[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | #include <math.h> |
---|
| 17 | #include "parameters.hh" |
---|
| 18 | #include <stdio.h> |
---|
| 19 | #include <stdlib.h> |
---|
| 20 | using namespace std; |
---|
| 21 | #include "raspberry.h" |
---|
| 22 | |
---|
| 23 | // scattering |
---|
| 24 | // Modified from igor model: JHC - May 04, 2012 |
---|
| 25 | // |
---|
| 26 | // you should write your function to calculate the intensity |
---|
| 27 | // for a single q-value (that's the input parameter x) |
---|
| 28 | // based on the wave (array) of parameters that you send it (w) |
---|
| 29 | // Ref: J. coll. inter. sci. (2010) vol. 343 (1) pp. 36-41. |
---|
| 30 | // model calculation |
---|
| 31 | // |
---|
| 32 | static double raspberry_func(double dp[], double q){ |
---|
| 33 | // variables are: |
---|
| 34 | //[0] volume fraction large spheres |
---|
| 35 | //[1] radius large sphere (A) |
---|
| 36 | //[2] sld large sphere (A-2) |
---|
| 37 | //[3] volume fraction small spheres |
---|
| 38 | //[4] radius small sphere (A) |
---|
| 39 | //[5] fraction of small spheres at surface |
---|
| 40 | //[6] sld small sphere |
---|
| 41 | //[7] small sphere penetration (A) |
---|
| 42 | //[8] sld solvent |
---|
| 43 | //[9] background (cm-1) |
---|
| 44 | double vfL, rL, sldL, vfS, rS, sldS, deltaS, delrhoL, delrhoS, bkg, sldSolv, aSs; |
---|
| 45 | vfL = dp[0]; |
---|
| 46 | rL = dp[1]; |
---|
| 47 | sldL = dp[2]; |
---|
| 48 | vfS = dp[3]; |
---|
| 49 | rS = dp[4]; |
---|
| 50 | aSs = dp[5]; |
---|
| 51 | sldS = dp[6]; |
---|
| 52 | deltaS = dp[7]; |
---|
| 53 | sldSolv = dp[8]; |
---|
| 54 | bkg = dp[9]; |
---|
| 55 | |
---|
| 56 | delrhoL = fabs(sldL - sldSolv); |
---|
| 57 | delrhoS = fabs(sldS - sldSolv); |
---|
| 58 | |
---|
| 59 | double VL, VS, Np, f2, fSs; |
---|
| 60 | double pi = 4.0*atan(1.0); |
---|
| 61 | |
---|
| 62 | VL = 4*pi/3*pow(rL,3.0); |
---|
| 63 | VS = 4*pi/3*pow(rS,3.0); |
---|
| 64 | Np = aSs*4.0*pow(((rL+deltaS)/rS), 2.0); |
---|
| 65 | fSs = Np*vfL*VS/vfS/VL; |
---|
| 66 | |
---|
| 67 | double rasp_temp[8]; |
---|
| 68 | rasp_temp[0] = dp[0]; |
---|
| 69 | rasp_temp[1] = dp[1]; |
---|
| 70 | rasp_temp[2] = delrhoL; |
---|
| 71 | rasp_temp[3] = dp[3]; |
---|
| 72 | rasp_temp[4] = dp[4]; |
---|
| 73 | rasp_temp[5] = dp[5]; |
---|
| 74 | rasp_temp[6] = delrhoS; |
---|
| 75 | rasp_temp[7] = dp[7]; |
---|
| 76 | |
---|
| 77 | f2 = raspberry_kernel(rasp_temp,q); |
---|
| 78 | f2+= vfS*(1.0-fSs)*pow(delrhoS, 2)*VS*rasp_bes(q,rS)*rasp_bes(q,rS); |
---|
| 79 | |
---|
| 80 | // normalize to single particle volume and convert to 1/cm |
---|
| 81 | f2 *= 1.0e8; // [=] 1/cm |
---|
| 82 | |
---|
| 83 | return (f2+bkg); // Scale, then add in the background |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | double raspberry_kernel(double dp[], double q){ |
---|
| 87 | // variables are: |
---|
| 88 | //[0] volume fraction large spheres |
---|
| 89 | //[1] radius large sphere (A) |
---|
| 90 | //[2] sld large sphere (A-2) |
---|
| 91 | //[3] volume fraction small spheres |
---|
| 92 | //[4] radius small sphere (A) |
---|
| 93 | //[5] fraction of small spheres at surface |
---|
| 94 | //[6] sld small sphere |
---|
| 95 | //[7] small sphere penetration (A) |
---|
| 96 | |
---|
| 97 | double vfL, rL, vfS, rS, deltaS; |
---|
| 98 | double delrhoL, delrhoS, qval, aSs; |
---|
| 99 | vfL = dp[0]; |
---|
| 100 | rL = dp[1]; |
---|
| 101 | delrhoL = dp[2]; |
---|
| 102 | vfS = dp[3]; |
---|
| 103 | rS = dp[4]; |
---|
| 104 | aSs = dp[5]; |
---|
| 105 | delrhoS = dp[6]; |
---|
| 106 | deltaS = dp[7]; |
---|
| 107 | |
---|
| 108 | qval = q; //rename the input q-value, purely for readability |
---|
| 109 | double pi = 4.0*atan(1.0); |
---|
| 110 | |
---|
| 111 | double psiL,psiS,f2; |
---|
| 112 | double sfLS,sfSS; |
---|
| 113 | double VL,VS,slT,Np,fSs; |
---|
| 114 | |
---|
| 115 | VL = 4.0*pi/3.0*pow(rL,3.0); |
---|
| 116 | VS = 4.0*pi/3.0*pow(rS,3.0); |
---|
| 117 | |
---|
| 118 | Np = aSs*4.0*(rS/(rL+deltaS))*VL/VS; |
---|
| 119 | |
---|
| 120 | fSs = Np*vfL*VS/vfS/VL; |
---|
| 121 | |
---|
| 122 | slT = delrhoL*VL + Np*delrhoS*VS; |
---|
| 123 | |
---|
| 124 | psiL = rasp_bes(qval,rL); |
---|
| 125 | psiS = rasp_bes(qval,rS); |
---|
| 126 | |
---|
| 127 | sfLS = psiL*psiS*(sin(qval*(rL+deltaS*rS))/qval/(rL+deltaS*rS)); |
---|
| 128 | sfSS = psiS*psiS*pow((sin(qval*(rL+deltaS*rS))/qval/(rL+deltaS*rS)),2); |
---|
| 129 | |
---|
| 130 | f2 = delrhoL*delrhoL*VL*VL*psiL*psiL; |
---|
| 131 | f2 += Np*delrhoS*delrhoS*VS*VS*psiS*psiS; |
---|
| 132 | f2 += Np*(Np-1)*delrhoS*delrhoS*VS*VS*sfSS; |
---|
| 133 | f2 += 2*Np*delrhoL*delrhoS*VL*VS*sfLS; |
---|
| 134 | if (f2 != 0.0){ |
---|
| 135 | f2 = f2/slT/slT; |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | f2 = f2*(vfL*delrhoL*delrhoL*VL + vfS*fSs*Np*delrhoS*delrhoS*VS); |
---|
| 139 | |
---|
| 140 | return f2; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | double rasp_bes(double qval, double rad){ |
---|
| 144 | double retval; |
---|
| 145 | retval = 3.0*(sin(qval*rad)-qval*rad*cos(qval*rad))/(qval*qval*qval)/(rad*rad*rad); |
---|
| 146 | return retval; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | RaspBerryModel :: RaspBerryModel() { |
---|
| 150 | volf_Lsph = Parameter(0.05); |
---|
| 151 | radius_Lsph = Parameter(5000.0, true); |
---|
| 152 | radius_Lsph.set_min(0.0); |
---|
| 153 | sld_Lsph = Parameter(-4.0e-7); |
---|
| 154 | volf_Ssph = Parameter(0.005); |
---|
| 155 | radius_Ssph = Parameter(100.0, true); |
---|
| 156 | radius_Ssph.set_min(0.0); |
---|
| 157 | surfrac_Ssph = Parameter(0.4); |
---|
| 158 | sld_Ssph = Parameter(3.5e-6); |
---|
| 159 | delta_Ssph = Parameter(0.0); |
---|
| 160 | sld_solv = Parameter(6.3e-6); |
---|
| 161 | background = Parameter(0.0); |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * Function to evaluate 1D scattering function |
---|
| 166 | * The NIST IGOR is used for the actual calculation. |
---|
| 167 | * @param q: q-value |
---|
| 168 | * @return: function value |
---|
| 169 | */ |
---|
| 170 | double RaspBerryModel :: operator()(double q) { |
---|
| 171 | double dp[10]; |
---|
| 172 | // Add the background after averaging |
---|
| 173 | dp[0] = volf_Lsph(); |
---|
| 174 | dp[1] = radius_Lsph(); |
---|
| 175 | dp[2] = sld_Lsph(); |
---|
| 176 | dp[3] = volf_Ssph(); |
---|
| 177 | dp[4] = radius_Ssph(); |
---|
| 178 | dp[5] = surfrac_Ssph(); |
---|
| 179 | dp[6] = sld_Ssph(); |
---|
| 180 | dp[7] = delta_Ssph(); |
---|
| 181 | dp[8] = sld_solv(); |
---|
| 182 | dp[9] = 0.0; |
---|
| 183 | |
---|
| 184 | // Get the dispersion points for the radius_Lsph |
---|
| 185 | vector<WeightPoint> weights_radius_Lsph; |
---|
| 186 | radius_Lsph.get_weights(weights_radius_Lsph); |
---|
| 187 | |
---|
| 188 | // Perform the computation, with all weight points |
---|
| 189 | double sum = 0.0; |
---|
| 190 | double norm = 0.0; |
---|
| 191 | //double norm_vol = 0.0; |
---|
| 192 | //double vol = 0.0; |
---|
| 193 | |
---|
| 194 | // Loop over radius_Lsph weight points |
---|
| 195 | for(size_t i=0; i<weights_radius_Lsph.size(); i++) { |
---|
| 196 | dp[1] = weights_radius_Lsph[i].value; |
---|
| 197 | //Un-normalize by volume |
---|
| 198 | sum += weights_radius_Lsph[i].weight |
---|
| 199 | * raspberry_func(dp, q);// * pow(weights_radius_Lsph[i].value,3.0); |
---|
| 200 | //Find average volume |
---|
| 201 | //vol += weights_radius_Lsph[i].weight |
---|
| 202 | // * pow(weights_radius_Lsph[i].value,3.0); |
---|
| 203 | norm += weights_radius_Lsph[i].weight; |
---|
| 204 | //norm_vol += weights_radius_Lsph[i].weight; |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | //if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 208 | //Re-normalize by avg volume |
---|
| 209 | //sum = sum/(vol/norm_vol);} |
---|
| 210 | return sum/norm + background(); |
---|
| 211 | } |
---|
| 212 | |
---|
| 213 | /** |
---|
| 214 | * Function to evaluate 2D scattering function |
---|
| 215 | * @param q_x: value of Q along x |
---|
| 216 | * @param q_y: value of Q along y |
---|
| 217 | * @return: function value |
---|
| 218 | */ |
---|
| 219 | double RaspBerryModel :: operator()(double qx, double qy) { |
---|
| 220 | double q = sqrt(qx*qx + qy*qy); |
---|
| 221 | return (*this).operator()(q); |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | /** |
---|
| 225 | * Function to evaluate 2D scattering function |
---|
| 226 | * @param pars: parameters |
---|
| 227 | * @param q: q-value |
---|
| 228 | * @param phi: angle phi |
---|
| 229 | * @return: function value |
---|
| 230 | */ |
---|
| 231 | double RaspBerryModel :: evaluate_rphi(double q, double phi) { |
---|
| 232 | return (*this).operator()(q); |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | /** |
---|
| 236 | * Function to calculate effective radius |
---|
| 237 | * @return: effective radius value |
---|
| 238 | */ |
---|
| 239 | double RaspBerryModel :: calculate_ER() { |
---|
| 240 | //NOT implemented yet!!! |
---|
| 241 | return 0.0; |
---|
| 242 | } |
---|
| 243 | double RaspBerryModel :: calculate_VR() { |
---|
| 244 | return 1.0; |
---|
| 245 | } |
---|