source: sasview/src/sas/models/c_extension/c_models/polygausscoil.cpp @ 6f17afa

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 6f17afa was 79492222, checked in by krzywon, 10 years ago

Changed the file and folder names to remove all SANS references.

  • Property mode set to 100644
File size: 3.5 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 */
21
22#include <math.h>
23#include "parameters.hh"
24#include <stdio.h>
25using namespace std;
26#include "polygausscoil.h"
27
28extern "C" {
29        #include "libTwoPhase.h"
30}
31
32Poly_GaussCoil :: Poly_GaussCoil() {
33        scale      = Parameter(1.0);
34        rg     = Parameter(60.0, true);
35        rg.set_min(0.0);
36        poly_m   = Parameter(2.0);
37        background = Parameter(0.001);
38}
39
40/**
41 * Function to evaluate 1D scattering function
42 * The NIST IGOR library is used for the actual calculation.
43 * @param q: q-value
44 * @return: function value
45 */
46double Poly_GaussCoil :: operator()(double q) {
47        double dp[4];
48
49        // Fill parameter array for IGOR library
50        // Add the background after averaging
51        dp[0] = scale();
52        dp[1] = rg();
53        dp[2] = poly_m();
54        dp[3] = 0.0;
55
56        // Get the dispersion points for the radius
57        vector<WeightPoint> weights_rad;
58        rg.get_weights(weights_rad);
59
60        // Perform the computation, with all weight points
61        double sum = 0.0;
62
63
64        double norm = 0.0;
65        double vol = 0.0;
66
67        // Loop over radius weight points
68        for(size_t i=0; i<weights_rad.size(); i++) {
69                dp[1] = weights_rad[i].value;
70
71                //Un-normalize SphereForm by volume
72                sum += weights_rad[i].weight
73                        * PolyGaussCoil(dp, q) * pow(weights_rad[i].value,3);
74                //Find average volume
75                vol += weights_rad[i].weight
76                        * pow(weights_rad[i].value,3);
77
78                norm += weights_rad[i].weight;
79        }
80
81        if (vol != 0.0 && norm != 0.0) {
82                //Re-normalize by avg volume
83                sum = sum/(vol/norm);}
84        return sum/norm + background();
85
86
87        sum = PolyGaussCoil(dp, q);
88        return sum + background();
89}
90
91/**
92 * Function to evaluate 2D scattering function
93 * @param q_x: value of Q along x
94 * @param q_y: value of Q along y
95 * @return: function value
96 */
97double Poly_GaussCoil :: operator()(double qx, double qy) {
98        double q = sqrt(qx*qx + qy*qy);
99        return (*this).operator()(q);
100}
101
102/**
103 * Function to evaluate 2D scattering function
104 * @param pars: parameters of the sphere
105 * @param q: q-value
106 * @param phi: angle phi
107 * @return: function value
108 */
109double Poly_GaussCoil :: evaluate_rphi(double q, double phi) {
110        return (*this).operator()(q);
111}
112
113/**
114 * Function to calculate effective radius
115 * @return: effective radius value
116 */
117double Poly_GaussCoil :: calculate_ER() {
118        double rad_out = 0.0;
119
120        // Perform the computation, with all weight points
121        double sum = 0.0;
122        double norm = 0.0;
123
124        // Get the dispersion points for the radius
125        vector<WeightPoint> weights_rad;
126        rg.get_weights(weights_rad);
127        // Loop over radius weight points to average the radius value
128        for(size_t i=0; i<weights_rad.size(); i++) {
129                sum += weights_rad[i].weight
130                        * weights_rad[i].value;
131                norm += weights_rad[i].weight;
132        }
133        if (norm != 0){
134                //return the averaged value
135                rad_out =  sum/norm;}
136        else{
137                //return normal value
138                rad_out = rg();}
139
140        return rad_out;
141}
142double Poly_GaussCoil :: calculate_VR() {
143  return 1.0;
144}
Note: See TracBrowser for help on using the repository browser.