[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | #include "parameters.hh" |
---|
| 15 | #include <stdio.h> |
---|
| 16 | #include <math.h> |
---|
| 17 | using namespace std; |
---|
| 18 | |
---|
| 19 | #if defined(_MSC_VER) |
---|
| 20 | #include "gamma_win.h" |
---|
| 21 | #endif |
---|
| 22 | |
---|
| 23 | /** |
---|
| 24 | * TODO: normalize all dispersion weight lists |
---|
| 25 | */ |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | /** |
---|
| 29 | * Weight points |
---|
| 30 | */ |
---|
| 31 | WeightPoint :: WeightPoint() { |
---|
| 32 | value = 0.0; |
---|
| 33 | weight = 0.0; |
---|
| 34 | } |
---|
| 35 | |
---|
| 36 | WeightPoint :: WeightPoint(double v, double w) { |
---|
| 37 | value = v; |
---|
| 38 | weight = w; |
---|
| 39 | } |
---|
| 40 | |
---|
| 41 | /** |
---|
| 42 | * Dispersion models |
---|
| 43 | */ |
---|
| 44 | DispersionModel :: DispersionModel() { |
---|
| 45 | npts = 1; |
---|
| 46 | width = 0.0; |
---|
| 47 | }; |
---|
| 48 | |
---|
| 49 | void DispersionModel :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 50 | visitor->dispersion_to_dict(from, to); |
---|
| 51 | } |
---|
| 52 | void DispersionModel :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 53 | visitor->dispersion_from_dict(from, to); |
---|
| 54 | } |
---|
| 55 | void DispersionModel :: operator() (void *param, vector<WeightPoint> &weights){ |
---|
| 56 | // Check against zero width |
---|
| 57 | if (width<=0) { |
---|
| 58 | width = 0.0; |
---|
| 59 | npts = 1; |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | Parameter* par = (Parameter*)param; |
---|
| 63 | double value = (*par)(); |
---|
| 64 | double sig; |
---|
| 65 | if (npts<2) { |
---|
| 66 | weights.insert(weights.end(), WeightPoint(value, 1.0)); |
---|
| 67 | } else { |
---|
| 68 | for(int i=0; i<npts; i++) { |
---|
| 69 | |
---|
| 70 | if ((*par).has_min==false){ |
---|
| 71 | // width = sigma for angles |
---|
| 72 | sig = width; |
---|
| 73 | } |
---|
| 74 | else{ |
---|
| 75 | //width = polydispersity (=sigma/value) for length |
---|
| 76 | sig = width * value; |
---|
| 77 | } |
---|
| 78 | double val = value + sig * (1.0*double(i)/double(npts-1) - 0.5); |
---|
| 79 | if ( ((*par).has_min==false || val>(*par).min) |
---|
| 80 | && ((*par).has_max==false || val<(*par).max) ) |
---|
| 81 | weights.insert(weights.end(), WeightPoint(val, 1.0)); |
---|
| 82 | } |
---|
| 83 | } |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | /** |
---|
| 87 | * Method to set the weights |
---|
| 88 | * Not implemented for this class |
---|
| 89 | */ |
---|
| 90 | void DispersionModel :: set_weights(int npoints, double* values, double* weights){} |
---|
| 91 | |
---|
| 92 | /** |
---|
| 93 | * Gaussian dispersion |
---|
| 94 | */ |
---|
| 95 | |
---|
| 96 | GaussianDispersion :: GaussianDispersion() { |
---|
| 97 | npts = 35; |
---|
| 98 | width = 0.0; |
---|
| 99 | nsigmas = 3; |
---|
| 100 | }; |
---|
| 101 | |
---|
| 102 | void GaussianDispersion :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 103 | visitor->gaussian_to_dict(from, to); |
---|
| 104 | } |
---|
| 105 | void GaussianDispersion :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 106 | visitor->gaussian_from_dict(from, to); |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | double gaussian_weight(double mean, double sigma, double x) { |
---|
| 110 | double vary, expo_value; |
---|
| 111 | vary = x-mean; |
---|
| 112 | expo_value = -vary*vary/(2.0*sigma*sigma); |
---|
| 113 | //return 1.0; |
---|
| 114 | return exp(expo_value); |
---|
| 115 | } |
---|
| 116 | |
---|
| 117 | /** |
---|
| 118 | * Gaussian dispersion |
---|
| 119 | * @param mean: mean value of the Gaussian |
---|
| 120 | * @param sigma: standard deviation of the Gaussian |
---|
| 121 | * @param x: value at which the Gaussian is evaluated |
---|
| 122 | * @return: value of the Gaussian |
---|
| 123 | */ |
---|
| 124 | void GaussianDispersion :: operator() (void *param, vector<WeightPoint> &weights){ |
---|
| 125 | // Check against zero width |
---|
| 126 | if (width<=0) { |
---|
| 127 | width = 0.0; |
---|
| 128 | npts = 1; |
---|
| 129 | nsigmas = 3; |
---|
| 130 | } |
---|
| 131 | |
---|
| 132 | Parameter* par = (Parameter*)param; |
---|
| 133 | double value = (*par)(); |
---|
| 134 | double sig; |
---|
| 135 | if (npts<2) { |
---|
| 136 | weights.insert(weights.end(), WeightPoint(value, 1.0)); |
---|
| 137 | } else { |
---|
| 138 | for(int i=0; i<npts; i++) { |
---|
| 139 | if ((*par).has_min==false){ |
---|
| 140 | // width = sigma for angles |
---|
| 141 | sig = width; |
---|
| 142 | } |
---|
| 143 | else{ |
---|
| 144 | //width = polydispersity (=sigma/value) for length |
---|
| 145 | sig = width * value; |
---|
| 146 | } |
---|
| 147 | // We cover n(nsigmas) times sigmas on each side of the mean |
---|
| 148 | double val = value + sig * (2.0*nsigmas*double(i)/double(npts-1) - nsigmas); |
---|
| 149 | if ( ((*par).has_min==false || val>(*par).min) |
---|
| 150 | && ((*par).has_max==false || val<(*par).max) ) { |
---|
| 151 | double _w = gaussian_weight(value, sig, val); |
---|
| 152 | weights.insert(weights.end(), WeightPoint(val, _w)); |
---|
| 153 | } |
---|
| 154 | } |
---|
| 155 | } |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | /** |
---|
| 160 | * Flat dispersion |
---|
| 161 | */ |
---|
| 162 | |
---|
| 163 | RectangleDispersion :: RectangleDispersion() { |
---|
| 164 | npts = 35; |
---|
| 165 | width = 0.0; |
---|
| 166 | nsigmas = 1.73205; |
---|
| 167 | }; |
---|
| 168 | |
---|
| 169 | void RectangleDispersion :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 170 | visitor->rectangle_to_dict(from, to); |
---|
| 171 | } |
---|
| 172 | void RectangleDispersion :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 173 | visitor->rectangle_from_dict(from, to); |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | double rectangle_weight(double mean, double sigma, double x) { |
---|
| 177 | double wid = fabs(sigma) * sqrt(3.0); |
---|
| 178 | if (x>= (mean-wid) && x<=(mean+wid)){ |
---|
| 179 | return 1.0; |
---|
| 180 | } |
---|
| 181 | else{ |
---|
| 182 | return 0.0; |
---|
| 183 | } |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | /** |
---|
| 187 | * Flat dispersion |
---|
| 188 | * @param mean: mean value |
---|
| 189 | * @param sigma: half width of top hat function |
---|
| 190 | * @param x: value at which the Flat is evaluated |
---|
| 191 | * @return: value of the Flat |
---|
| 192 | */ |
---|
| 193 | void RectangleDispersion :: operator() (void *param, vector<WeightPoint> &weights){ |
---|
| 194 | // Check against zero width |
---|
| 195 | if (width<=0) { |
---|
| 196 | width = 0.0; |
---|
| 197 | npts = 1; |
---|
| 198 | nsigmas = 1.73205; |
---|
| 199 | } |
---|
| 200 | |
---|
| 201 | Parameter* par = (Parameter*)param; |
---|
| 202 | double value = (*par)(); |
---|
| 203 | double sig; |
---|
| 204 | if (npts<2) { |
---|
| 205 | weights.insert(weights.end(), WeightPoint(value, 1.0)); |
---|
| 206 | } else { |
---|
| 207 | for(int i=0; i<npts; i++) { |
---|
| 208 | if ((*par).has_min==false){ |
---|
| 209 | // width = sigma for angles |
---|
| 210 | sig = width; |
---|
| 211 | } |
---|
| 212 | else{ |
---|
| 213 | //width = polydispersity (=sigma/value) for length |
---|
| 214 | sig = width * value; |
---|
| 215 | } |
---|
| 216 | // We cover n(nsigmas) times sigmas on each side of the mean |
---|
| 217 | double val = value + sig * (2.0*nsigmas*double(i)/double(npts-1) - nsigmas); |
---|
| 218 | if ( ((*par).has_min==false || val>(*par).min) |
---|
| 219 | && ((*par).has_max==false || val<(*par).max) ) { |
---|
| 220 | double _w = rectangle_weight(value, sig, val); |
---|
| 221 | weights.insert(weights.end(), WeightPoint(val, _w)); |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | } |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | |
---|
| 228 | /** |
---|
| 229 | * LogNormal dispersion |
---|
| 230 | */ |
---|
| 231 | |
---|
| 232 | LogNormalDispersion :: LogNormalDispersion() { |
---|
| 233 | npts = 80; |
---|
| 234 | width = 0.0; |
---|
| 235 | nsigmas = 8.0; |
---|
| 236 | }; |
---|
| 237 | |
---|
| 238 | void LogNormalDispersion :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 239 | visitor->lognormal_to_dict(from, to); |
---|
| 240 | } |
---|
| 241 | void LogNormalDispersion :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 242 | visitor->lognormal_from_dict(from, to); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | double lognormal_weight(double mean, double sigma, double x) { |
---|
| 246 | |
---|
| 247 | double sigma2 = pow(sigma, 2.0); |
---|
| 248 | return 1.0/(x*sigma) * exp( -pow((log(x) - mean), 2.0) / (2.0*sigma2)); |
---|
| 249 | |
---|
| 250 | } |
---|
| 251 | |
---|
| 252 | /** |
---|
| 253 | * Lognormal dispersion |
---|
| 254 | * @param mean: mean value of the LogNormal |
---|
| 255 | * @param sigma: standard deviation of the LogNormal |
---|
| 256 | * @param x: value at which the LogNormal is evaluated |
---|
| 257 | * @return: value of the LogNormal |
---|
| 258 | */ |
---|
| 259 | void LogNormalDispersion :: operator() (void *param, vector<WeightPoint> &weights){ |
---|
| 260 | // Check against zero width |
---|
| 261 | if (width<=0) { |
---|
| 262 | width = 0.0; |
---|
| 263 | npts = 1; |
---|
| 264 | nsigmas = 8.0; |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | Parameter* par = (Parameter*)param; |
---|
| 268 | double value = (*par)(); |
---|
| 269 | double sig; |
---|
| 270 | if (npts<2) { |
---|
| 271 | weights.insert(weights.end(), WeightPoint(value, 1.0)); |
---|
| 272 | } else { |
---|
| 273 | for(int i=0; i<npts; i++) { |
---|
| 274 | // Note that the definition of sigma is different from Gaussian |
---|
| 275 | if ((*par).has_min==false){ |
---|
| 276 | // sig for angles |
---|
| 277 | sig = width; |
---|
| 278 | } |
---|
| 279 | else{ |
---|
| 280 | // by lognormal definition, PD is same as sigma |
---|
| 281 | sig = width * value; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | // We cover n(nsigmas) times sigmas on each side of the mean |
---|
| 285 | //constant bin in real space |
---|
| 286 | double val = value + sig * (2.0*nsigmas*double(i)/double(npts-1) - nsigmas); |
---|
| 287 | // sigma in the lognormal function is in ln(R) space, thus needs converting |
---|
| 288 | sig = fabs(sig/value); |
---|
| 289 | if ( ((*par).has_min==false || val>(*par).min) |
---|
| 290 | && ((*par).has_max==false || val<(*par).max) ) { |
---|
| 291 | double _w = lognormal_weight(log(value), sig, val); |
---|
| 292 | weights.insert(weights.end(), WeightPoint(val, _w)); |
---|
| 293 | //printf("%g \t %g\n",val,_w); |
---|
| 294 | |
---|
| 295 | } |
---|
| 296 | } |
---|
| 297 | } |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | |
---|
| 302 | /** |
---|
| 303 | * Schulz dispersion |
---|
| 304 | */ |
---|
| 305 | |
---|
| 306 | SchulzDispersion :: SchulzDispersion() { |
---|
| 307 | npts = 80; |
---|
| 308 | width = 0.0; |
---|
| 309 | nsigmas = 8.0; |
---|
| 310 | }; |
---|
| 311 | |
---|
| 312 | void SchulzDispersion :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 313 | visitor->schulz_to_dict(from, to); |
---|
| 314 | } |
---|
| 315 | void SchulzDispersion :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 316 | visitor->schulz_from_dict(from, to); |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | double schulz_weight(double mean, double sigma, double x) { |
---|
| 320 | double z = pow(mean/ sigma, 2.0)-1.0; |
---|
| 321 | double R= x/mean; |
---|
| 322 | double zz= z+1.0; |
---|
| 323 | double expo; |
---|
| 324 | expo = zz*log(zz)+z*log(R)-R*zz-log(mean)-lgamma(zz); |
---|
| 325 | return exp(expo); |
---|
| 326 | } |
---|
| 327 | |
---|
| 328 | /** |
---|
| 329 | * Schulz dispersion |
---|
| 330 | * @param mean: mean value of the Schulz |
---|
| 331 | * @param sigma: standard deviation of the Schulz |
---|
| 332 | * @param x: value at which the Schulz is evaluated |
---|
| 333 | * @return: value of the Schulz |
---|
| 334 | */ |
---|
| 335 | void SchulzDispersion :: operator() (void *param, vector<WeightPoint> &weights){ |
---|
| 336 | // Check against zero width |
---|
| 337 | if (width<=0) { |
---|
| 338 | width = 0.0; |
---|
| 339 | npts = 1; |
---|
| 340 | nsigmas = 8.0; |
---|
| 341 | } |
---|
| 342 | |
---|
| 343 | Parameter* par = (Parameter*)param; |
---|
| 344 | double value = (*par)(); |
---|
| 345 | double sig; |
---|
| 346 | if (npts<2) { |
---|
| 347 | weights.insert(weights.end(), WeightPoint(value, 1.0)); |
---|
| 348 | } else { |
---|
| 349 | for(int i=0; i<npts; i++) { |
---|
| 350 | if ((*par).has_min==false){ |
---|
| 351 | // width = sigma for angles |
---|
| 352 | sig = width; |
---|
| 353 | } |
---|
| 354 | else{ |
---|
| 355 | //width = polydispersity (=sigma/value) for length |
---|
| 356 | sig = width * value; |
---|
| 357 | } |
---|
| 358 | // We cover n(nsigmas) times sigmas on each side of the mean |
---|
| 359 | double val = value + sig * (2.0*nsigmas*double(i)/double(npts-1) - nsigmas); |
---|
| 360 | |
---|
| 361 | if ( ((*par).has_min==false || val>(*par).min) |
---|
| 362 | && ((*par).has_max==false || val<(*par).max) ) { |
---|
| 363 | double _w = schulz_weight(value, sig, val); |
---|
| 364 | weights.insert(weights.end(), WeightPoint(val, _w)); |
---|
| 365 | } |
---|
| 366 | } |
---|
| 367 | } |
---|
| 368 | } |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | |
---|
| 373 | /** |
---|
| 374 | * Array dispersion based on input arrays |
---|
| 375 | */ |
---|
| 376 | |
---|
| 377 | void ArrayDispersion :: accept_as_source(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 378 | visitor->array_to_dict(from, to); |
---|
| 379 | } |
---|
| 380 | void ArrayDispersion :: accept_as_destination(DispersionVisitor* visitor, void* from, void* to) { |
---|
| 381 | visitor->array_from_dict(from, to); |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | /** |
---|
| 385 | * Method to get the weights |
---|
| 386 | */ |
---|
| 387 | void ArrayDispersion :: operator() (void *param, vector<WeightPoint> &weights) { |
---|
| 388 | Parameter* par = (Parameter*)param; |
---|
| 389 | double value = (*par)(); |
---|
| 390 | |
---|
| 391 | if (npts<2) { |
---|
| 392 | weights.insert(weights.end(), WeightPoint(value, 1.0)); |
---|
| 393 | } else { |
---|
| 394 | for(int i=0; i<npts; i++) { |
---|
| 395 | double val = _values[i]; //+ value; //ToDo: Talk to Paul and put back the 'value'. |
---|
| 396 | |
---|
| 397 | if ( ((*par).has_min==false || val>(*par).min) |
---|
| 398 | && ((*par).has_max==false || val<(*par).max) ) |
---|
| 399 | weights.insert(weights.end(), WeightPoint(val, _weights[i])); |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | /** |
---|
| 404 | * Method to set the weights |
---|
| 405 | */ |
---|
| 406 | void ArrayDispersion :: set_weights(int npoints, double* values, double* weights){ |
---|
| 407 | npts = npoints; |
---|
| 408 | _values = values; |
---|
| 409 | _weights = weights; |
---|
| 410 | } |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | /** |
---|
| 414 | * Parameters |
---|
| 415 | */ |
---|
| 416 | Parameter :: Parameter() { |
---|
| 417 | value = 0; |
---|
| 418 | min = 0.0; |
---|
| 419 | max = 0.0; |
---|
| 420 | has_min = false; |
---|
| 421 | has_max = false; |
---|
| 422 | has_dispersion = false; |
---|
| 423 | dispersion = new GaussianDispersion(); |
---|
| 424 | } |
---|
| 425 | |
---|
| 426 | Parameter :: Parameter(double _value) { |
---|
| 427 | value = _value; |
---|
| 428 | min = 0.0; |
---|
| 429 | max = 0.0; |
---|
| 430 | has_min = false; |
---|
| 431 | has_max = false; |
---|
| 432 | has_dispersion = false; |
---|
| 433 | dispersion = new GaussianDispersion(); |
---|
| 434 | } |
---|
| 435 | |
---|
| 436 | Parameter :: Parameter(double _value, bool disp) { |
---|
| 437 | value = _value; |
---|
| 438 | min = 0.0; |
---|
| 439 | max = 0.0; |
---|
| 440 | has_min = false; |
---|
| 441 | has_max = false; |
---|
| 442 | has_dispersion = disp; |
---|
| 443 | dispersion = new GaussianDispersion(); |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | void Parameter :: get_weights(vector<WeightPoint> &weights) { |
---|
| 447 | (*dispersion)((void*)this, weights); |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | void Parameter :: set_min(double value) { |
---|
| 451 | has_min = true; |
---|
| 452 | min = value; |
---|
| 453 | } |
---|
| 454 | |
---|
| 455 | void Parameter :: set_max(double value) { |
---|
| 456 | has_max = true; |
---|
| 457 | max = value; |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | double Parameter :: operator()() { |
---|
| 461 | return value; |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | double Parameter :: operator=(double _value){ |
---|
| 465 | value = _value; |
---|
| 466 | return value; |
---|
| 467 | } |
---|