100 | bd=dp[4]; |
---|
| 101 | Kcd=dp[10]; |
---|
| 102 | scale=dp[11]; |
---|
| 103 | background=dp[12]; |
---|
| 104 | } |
---|
| 105 | else if ((lCASE > 1) && (lCASE <= 4)){ |
---|
| 106 | Phia=0.0000001; |
---|
| 107 | Phib=0.333333; |
---|
| 108 | Phic=0.333333; |
---|
| 109 | Phid=0.333333; |
---|
| 110 | Nb=dp[ii+4]; |
---|
| 111 | Phib=dp[ii+5]; |
---|
| 112 | vb=dp[ii+6]; |
---|
| 113 | Lb=dp[ii+7]; |
---|
| 114 | bb=dp[2]; |
---|
| 115 | Nc=dp[ii+8]; |
---|
| 116 | Phic=dp[ii+9]; |
---|
| 117 | vc=dp[ii+10]; |
---|
| 118 | Lc=dp[ii+11]; |
---|
| 119 | bc=dp[3]; |
---|
| 120 | Nd=dp[ii+12]; |
---|
| 121 | Phid=dp[ii+13]; |
---|
| 122 | vd=dp[ii+14]; |
---|
| 123 | Ld=dp[ii+15]; |
---|
| 124 | bd=dp[4]; |
---|
| 125 | Kbc=dp[8]; |
---|
| 126 | Kbd=dp[9]; |
---|
| 127 | Kcd=dp[10]; |
---|
| 128 | scale=dp[11]; |
---|
| 129 | background=dp[12]; |
---|
| 130 | } |
---|
| 131 | else { |
---|
| 132 | Phia=0.25; |
---|
| 133 | Phib=0.25; |
---|
| 134 | Phic=0.25; |
---|
| 135 | Phid=0.25; |
---|
| 136 | Na=dp[ii+0]; |
---|
| 137 | Phia=dp[ii+1]; |
---|
| 138 | va=dp[ii+2]; |
---|
| 139 | La=dp[ii+3]; |
---|
| 140 | ba=dp[1]; |
---|
| 141 | Nb=dp[ii+4]; |
---|
| 142 | Phib=dp[ii+5]; |
---|
| 143 | vb=dp[ii+6]; |
---|
| 144 | Lb=dp[ii+7]; |
---|
| 145 | bb=dp[2]; |
---|
| 146 | Nc=dp[ii+8]; |
---|
| 147 | Phic=dp[ii+9]; |
---|
| 148 | vc=dp[ii+10]; |
---|
| 149 | Lc=dp[ii+11]; |
---|
| 150 | bc=dp[3]; |
---|
| 151 | Nd=dp[ii+12]; |
---|
| 152 | Phid=dp[ii+13]; |
---|
| 153 | vd=dp[ii+14]; |
---|
| 154 | Ld=dp[ii+15]; |
---|
| 155 | bd=dp[4]; |
---|
| 156 | Kab=dp[5]; |
---|
| 157 | Kac=dp[6]; |
---|
| 158 | Kad=dp[7]; |
---|
| 159 | Kbc=dp[8]; |
---|
| 160 | Kbd=dp[9]; |
---|
| 161 | Kcd=dp[10]; |
---|
| 162 | scale=dp[11]; |
---|
| 163 | background=dp[12]; |
---|
| 164 | } |
---|
| 165 | |
---|
| 166 | Nab=pow((Na*Nb),(0.5)); |
---|
| 167 | Nac=pow((Na*Nc),(0.5)); |
---|
| 168 | Nad=pow((Na*Nd),(0.5)); |
---|
| 169 | Nbc=pow((Nb*Nc),(0.5)); |
---|
| 170 | Nbd=pow((Nb*Nd),(0.5)); |
---|
| 171 | Ncd=pow((Nc*Nd),(0.5)); |
---|
| 172 | |
---|
| 173 | vab=pow((va*vb),(0.5)); |
---|
| 174 | vac=pow((va*vc),(0.5)); |
---|
| 175 | vad=pow((va*vd),(0.5)); |
---|
| 176 | vbc=pow((vb*vc),(0.5)); |
---|
| 177 | vbd=pow((vb*vd),(0.5)); |
---|
| 178 | vcd=pow((vc*vd),(0.5)); |
---|
| 179 | |
---|
| 180 | Phiab=pow((Phia*Phib),(0.5)); |
---|
| 181 | Phiac=pow((Phia*Phic),(0.5)); |
---|
| 182 | Phiad=pow((Phia*Phid),(0.5)); |
---|
| 183 | Phibc=pow((Phib*Phic),(0.5)); |
---|
| 184 | Phibd=pow((Phib*Phid),(0.5)); |
---|
| 185 | Phicd=pow((Phic*Phid),(0.5)); |
---|
| 186 | |
---|
| 187 | Xa=q*q*ba*ba*Na/6.0; |
---|
| 188 | Xb=q*q*bb*bb*Nb/6.0; |
---|
| 189 | Xc=q*q*bc*bb*Nc/6.0; |
---|
| 190 | Xd=q*q*bd*bb*Nd/6.0; |
---|
| 191 | |
---|
| 192 | Paa=2.0*(exp(-Xa)-1.0+Xa)/pow(Xa,2.0); |
---|
| 193 | S0aa=Na*Phia*va*Paa; |
---|
| 194 | Pab=((1.0-exp(-Xa))/Xa)*((1.0-exp(-Xb))/Xb); |
---|
| 195 | S0ab=(Phiab*vab*Nab)*Pab; |
---|
| 196 | Pac=((1.0-exp(-Xa))/Xa)*exp(-Xb)*((1.0-exp(-Xc))/Xc); |
---|
| 197 | S0ac=(Phiac*vac*Nac)*Pac; |
---|
| 198 | Pad=((1.0-exp(-Xa))/Xa)*exp(-Xb-Xc)*((1.0-exp(-Xd))/Xd); |
---|
| 199 | S0ad=(Phiad*vad*Nad)*Pad; |
---|
| 200 | |
---|
| 201 | S0ba=S0ab; |
---|
| 202 | Pbb=2.0*(exp(-Xb)-1.0+Xb)/pow(Xb,2.0); |
---|
| 203 | S0bb=Nb*Phib*vb*Pbb; |
---|
| 204 | Pbc=((1.0-exp(-Xb))/Xb)*((1.0-exp(-Xc))/Xc); |
---|
| 205 | S0bc=(Phibc*vbc*Nbc)*Pbc; |
---|
| 206 | Pbd=((1.0-exp(-Xb))/Xb)*exp(-Xc)*((1.0-exp(-Xd))/Xd); |
---|
| 207 | S0bd=(Phibd*vbd*Nbd)*Pbd; |
---|
| 208 | |
---|
| 209 | S0ca=S0ac; |
---|
| 210 | S0cb=S0bc; |
---|
| 211 | Pcc=2.0*(exp(-Xc)-1.0+Xc)/pow(Xc,2.0); |
---|
| 212 | S0cc=Nc*Phic*vc*Pcc; |
---|
| 213 | Pcd=((1.0-exp(-Xc))/Xc)*((1.0-exp(-Xd))/Xd); |
---|
| 214 | S0cd=(Phicd*vcd*Ncd)*Pcd; |
---|
| 215 | |
---|
| 216 | S0da=S0ad; |
---|
| 217 | S0db=S0bd; |
---|
| 218 | S0dc=S0cd; |
---|
| 219 | Pdd=2.0*(exp(-Xd)-1.0+Xd)/pow(Xd,2.0); |
---|
| 220 | S0dd=Nd*Phid*vd*Pdd; |
---|
| 221 | //lCASE was shifted to N-1 from the original code |
---|
| 222 | switch(lCASE){ |
---|
| 223 | case 0: |
---|
| 224 | S0aa=0.000001; |
---|
| 225 | S0ab=0.000002; |
---|
| 226 | S0ac=0.000003; |
---|
| 227 | S0ad=0.000004; |
---|
| 228 | S0bb=0.000005; |
---|
| 229 | S0bc=0.000006; |
---|
| 230 | S0bd=0.000007; |
---|
| 231 | S0cd=0.000008; |
---|
| 232 | break; |
---|
| 233 | case 1: |
---|
| 234 | S0aa=0.000001; |
---|
| 235 | S0ab=0.000002; |
---|
| 236 | S0ac=0.000003; |
---|
| 237 | S0ad=0.000004; |
---|
| 238 | S0bb=0.000005; |
---|
| 239 | S0bc=0.000006; |
---|
| 240 | S0bd=0.000007; |
---|
| 241 | break; |
---|
| 242 | case 2: |
---|
| 243 | S0aa=0.000001; |
---|
| 244 | S0ab=0.000002; |
---|
| 245 | S0ac=0.000003; |
---|
| 246 | S0ad=0.000004; |
---|
| 247 | S0bc=0.000005; |
---|
| 248 | S0bd=0.000006; |
---|
| 249 | S0cd=0.000007; |
---|
| 250 | break; |
---|
| 251 | case 3: |
---|
| 252 | S0aa=0.000001; |
---|
| 253 | S0ab=0.000002; |
---|
| 254 | S0ac=0.000003; |
---|
| 255 | S0ad=0.000004; |
---|
| 256 | S0bc=0.000005; |
---|
| 257 | S0bd=0.000006; |
---|
| 258 | break; |
---|
| 259 | case 4: |
---|
| 260 | S0aa=0.000001; |
---|
| 261 | S0ab=0.000002; |
---|
| 262 | S0ac=0.000003; |
---|
| 263 | S0ad=0.000004; |
---|
| 264 | break; |
---|
| 265 | case 5: |
---|
| 266 | S0ab=0.000001; |
---|
| 267 | S0ac=0.000002; |
---|
| 268 | S0ad=0.000003; |
---|
| 269 | S0bc=0.000004; |
---|
| 270 | S0bd=0.000005; |
---|
| 271 | S0cd=0.000006; |
---|
| 272 | break; |
---|
| 273 | case 6: |
---|
| 274 | S0ab=0.000001; |
---|
| 275 | S0ac=0.000002; |
---|
| 276 | S0ad=0.000003; |
---|
| 277 | S0bc=0.000004; |
---|
| 278 | S0bd=0.000005; |
---|
| 279 | break; |
---|
| 280 | case 7: |
---|
| 281 | S0ab=0.000001; |
---|
| 282 | S0ac=0.000002; |
---|
| 283 | S0ad=0.000003; |
---|
| 284 | break; |
---|
| 285 | case 8: |
---|
| 286 | S0ac=0.000001; |
---|
| 287 | S0ad=0.000002; |
---|
| 288 | S0bc=0.000003; |
---|
| 289 | S0bd=0.000004; |
---|
| 290 | break; |
---|
| 291 | default : //case 9: |
---|
| 292 | break; |
---|
| 293 | } |
---|
| 294 | S0ba=S0ab; |
---|
| 295 | S0ca=S0ac; |
---|
| 296 | S0cb=S0bc; |
---|
| 297 | S0da=S0ad; |
---|
| 298 | S0db=S0bd; |
---|
| 299 | S0dc=S0cd; |
---|
| 300 | |
---|
| 301 | Kaa=0.0; |
---|
| 302 | Kbb=0.0; |
---|
| 303 | Kcc=0.0; |
---|
| 304 | Kdd=0.0; |
---|
| 305 | |
---|
| 306 | Kba=Kab; |
---|
| 307 | Kca=Kac; |
---|
| 308 | Kcb=Kbc; |
---|
| 309 | Kda=Kad; |
---|
| 310 | Kdb=Kbd; |
---|
| 311 | Kdc=Kcd; |
---|
| 312 | |
---|
| 313 | Zaa=Kaa-Kad-Kad; |
---|
| 314 | Zab=Kab-Kad-Kbd; |
---|
| 315 | Zac=Kac-Kad-Kcd; |
---|
| 316 | Zba=Kba-Kbd-Kad; |
---|
| 317 | Zbb=Kbb-Kbd-Kbd; |
---|
| 318 | Zbc=Kbc-Kbd-Kcd; |
---|
| 319 | Zca=Kca-Kcd-Kad; |
---|
| 320 | Zcb=Kcb-Kcd-Kbd; |
---|
| 321 | Zcc=Kcc-Kcd-Kcd; |
---|
| 322 | |
---|
| 323 | DenT=(-(S0ac*S0bb*S0ca) + S0ab*S0bc*S0ca + S0ac*S0ba*S0cb - S0aa*S0bc*S0cb - S0ab*S0ba*S0cc + S0aa*S0bb*S0cc); |
---|
| 324 | |
---|
| 325 | T11= (-(S0bc*S0cb) + S0bb*S0cc)/DenT; |
---|
| 326 | T12= (S0ac*S0cb - S0ab*S0cc)/DenT; |
---|
| 327 | T13= (-(S0ac*S0bb) + S0ab*S0bc)/DenT; |
---|
| 328 | T21= (S0bc*S0ca - S0ba*S0cc)/DenT; |
---|
| 329 | T22= (-(S0ac*S0ca) + S0aa*S0cc)/DenT; |
---|
| 330 | T23= (S0ac*S0ba - S0aa*S0bc)/DenT; |
---|
| 331 | T31= (-(S0bb*S0ca) + S0ba*S0cb)/DenT; |
---|
| 332 | T32= (S0ab*S0ca - S0aa*S0cb)/DenT; |
---|
| 333 | T33= (-(S0ab*S0ba) + S0aa*S0bb)/DenT; |
---|
| 334 | |
---|
| 335 | Y1=T11*S0ad+T12*S0bd+T13*S0cd+1.0; |
---|
| 336 | Y2=T21*S0ad+T22*S0bd+T23*S0cd+1.0; |
---|
| 337 | Y3=T31*S0ad+T32*S0bd+T33*S0cd+1.0; |
---|
| 338 | |
---|
| 339 | X11=Y1*Y1; |
---|
| 340 | X12=Y1*Y2; |
---|
| 341 | X13=Y1*Y3; |
---|
| 342 | X21=Y2*Y1; |
---|
| 343 | X22=Y2*Y2; |
---|
| 344 | X23=Y2*Y3; |
---|
| 345 | X31=Y3*Y1; |
---|
| 346 | X32=Y3*Y2; |
---|
| 347 | X33=Y3*Y3; |
---|
| 348 | |
---|
| 349 | ZZ=S0ad*(T11*S0ad+T12*S0bd+T13*S0cd)+S0bd*(T21*S0ad+T22*S0bd+T23*S0cd)+S0cd*(T31*S0ad+T32*S0bd+T33*S0cd); |
---|
| 350 | |
---|
| 351 | m=1.0/(S0dd-ZZ); |
---|
| 352 | |
---|
| 353 | N11=m*X11+Zaa; |
---|
| 354 | N12=m*X12+Zab; |
---|
| 355 | N13=m*X13+Zac; |
---|
| 356 | N21=m*X21+Zba; |
---|
| 357 | N22=m*X22+Zbb; |
---|
| 358 | N23=m*X23+Zbc; |
---|
| 359 | N31=m*X31+Zca; |
---|
| 360 | N32=m*X32+Zcb; |
---|
| 361 | N33=m*X33+Zcc; |
---|
| 362 | |
---|
| 363 | M11= N11*S0aa + N12*S0ab + N13*S0ac; |
---|
| 364 | M12= N11*S0ab + N12*S0bb + N13*S0bc; |
---|
| 365 | M13= N11*S0ac + N12*S0bc + N13*S0cc; |
---|
| 366 | M21= N21*S0aa + N22*S0ab + N23*S0ac; |
---|
| 367 | M22= N21*S0ab + N22*S0bb + N23*S0bc; |
---|
| 368 | M23= N21*S0ac + N22*S0bc + N23*S0cc; |
---|
| 369 | M31= N31*S0aa + N32*S0ab + N33*S0ac; |
---|
| 370 | M32= N31*S0ab + N32*S0bb + N33*S0bc; |
---|
| 371 | M33= N31*S0ac + N32*S0bc + N33*S0cc; |
---|
| 372 | |
---|
| 373 | DenQ1=1.0+M11-M12*M21+M22+M11*M22-M13*M31-M13*M22*M31; |
---|
| 374 | DenQ2= M12*M23*M31+M13*M21*M32-M23*M32-M11*M23*M32+M33+M11*M33; |
---|
| 375 | DenQ3= -M12*M21*M33+M22*M33+M11*M22*M33; |
---|
| 376 | DenQ=DenQ1+DenQ2+DenQ3; |
---|
| 377 | |
---|
| 378 | Q11= (1.0 + M22-M23*M32 + M33 + M22*M33)/DenQ; |
---|
| 379 | Q12= (-M12 + M13*M32 - M12*M33)/DenQ; |
---|
| 380 | Q13= (-M13 - M13*M22 + M12*M23)/DenQ; |
---|
| 381 | Q21= (-M21 + M23*M31 - M21*M33)/DenQ; |
---|
| 382 | Q22= (1.0 + M11 - M13*M31 + M33 + M11*M33)/DenQ; |
---|
| 383 | Q23= (M13*M21 - M23 - M11*M23)/DenQ; |
---|
| 384 | Q31= (-M31 - M22*M31 + M21*M32)/DenQ; |
---|
| 385 | Q32= (M12*M31 - M32 - M11*M32)/DenQ; |
---|
| 386 | Q33= (1.0 + M11 - M12*M21 + M22 + M11*M22)/DenQ; |
---|
| 387 | |
---|
| 388 | S11= Q11*S0aa + Q21*S0ab + Q31*S0ac; |
---|
| 389 | S12= Q12*S0aa + Q22*S0ab + Q32*S0ac; |
---|
| 390 | S13= Q13*S0aa + Q23*S0ab + Q33*S0ac; |
---|
| 391 | S14=-S11-S12-S13; |
---|
| 392 | S21= Q11*S0ba + Q21*S0bb + Q31*S0bc; |
---|
| 393 | S22= Q12*S0ba + Q22*S0bb + Q32*S0bc; |
---|
| 394 | S23= Q13*S0ba + Q23*S0bb + Q33*S0bc; |
---|
| 395 | S24=-S21-S22-S23; |
---|
| 396 | S31= Q11*S0ca + Q21*S0cb + Q31*S0cc; |
---|
| 397 | S32= Q12*S0ca + Q22*S0cb + Q32*S0cc; |
---|
| 398 | S33= Q13*S0ca + Q23*S0cb + Q33*S0cc; |
---|
| 399 | S34=-S31-S32-S33; |
---|
| 400 | S41=S14; |
---|
| 401 | S42=S24; |
---|
| 402 | S43=S34; |
---|
| 403 | S44=S11+S22+S33+2.0*S12+2.0*S13+2.0*S23; |
---|
| 404 | |
---|
| 405 | Nav=6.022045e+23; |
---|
| 406 | Lad=(La/va-Ld/vd)*sqrt(Nav); |
---|
| 407 | Lbd=(Lb/vb-Ld/vd)*sqrt(Nav); |
---|
| 408 | Lcd=(Lc/vc-Ld/vd)*sqrt(Nav); |
---|
| 409 | |
---|
| 410 | Intg=pow(Lad,2.0)*S11+pow(Lbd,2.0)*S22+pow(Lcd,2.0)*S33+2.0*Lad*Lbd*S12+2.0*Lbd*Lcd*S23+2.0*Lad*Lcd*S13; |
---|
| 411 | |
---|
| 412 | Intg *= scale; |
---|
| 413 | Intg += background; |
---|
| 414 | |
---|
| 415 | return Intg; |
---|
| 416 | |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | RPAModel :: RPAModel() { |
---|
| 420 | lcase_n = Parameter(0.0); |
---|
| 421 | ba = Parameter(5.0); |
---|
| 422 | bb = Parameter(5.0); |
---|
| 423 | bc = Parameter(5.0); |
---|
| 424 | bd = Parameter(5.0); |
---|
| 425 | |
---|
| 426 | Kab = Parameter(-0.0004); |
---|
| 427 | Kac = Parameter(-0.0004); |
---|
| 428 | Kad = Parameter(-0.0004); |
---|
| 429 | Kbc = Parameter(-0.0004); |
---|
| 430 | Kbd = Parameter(-0.0004); |
---|
| 431 | Kcd = Parameter(-0.0004); |
---|
| 432 | |
---|
| 433 | scale = Parameter(1.0); |
---|
| 434 | background = Parameter(0.0); |
---|
| 435 | |
---|
| 436 | Na = Parameter(1000.0); |
---|
| 437 | Phia = Parameter(0.25); |
---|
| 438 | va = Parameter(100.0); |
---|
| 439 | La = Parameter(1.0e-012); |
---|
| 440 | |
---|
| 441 | Nb = Parameter(1000.0); |
---|
| 442 | Phib = Parameter(0.25); |
---|
| 443 | vb = Parameter(100.0); |
---|
| 444 | Lb = Parameter(1.0e-012); |
---|
| 445 | |
---|
| 446 | Nc = Parameter(1000.0); |
---|
| 447 | Phic = Parameter(0.25); |
---|
| 448 | vc = Parameter(100.0); |
---|
| 449 | Lc = Parameter(1.0e-012); |
---|
| 450 | |
---|
| 451 | Nd = Parameter(1000.0); |
---|
| 452 | Phid = Parameter(0.25); |
---|
| 453 | vd = Parameter(100.0); |
---|
| 454 | Ld = Parameter(0.0e-012); |
---|
| 455 | |
---|
| 456 | } |
---|
| 457 | |
---|
| 458 | /** |
---|
| 459 | * Function to evaluate 1D scattering function |
---|
| 460 | * The NIST IGOR library is used for the actual calculation. |
---|
| 461 | * @param q: q-value |
---|
| 462 | * @return: function value |
---|
| 463 | */ |
---|
| 464 | double RPAModel :: operator()(double q) { |
---|
| 465 | double dp[29]; |
---|
| 466 | // Fill parameter array for IGOR library |
---|
| 467 | // Add the background after averaging |
---|
| 468 | //Fittable parameters |
---|
| 469 | dp[0] = lcase_n(); |
---|
| 470 | |
---|
| 471 | dp[1] = ba(); |
---|
| 472 | dp[2] = bb(); |
---|
| 473 | dp[3] = bc(); |
---|
| 474 | dp[4] = bd(); |
---|
| 475 | |
---|
| 476 | dp[5] = Kab(); |
---|
| 477 | dp[6] = Kac(); |
---|
| 478 | dp[7] = Kad(); |
---|
| 479 | dp[8] = Kbc(); |
---|
| 480 | dp[9] = Kbd(); |
---|
| 481 | dp[10] = Kcd(); |
---|
| 482 | |
---|
| 483 | dp[11] = scale(); |
---|
| 484 | dp[12] = background(); |
---|
| 485 | |
---|
| 486 | //Fixed parameters |
---|
| 487 | dp[13] = Na(); |
---|
| 488 | dp[14] = Phia(); |
---|
| 489 | dp[15] = va(); |
---|
| 490 | dp[16] = La(); |
---|
| 491 | |
---|
| 492 | dp[17] = Nb(); |
---|
| 493 | dp[18] = Phib(); |
---|
| 494 | dp[19] = vb(); |
---|
| 495 | dp[20] = Lb(); |
---|
| 496 | |
---|
| 497 | dp[21] = Nc(); |
---|
| 498 | dp[22] = Phic(); |
---|
| 499 | dp[23] = vc(); |
---|
| 500 | dp[24] = Lc(); |
---|
| 501 | |
---|
| 502 | dp[25] = Nd(); |
---|
| 503 | dp[26] = Phid(); |
---|
| 504 | dp[27] = vd(); |
---|
| 505 | dp[28] = Ld(); |
---|
| 506 | |
---|
| 507 | return rpa_kernel(dp,q); |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | /** |
---|
| 511 | * Function to evaluate 2D scattering function |
---|
| 512 | * @param q_x: value of Q along x |
---|
| 513 | * @param q_y: value of Q along y |
---|
| 514 | * @return: function value |
---|
| 515 | */ |
---|
| 516 | double RPAModel :: operator()(double qx, double qy) { |
---|
| 517 | double q = sqrt(qx*qx + qy*qy); |
---|
| 518 | return (*this).operator()(q); |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | /** |
---|
| 522 | * Function to evaluate 2D scattering function |
---|
| 523 | * @param pars: parameters of the sphere |
---|
| 524 | * @param q: q-value |
---|
| 525 | * @param phi: angle phi |
---|
| 526 | * @return: function value |
---|
| 527 | */ |
---|
| 528 | double RPAModel :: evaluate_rphi(double q, double phi) { |
---|
| 529 | return (*this).operator()(q); |
---|
| 530 | } |
---|
| 531 | |
---|
| 532 | /** |
---|
| 533 | * Function to calculate effective radius |
---|
| 534 | * @return: effective radius value |
---|
| 535 | */ |
---|
| 536 | double RPAModel :: calculate_ER() { |
---|
| 537 | //NOT implemented!!! |
---|
| 538 | return 0.0; |
---|
| 539 | } |
---|
| 540 | double RPAModel :: calculate_VR() { |
---|
| 541 | return 1.0; |
---|
| 542 | } |
---|