[230f479] | 1 | /** |
---|
| 2 | * PringlesModel |
---|
| 3 | * |
---|
| 4 | * (c) 2013 / Andrew J Jackson / andrew.jackson@esss.se |
---|
| 5 | * |
---|
| 6 | * Model for "pringles" particle from K. Edler @ Bath University |
---|
| 7 | * |
---|
| 8 | */ |
---|
| 9 | #include <math.h> |
---|
| 10 | #include "parameters.hh" |
---|
| 11 | #include "pringles.h" |
---|
| 12 | #include "cephes.h" |
---|
| 13 | using namespace std; |
---|
| 14 | |
---|
| 15 | extern "C" |
---|
| 16 | { |
---|
| 17 | #include "GaussWeights.h" |
---|
| 18 | #include "libStructureFactor.h" |
---|
| 19 | } |
---|
| 20 | |
---|
| 21 | // Convenience parameter structure |
---|
| 22 | typedef struct { |
---|
| 23 | double scale; |
---|
| 24 | double radius; |
---|
| 25 | double thickness; |
---|
| 26 | double alpha; |
---|
| 27 | double beta; |
---|
| 28 | double sldCyl; |
---|
| 29 | double sldSolv; |
---|
| 30 | double background; |
---|
| 31 | double cyl_theta; |
---|
| 32 | double cyl_phi; |
---|
| 33 | } PringleParameters; |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | PringlesModel::PringlesModel() { |
---|
| 37 | scale = Parameter(1.0); |
---|
| 38 | radius = Parameter(60.0,true); |
---|
| 39 | radius.set_min(0.0); |
---|
| 40 | thickness = Parameter(10.0,true); |
---|
| 41 | thickness.set_min(0.0); |
---|
| 42 | alpha = Parameter(0.001,true); |
---|
| 43 | beta = Parameter(0.02,true); |
---|
| 44 | sld_pringle = Parameter(1.0e-6); |
---|
| 45 | sld_solvent = Parameter(6.35e-6); |
---|
| 46 | background = Parameter(0.0); |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | /** |
---|
| 50 | * Function to evaluate 1D scattering function |
---|
| 51 | * @param q: q-value |
---|
| 52 | * @return: function value |
---|
| 53 | */ |
---|
| 54 | double PringlesModel::operator()(double q) { |
---|
| 55 | double dp[8]; |
---|
| 56 | // Fill parameter array |
---|
| 57 | // Add the background after averaging |
---|
| 58 | dp[0] = scale(); |
---|
| 59 | dp[1] = radius(); |
---|
| 60 | dp[2] = thickness(); |
---|
| 61 | dp[3] = alpha(); |
---|
| 62 | dp[4] = beta(); |
---|
| 63 | dp[5] = sld_pringle(); |
---|
| 64 | dp[6] = sld_solvent(); |
---|
| 65 | dp[7] = 0.0; |
---|
| 66 | |
---|
| 67 | // Get the dispersion points for the radius |
---|
| 68 | vector<WeightPoint> weights_rad; |
---|
| 69 | radius.get_weights(weights_rad); |
---|
| 70 | |
---|
| 71 | // Get the dispersion points for the thickness |
---|
| 72 | vector<WeightPoint> weights_thick; |
---|
| 73 | thickness.get_weights(weights_thick); |
---|
| 74 | |
---|
| 75 | // Get the dispersion points for alpha |
---|
| 76 | vector<WeightPoint> weights_alpha; |
---|
| 77 | alpha.get_weights(weights_alpha); |
---|
| 78 | |
---|
| 79 | // Get the dispersion points for beta |
---|
| 80 | vector<WeightPoint> weights_beta; |
---|
| 81 | beta.get_weights(weights_beta); |
---|
| 82 | |
---|
| 83 | // Perform the computation, with all weight points |
---|
| 84 | double sum = 0.0; |
---|
| 85 | double norm = 0.0; |
---|
| 86 | double volnorm = 0.0; |
---|
| 87 | double vol = 0.0; |
---|
| 88 | double Pi; |
---|
| 89 | |
---|
| 90 | Pi = 4.0 * atan(1.0); |
---|
| 91 | |
---|
| 92 | // Loop over alpha weight points |
---|
| 93 | for (size_t i = 0; i < weights_alpha.size(); i++) { |
---|
| 94 | dp[3] = weights_alpha[i].value; |
---|
| 95 | |
---|
| 96 | //Loop over beta weight points |
---|
| 97 | for (size_t j = 0; j < weights_beta.size(); j++) { |
---|
| 98 | dp[4] = weights_beta[j].value; |
---|
| 99 | |
---|
| 100 | // Loop over thickness weight points |
---|
| 101 | for (size_t k = 0; k < weights_thick.size(); k++) { |
---|
| 102 | dp[2] = weights_thick[k].value; |
---|
| 103 | |
---|
| 104 | // Loop over radius weight points |
---|
| 105 | for (size_t l = 0; l < weights_rad.size(); l++) { |
---|
| 106 | dp[1] = weights_rad[l].value; |
---|
| 107 | sum += weights_rad[l].weight * weights_thick[k].weight |
---|
| 108 | * weights_alpha[i].weight * weights_beta[j].weight |
---|
| 109 | * pringle_form(dp, q); |
---|
| 110 | //Find average volume |
---|
| 111 | vol += weights_rad[l].weight * weights_thick[k].weight * Pi * pow(weights_rad[l].value, 2) * weights_thick[k].value; |
---|
| 112 | volnorm += weights_rad[l].weight * weights_thick[k].weight; |
---|
| 113 | norm += weights_rad[l].weight * weights_thick[k].weight * weights_alpha[i].weight * weights_beta[j].weight; |
---|
| 114 | |
---|
| 115 | } |
---|
| 116 | } |
---|
| 117 | } |
---|
| 118 | } |
---|
| 119 | |
---|
| 120 | if (vol > 0.0 && norm > 0.0) { |
---|
| 121 | //normalize by avg volume |
---|
| 122 | sum = sum * (vol/volnorm); |
---|
| 123 | return sum/norm + background(); |
---|
| 124 | } else { |
---|
| 125 | return 0.0; |
---|
| 126 | } |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /** |
---|
| 130 | * Function to evaluate 2D scattering function |
---|
| 131 | * @param q_x: value of Q along x |
---|
| 132 | * @param q_y: value of Q along y |
---|
| 133 | * @return: function value |
---|
| 134 | */ |
---|
| 135 | double PringlesModel::operator()(double qx, double qy) { |
---|
| 136 | double q = sqrt(qx * qx + qy * qy); |
---|
| 137 | return (*this).operator()(q); |
---|
| 138 | } |
---|
| 139 | /** |
---|
| 140 | * Function to evaluate 2D scattering function |
---|
| 141 | * @param pars: parameters of the model |
---|
| 142 | * @param q: q-value |
---|
| 143 | * @param phi: angle phi |
---|
| 144 | * @return: function value |
---|
| 145 | */ |
---|
| 146 | double PringlesModel::evaluate_rphi(double q, double phi) { |
---|
| 147 | return (*this).operator()(q); |
---|
| 148 | } |
---|
| 149 | |
---|
| 150 | /** |
---|
| 151 | * Function to calculate effective radius |
---|
| 152 | * @return: effective radius value |
---|
| 153 | */ |
---|
| 154 | double PringlesModel::calculate_ER() { |
---|
| 155 | PringleParameters dp; |
---|
| 156 | |
---|
| 157 | dp.radius = radius(); |
---|
| 158 | dp.thickness = thickness(); |
---|
| 159 | double rad_out = 0.0; |
---|
| 160 | |
---|
| 161 | // Perform the computation, with all weight points |
---|
| 162 | double sum = 0.0; |
---|
| 163 | double norm = 0.0; |
---|
| 164 | |
---|
| 165 | // Get the dispersion points for the major shell |
---|
| 166 | vector<WeightPoint> weights_thick; |
---|
| 167 | thickness.get_weights(weights_thick); |
---|
| 168 | |
---|
| 169 | // Get the dispersion points for the minor shell |
---|
| 170 | vector<WeightPoint> weights_radius ; |
---|
| 171 | radius.get_weights(weights_radius); |
---|
| 172 | |
---|
| 173 | // Loop over major shell weight points |
---|
| 174 | for(int i=0; i< (int)weights_thick.size(); i++) { |
---|
| 175 | dp.thickness = weights_thick[i].value; |
---|
| 176 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 177 | dp.radius = weights_radius[k].value; |
---|
| 178 | //Note: output of "DiamCyl(dp.thick,dp.radius)" is DIAMETER. |
---|
| 179 | sum +=weights_thick[i].weight |
---|
| 180 | * weights_radius[k].weight*DiamCyl(dp.thickness,dp.radius)/2.0; |
---|
| 181 | norm += weights_thick[i].weight* weights_radius[k].weight; |
---|
| 182 | } |
---|
| 183 | } |
---|
| 184 | if (norm != 0){ |
---|
| 185 | //return the averaged value |
---|
| 186 | rad_out = sum/norm;} |
---|
| 187 | else{ |
---|
| 188 | //return normal value |
---|
| 189 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 190 | rad_out = DiamCyl(dp.thickness,dp.radius)/2.0;} |
---|
| 191 | |
---|
| 192 | return rad_out; |
---|
| 193 | } |
---|
| 194 | /** |
---|
| 195 | * Function to calculate particle volume/total volume for shape models: |
---|
| 196 | * Most case returns 1 but for example for the vesicle model it is |
---|
| 197 | * (total volume - core volume)/total volume |
---|
| 198 | * (< 1 depending on the thickness). |
---|
| 199 | * @return: effective radius value |
---|
| 200 | */ |
---|
| 201 | double PringlesModel::calculate_VR() { |
---|
| 202 | return 1.0; |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | /* |
---|
| 206 | * Useful work functions start here! |
---|
| 207 | * |
---|
| 208 | */ |
---|
| 209 | |
---|
| 210 | static double pringle_form(double dp[], double q) { |
---|
| 211 | |
---|
| 212 | double Pi; |
---|
| 213 | int nord = 76, i=0; //order of integration |
---|
| 214 | double uplim, lolim; //upper and lower integration limits |
---|
| 215 | double summ, phi, yyy, answer, vcyl; //running tally of integration |
---|
| 216 | double delrho; |
---|
| 217 | |
---|
| 218 | Pi = 4.0 * atan(1.0); |
---|
| 219 | lolim = 0.0; |
---|
| 220 | uplim = Pi / 2.0; |
---|
| 221 | |
---|
| 222 | summ = 0.0; //initialize integral |
---|
| 223 | |
---|
| 224 | delrho = dp[5] - dp[6] ; //make contrast term |
---|
| 225 | |
---|
| 226 | for (i = 0; i < nord; i++) { |
---|
| 227 | phi = (Gauss76Z[i] * (uplim - lolim) + uplim + lolim) / 2.0; |
---|
| 228 | yyy = Gauss76Wt[i] * pringle_kernel(dp, q, phi); |
---|
| 229 | summ += yyy; |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | answer = (uplim - lolim) / 2.0 * summ; |
---|
| 233 | |
---|
| 234 | answer *= delrho*delrho; |
---|
| 235 | |
---|
| 236 | //normalize by cylinder volume |
---|
| 237 | //vcyl=Pi*dp[1]*dp[1]*dp[2]; |
---|
| 238 | //answer *= vcyl; |
---|
| 239 | |
---|
| 240 | //convert to [cm-1] |
---|
| 241 | answer *= 1.0e8; |
---|
| 242 | |
---|
| 243 | //Scale by volume fraction |
---|
| 244 | answer *= dp[0]; |
---|
| 245 | |
---|
| 246 | return answer; |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | static double pringle_kernel(double dp[], double q, double phi) { |
---|
| 250 | |
---|
| 251 | double sumterm, sincarg, sincterm, nn, retval; |
---|
| 252 | |
---|
| 253 | sincarg = q * dp[2] * cos(phi) / 2.0; //dp[2] = thickness |
---|
| 254 | sincterm = pow(sin(sincarg) / sincarg, 2.0); |
---|
| 255 | |
---|
| 256 | //calculate sum term from n = -3 to 3 |
---|
| 257 | sumterm = 0; |
---|
| 258 | for (nn = -3; nn <= 3; nn = nn + 1) { |
---|
| 259 | sumterm = sumterm |
---|
| 260 | + (pow(pringleC(dp, q, phi, nn), 2.0) |
---|
| 261 | + pow(pringleS(dp, q, phi, nn), 2.0)); |
---|
| 262 | } |
---|
| 263 | |
---|
| 264 | retval = 4.0 * sin(phi) * sumterm * sincterm; |
---|
| 265 | |
---|
| 266 | return retval; |
---|
| 267 | |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | static double pringleC(double dp[], double q, double phi, double n) { |
---|
| 271 | |
---|
| 272 | double nord, va, vb, summ; |
---|
| 273 | double bessargs, cosarg, bessargcb; |
---|
| 274 | double r, retval, yyy; |
---|
| 275 | int ii; |
---|
| 276 | // set up the integration |
---|
| 277 | // end points and weights |
---|
| 278 | nord = 76; |
---|
| 279 | va = 0; |
---|
| 280 | vb = dp[1]; //radius |
---|
| 281 | |
---|
| 282 | // evaluate at Gauss points |
---|
| 283 | // remember to index from 0,size-1 |
---|
| 284 | |
---|
| 285 | summ = 0.0; // initialize integral |
---|
| 286 | ii = 0; |
---|
| 287 | do { |
---|
| 288 | // Using 76 Gauss points |
---|
| 289 | r = (Gauss76Z[ii] * (vb - va) + vb + va) / 2.0; |
---|
| 290 | |
---|
| 291 | bessargs = q * r * sin(phi); |
---|
| 292 | cosarg = q * r * r * dp[3] * cos(phi); |
---|
| 293 | bessargcb = q * r * r * dp[4] * cos(phi); |
---|
| 294 | |
---|
| 295 | yyy = Gauss76Wt[ii] * r * cos(cosarg) * jn(n, bessargcb) |
---|
| 296 | * jn(2 * n, bessargs); |
---|
| 297 | summ += yyy; |
---|
| 298 | |
---|
| 299 | ii += 1; |
---|
| 300 | } while (ii < nord); // end of loop over quadrature points |
---|
| 301 | // |
---|
| 302 | // calculate value of integral to return |
---|
| 303 | |
---|
| 304 | retval = (vb - va) / 2.0 * summ; |
---|
| 305 | |
---|
| 306 | retval = retval / pow(r, 2.0); |
---|
| 307 | |
---|
| 308 | return retval; |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | static double pringleS(double dp[], double q, double phi, double n) { |
---|
| 312 | |
---|
| 313 | double nord, va, vb, summ; |
---|
| 314 | double bessargs, sinarg, bessargcb; |
---|
| 315 | double r, retval, yyy; |
---|
| 316 | int ii; |
---|
| 317 | // set up the integration |
---|
| 318 | // end points and weights |
---|
| 319 | nord = 76; |
---|
| 320 | va = 0; |
---|
| 321 | vb = dp[1]; //radius |
---|
| 322 | |
---|
| 323 | // evaluate at Gauss points |
---|
| 324 | // remember to index from 0,size-1 |
---|
| 325 | |
---|
| 326 | summ = 0.0; // initialize integral |
---|
| 327 | ii = 0; |
---|
| 328 | do { |
---|
| 329 | // Using 76 Gauss points |
---|
| 330 | r = (Gauss76Z[ii] * (vb - va) + vb + va) / 2.0; |
---|
| 331 | |
---|
| 332 | bessargs = q * r * sin(phi); |
---|
| 333 | sinarg = q * r * r * dp[3] * cos(phi); |
---|
| 334 | bessargcb = q * r * r * dp[4] * cos(phi); |
---|
| 335 | |
---|
| 336 | yyy = Gauss76Wt[ii] * r * sin(sinarg) * jn(n, bessargcb) |
---|
| 337 | * jn(2 * n, bessargs); |
---|
| 338 | |
---|
| 339 | summ += yyy; |
---|
| 340 | |
---|
| 341 | ii += 1; |
---|
| 342 | } while (ii < nord); // end of loop over quadrature points |
---|
| 343 | // |
---|
| 344 | // calculate value of integral to return |
---|
| 345 | |
---|
| 346 | retval = (vb - va) / 2.0 * summ; |
---|
| 347 | |
---|
| 348 | retval = retval / pow(r, 2.0); |
---|
| 349 | |
---|
| 350 | return retval; |
---|
| 351 | } |
---|