1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | * TODO: add 2D function |
---|
21 | */ |
---|
22 | |
---|
23 | #include <math.h> |
---|
24 | #include "parameters.hh" |
---|
25 | #include <stdio.h> |
---|
26 | using namespace std; |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libCylinder.h" |
---|
30 | #include "libStructureFactor.h" |
---|
31 | #include "libmultifunc/libfunc.h" |
---|
32 | } |
---|
33 | #include "parallelepiped.h" |
---|
34 | |
---|
35 | // Convenience parameter structure |
---|
36 | typedef struct { |
---|
37 | double scale; |
---|
38 | double short_a; |
---|
39 | double short_b; |
---|
40 | double long_c; |
---|
41 | double sldPipe; |
---|
42 | double sldSolv; |
---|
43 | double background; |
---|
44 | double parallel_theta; |
---|
45 | double parallel_phi; |
---|
46 | double parallel_psi; |
---|
47 | double M0_sld_pipe; |
---|
48 | double M_theta_pipe; |
---|
49 | double M_phi_pipe; |
---|
50 | double M0_sld_solv; |
---|
51 | double M_theta_solv; |
---|
52 | double M_phi_solv; |
---|
53 | double Up_frac_i; |
---|
54 | double Up_frac_f; |
---|
55 | double Up_theta; |
---|
56 | } ParallelepipedParameters; |
---|
57 | |
---|
58 | |
---|
59 | static double pkernel(double a, double b,double c, double ala, double alb, double alc){ |
---|
60 | // mu passed in is really mu*sqrt(1-sig^2) |
---|
61 | double argA,argB,argC,tmp1,tmp2,tmp3; //local variables |
---|
62 | |
---|
63 | //handle arg=0 separately, as sin(t)/t -> 1 as t->0 |
---|
64 | argA = a*ala/2.0; |
---|
65 | argB = b*alb/2.0; |
---|
66 | argC = c*alc/2.0; |
---|
67 | if(argA==0.0) { |
---|
68 | tmp1 = 1.0; |
---|
69 | } else { |
---|
70 | tmp1 = sin(argA)*sin(argA)/argA/argA; |
---|
71 | } |
---|
72 | if (argB==0.0) { |
---|
73 | tmp2 = 1.0; |
---|
74 | } else { |
---|
75 | tmp2 = sin(argB)*sin(argB)/argB/argB; |
---|
76 | } |
---|
77 | |
---|
78 | if (argC==0.0) { |
---|
79 | tmp3 = 1.0; |
---|
80 | } else { |
---|
81 | tmp3 = sin(argC)*sin(argC)/argC/argC; |
---|
82 | } |
---|
83 | |
---|
84 | return (tmp1*tmp2*tmp3); |
---|
85 | |
---|
86 | } |
---|
87 | |
---|
88 | /** |
---|
89 | * Function to evaluate 2D scattering function |
---|
90 | * @param pars: parameters of the parallelepiped |
---|
91 | * @param q: q-value |
---|
92 | * @param q_x: q_x / q |
---|
93 | * @param q_y: q_y / q |
---|
94 | * @return: function value |
---|
95 | */ |
---|
96 | static double parallelepiped_analytical_2D_scaled(ParallelepipedParameters *pars, double q, double q_x, double q_y) { |
---|
97 | double cparallel_x, cparallel_y, bparallel_x, bparallel_y, parallel_x, parallel_y; |
---|
98 | //double q_z; |
---|
99 | double vol, cos_val_c, cos_val_b, cos_val_a, edgeA, edgeB, edgeC; |
---|
100 | |
---|
101 | double answer = 0.0; |
---|
102 | double form = 0.0; |
---|
103 | double pi = 4.0*atan(1.0); |
---|
104 | |
---|
105 | //convert angle degree to radian |
---|
106 | double theta = pars->parallel_theta * pi/180.0; |
---|
107 | double phi = pars->parallel_phi * pi/180.0; |
---|
108 | double psi = pars->parallel_psi * pi/180.0; |
---|
109 | double sld_solv = pars->sldSolv; |
---|
110 | double sld_pipe = pars->sldPipe; |
---|
111 | double m_max = pars->M0_sld_pipe; |
---|
112 | double m_max_solv = pars->M0_sld_solv; |
---|
113 | double contrast = 0.0; |
---|
114 | |
---|
115 | edgeA = pars->short_a; |
---|
116 | edgeB = pars->short_b; |
---|
117 | edgeC = pars->long_c; |
---|
118 | |
---|
119 | |
---|
120 | // parallelepiped c axis orientation |
---|
121 | cparallel_x = cos(theta) * cos(phi); |
---|
122 | cparallel_y = sin(theta); |
---|
123 | //cparallel_z = -cos(theta) * sin(phi); |
---|
124 | |
---|
125 | // q vector |
---|
126 | //q_z = 0.0; |
---|
127 | |
---|
128 | // Compute the angle btw vector q and the |
---|
129 | // axis of the parallelepiped |
---|
130 | cos_val_c = cparallel_x*q_x + cparallel_y*q_y;// + cparallel_z*q_z; |
---|
131 | //alpha = acos(cos_val_c); |
---|
132 | |
---|
133 | // parallelepiped a axis orientation |
---|
134 | parallel_x = -cos(phi)*sin(psi) * sin(theta)+sin(phi)*cos(psi); |
---|
135 | parallel_y = sin(psi)*cos(theta); |
---|
136 | //parallel_z = sin(theta)*sin(phi)*sin(psi)+cos(phi)*cos(psi); |
---|
137 | |
---|
138 | cos_val_a = parallel_x*q_x + parallel_y*q_y; |
---|
139 | |
---|
140 | // parallelepiped b axis orientation |
---|
141 | bparallel_x = -sin(theta)*cos(psi)*cos(phi)-sin(psi)*sin(phi); |
---|
142 | bparallel_y = cos(theta)*cos(psi); |
---|
143 | //bparallel_z = sin(theta)*sin(phi)*cos(psi)-sin(psi)*cos(phi); |
---|
144 | |
---|
145 | // axis of the parallelepiped |
---|
146 | cos_val_b = bparallel_x*q_x + bparallel_y*q_y; |
---|
147 | |
---|
148 | // The following test should always pass |
---|
149 | if (fabs(cos_val_c)>1.0) { |
---|
150 | //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
151 | cos_val_c = 1.0; |
---|
152 | } |
---|
153 | if (fabs(cos_val_a)>1.0) { |
---|
154 | //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
155 | cos_val_a = 1.0; |
---|
156 | } |
---|
157 | if (fabs(cos_val_b)>1.0) { |
---|
158 | //printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
159 | cos_val_b = 1.0; |
---|
160 | } |
---|
161 | // Call the IGOR library function to get the kernel |
---|
162 | form = pkernel( q*edgeA, q*edgeB, q*edgeC, cos_val_a, cos_val_b, cos_val_c); |
---|
163 | |
---|
164 | if (m_max < 1.0e-32 && m_max_solv < 1.0e-32){ |
---|
165 | // Multiply by contrast^2 |
---|
166 | contrast = (pars->sldPipe - pars->sldSolv); |
---|
167 | answer = contrast * contrast * form; |
---|
168 | } |
---|
169 | else{ |
---|
170 | double qx = q_x; |
---|
171 | double qy = q_y; |
---|
172 | double s_theta = pars->Up_theta; |
---|
173 | double m_phi = pars->M_phi_pipe; |
---|
174 | double m_theta = pars->M_theta_pipe; |
---|
175 | double m_phi_solv = pars->M_phi_solv; |
---|
176 | double m_theta_solv = pars->M_theta_solv; |
---|
177 | double in_spin = pars->Up_frac_i; |
---|
178 | double out_spin = pars->Up_frac_f; |
---|
179 | polar_sld p_sld; |
---|
180 | polar_sld p_sld_solv; |
---|
181 | p_sld = cal_msld(1, qx, qy, sld_pipe, m_max, m_theta, m_phi, |
---|
182 | in_spin, out_spin, s_theta); |
---|
183 | p_sld_solv = cal_msld(1, qx, qy, sld_solv, m_max_solv, m_theta_solv, m_phi_solv, |
---|
184 | in_spin, out_spin, s_theta); |
---|
185 | //up_up |
---|
186 | if (in_spin > 0.0 && out_spin > 0.0){ |
---|
187 | answer += ((p_sld.uu- p_sld_solv.uu) * (p_sld.uu- p_sld_solv.uu) * form); |
---|
188 | } |
---|
189 | //down_down |
---|
190 | if (in_spin < 1.0 && out_spin < 1.0){ |
---|
191 | answer += ((p_sld.dd - p_sld_solv.dd) * (p_sld.dd - p_sld_solv.dd) * form); |
---|
192 | } |
---|
193 | //up_down |
---|
194 | if (in_spin > 0.0 && out_spin < 1.0){ |
---|
195 | answer += ((p_sld.re_ud - p_sld_solv.re_ud) * (p_sld.re_ud - p_sld_solv.re_ud) * form); |
---|
196 | answer += ((p_sld.im_ud - p_sld_solv.im_ud) * (p_sld.im_ud - p_sld_solv.im_ud) * form); |
---|
197 | } |
---|
198 | //down_up |
---|
199 | if (in_spin < 1.0 && out_spin > 0.0){ |
---|
200 | answer += ((p_sld.re_du - p_sld_solv.re_du) * (p_sld.re_du - p_sld_solv.re_du) * form); |
---|
201 | answer += ((p_sld.im_du - p_sld_solv.im_du) * (p_sld.im_du - p_sld_solv.im_du) * form); |
---|
202 | } |
---|
203 | } |
---|
204 | |
---|
205 | |
---|
206 | //normalize by cylinder volume |
---|
207 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vparallel |
---|
208 | vol = edgeA* edgeB * edgeC; |
---|
209 | answer *= vol; |
---|
210 | |
---|
211 | //convert to [cm-1] |
---|
212 | answer *= 1.0e8; |
---|
213 | |
---|
214 | //Scale |
---|
215 | answer *= pars->scale; |
---|
216 | |
---|
217 | // add in the background |
---|
218 | answer += pars->background; |
---|
219 | |
---|
220 | return answer; |
---|
221 | } |
---|
222 | |
---|
223 | /** |
---|
224 | * Function to evaluate 2D scattering function |
---|
225 | * @param pars: parameters of the parallelepiped |
---|
226 | * @param q: q-value |
---|
227 | * @return: function value |
---|
228 | */ |
---|
229 | static double parallelepiped_analytical_2DXY(ParallelepipedParameters *pars, double qx, double qy) { |
---|
230 | double q; |
---|
231 | q = sqrt(qx*qx+qy*qy); |
---|
232 | return parallelepiped_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
233 | } |
---|
234 | |
---|
235 | ParallelepipedModel :: ParallelepipedModel() { |
---|
236 | scale = Parameter(1.0); |
---|
237 | short_a = Parameter(35.0, true); |
---|
238 | short_a.set_min(1.0); |
---|
239 | short_b = Parameter(75.0, true); |
---|
240 | short_b.set_min(1.0); |
---|
241 | long_c = Parameter(400.0, true); |
---|
242 | long_c.set_min(1.0); |
---|
243 | sldPipe = Parameter(6.3e-6); |
---|
244 | sldSolv = Parameter(1.0e-6); |
---|
245 | background = Parameter(0.0); |
---|
246 | parallel_theta = Parameter(0.0, true); |
---|
247 | parallel_phi = Parameter(0.0, true); |
---|
248 | parallel_psi = Parameter(0.0, true); |
---|
249 | M0_sld_pipe = Parameter(0.0e-6); |
---|
250 | M_theta_pipe = Parameter(0.0); |
---|
251 | M_phi_pipe = Parameter(0.0); |
---|
252 | M0_sld_solv = Parameter(0.0e-6); |
---|
253 | M_theta_solv = Parameter(0.0); |
---|
254 | M_phi_solv = Parameter(0.0); |
---|
255 | Up_frac_i = Parameter(0.5); |
---|
256 | Up_frac_f = Parameter(0.5); |
---|
257 | Up_theta = Parameter(0.0); |
---|
258 | } |
---|
259 | |
---|
260 | /** |
---|
261 | * Function to evaluate 1D scattering function |
---|
262 | * The NIST IGOR library is used for the actual calculation. |
---|
263 | * @param q: q-value |
---|
264 | * @return: function value |
---|
265 | */ |
---|
266 | double ParallelepipedModel :: operator()(double q) { |
---|
267 | double dp[7]; |
---|
268 | |
---|
269 | // Fill parameter array for IGOR library |
---|
270 | // Add the background after averaging |
---|
271 | dp[0] = scale(); |
---|
272 | dp[1] = short_a(); |
---|
273 | dp[2] = short_b(); |
---|
274 | dp[3] = long_c(); |
---|
275 | dp[4] = sldPipe(); |
---|
276 | dp[5] = sldSolv(); |
---|
277 | dp[6] = 0.0; |
---|
278 | |
---|
279 | // Get the dispersion points for the short_edgeA |
---|
280 | vector<WeightPoint> weights_short_a; |
---|
281 | short_a.get_weights(weights_short_a); |
---|
282 | |
---|
283 | // Get the dispersion points for the longer_edgeB |
---|
284 | vector<WeightPoint> weights_short_b; |
---|
285 | short_b.get_weights(weights_short_b); |
---|
286 | |
---|
287 | // Get the dispersion points for the longuest_edgeC |
---|
288 | vector<WeightPoint> weights_long_c; |
---|
289 | long_c.get_weights(weights_long_c); |
---|
290 | |
---|
291 | |
---|
292 | |
---|
293 | // Perform the computation, with all weight points |
---|
294 | double sum = 0.0; |
---|
295 | double norm = 0.0; |
---|
296 | double vol = 0.0; |
---|
297 | |
---|
298 | // Loop over short_edgeA weight points |
---|
299 | for(int i=0; i< (int)weights_short_a.size(); i++) { |
---|
300 | dp[1] = weights_short_a[i].value; |
---|
301 | |
---|
302 | // Loop over longer_edgeB weight points |
---|
303 | for(int j=0; j< (int)weights_short_b.size(); j++) { |
---|
304 | dp[2] = weights_short_b[j].value; |
---|
305 | |
---|
306 | // Loop over longuest_edgeC weight points |
---|
307 | for(int k=0; k< (int)weights_long_c.size(); k++) { |
---|
308 | dp[3] = weights_long_c[k].value; |
---|
309 | //Un-normalize by volume |
---|
310 | sum += weights_short_a[i].weight * weights_short_b[j].weight |
---|
311 | * weights_long_c[k].weight * Parallelepiped(dp, q) |
---|
312 | * weights_short_a[i].value*weights_short_b[j].value |
---|
313 | * weights_long_c[k].value; |
---|
314 | //Find average volume |
---|
315 | vol += weights_short_a[i].weight * weights_short_b[j].weight |
---|
316 | * weights_long_c[k].weight |
---|
317 | * weights_short_a[i].value * weights_short_b[j].value |
---|
318 | * weights_long_c[k].value; |
---|
319 | |
---|
320 | norm += weights_short_a[i].weight |
---|
321 | * weights_short_b[j].weight * weights_long_c[k].weight; |
---|
322 | } |
---|
323 | } |
---|
324 | } |
---|
325 | if (vol != 0.0 && norm != 0.0) { |
---|
326 | //Re-normalize by avg volume |
---|
327 | sum = sum/(vol/norm);} |
---|
328 | |
---|
329 | return sum/norm + background(); |
---|
330 | } |
---|
331 | /** |
---|
332 | * Function to evaluate 2D scattering function |
---|
333 | * @param q_x: value of Q along x |
---|
334 | * @param q_y: value of Q along y |
---|
335 | * @return: function value |
---|
336 | */ |
---|
337 | double ParallelepipedModel :: operator()(double qx, double qy) { |
---|
338 | ParallelepipedParameters dp; |
---|
339 | // Fill parameter array |
---|
340 | dp.scale = scale(); |
---|
341 | dp.short_a = short_a(); |
---|
342 | dp.short_b = short_b(); |
---|
343 | dp.long_c = long_c(); |
---|
344 | dp.sldPipe = sldPipe(); |
---|
345 | dp.sldSolv = sldSolv(); |
---|
346 | dp.background = 0.0; |
---|
347 | //dp.background = background(); |
---|
348 | dp.parallel_theta = parallel_theta(); |
---|
349 | dp.parallel_phi = parallel_phi(); |
---|
350 | dp.parallel_psi = parallel_psi(); |
---|
351 | dp.Up_theta = Up_theta(); |
---|
352 | dp.M_phi_pipe = M_phi_pipe(); |
---|
353 | dp.M_theta_pipe = M_theta_pipe(); |
---|
354 | dp.M0_sld_pipe = M0_sld_pipe(); |
---|
355 | dp.M_phi_solv = M_phi_solv(); |
---|
356 | dp.M_theta_solv = M_theta_solv(); |
---|
357 | dp.M0_sld_solv = M0_sld_solv(); |
---|
358 | dp.Up_frac_i = Up_frac_i(); |
---|
359 | dp.Up_frac_f = Up_frac_f(); |
---|
360 | |
---|
361 | |
---|
362 | // Get the dispersion points for the short_edgeA |
---|
363 | vector<WeightPoint> weights_short_a; |
---|
364 | short_a.get_weights(weights_short_a); |
---|
365 | |
---|
366 | // Get the dispersion points for the longer_edgeB |
---|
367 | vector<WeightPoint> weights_short_b; |
---|
368 | short_b.get_weights(weights_short_b); |
---|
369 | |
---|
370 | // Get angular averaging for the longuest_edgeC |
---|
371 | vector<WeightPoint> weights_long_c; |
---|
372 | long_c.get_weights(weights_long_c); |
---|
373 | |
---|
374 | // Get angular averaging for theta |
---|
375 | vector<WeightPoint> weights_parallel_theta; |
---|
376 | parallel_theta.get_weights(weights_parallel_theta); |
---|
377 | |
---|
378 | // Get angular averaging for phi |
---|
379 | vector<WeightPoint> weights_parallel_phi; |
---|
380 | parallel_phi.get_weights(weights_parallel_phi); |
---|
381 | |
---|
382 | // Get angular averaging for psi |
---|
383 | vector<WeightPoint> weights_parallel_psi; |
---|
384 | parallel_psi.get_weights(weights_parallel_psi); |
---|
385 | |
---|
386 | // Perform the computation, with all weight points |
---|
387 | double sum = 0.0; |
---|
388 | double norm = 0.0; |
---|
389 | double norm_vol = 0.0; |
---|
390 | double vol = 0.0; |
---|
391 | double pi = 4.0*atan(1.0); |
---|
392 | // Loop over radius weight points |
---|
393 | for(int i=0; i< (int)weights_short_a.size(); i++) { |
---|
394 | dp.short_a = weights_short_a[i].value; |
---|
395 | |
---|
396 | // Loop over longer_edgeB weight points |
---|
397 | for(int j=0; j< (int)weights_short_b.size(); j++) { |
---|
398 | dp.short_b = weights_short_b[j].value; |
---|
399 | |
---|
400 | // Average over longuest_edgeC distribution |
---|
401 | for(int k=0; k< (int)weights_long_c.size(); k++) { |
---|
402 | dp.long_c = weights_long_c[k].value; |
---|
403 | |
---|
404 | // Average over theta distribution |
---|
405 | for(int l=0; l< (int)weights_parallel_theta.size(); l++) { |
---|
406 | dp.parallel_theta = weights_parallel_theta[l].value; |
---|
407 | |
---|
408 | // Average over phi distribution |
---|
409 | for(int m=0; m< (int)weights_parallel_phi.size(); m++) { |
---|
410 | dp.parallel_phi = weights_parallel_phi[m].value; |
---|
411 | |
---|
412 | // Average over phi distribution |
---|
413 | for(int n=0; n< (int)weights_parallel_psi.size(); n++) { |
---|
414 | dp.parallel_psi = weights_parallel_psi[n].value; |
---|
415 | //Un-normalize by volume |
---|
416 | double _ptvalue = weights_short_a[i].weight |
---|
417 | * weights_short_b[j].weight |
---|
418 | * weights_long_c[k].weight |
---|
419 | * weights_parallel_theta[l].weight |
---|
420 | * weights_parallel_phi[m].weight |
---|
421 | * weights_parallel_psi[n].weight |
---|
422 | * parallelepiped_analytical_2DXY(&dp, qx, qy) |
---|
423 | * weights_short_a[i].value*weights_short_b[j].value |
---|
424 | * weights_long_c[k].value; |
---|
425 | |
---|
426 | if (weights_parallel_theta.size()>1) { |
---|
427 | _ptvalue *= fabs(cos(weights_parallel_theta[l].value*pi/180.0)); |
---|
428 | } |
---|
429 | sum += _ptvalue; |
---|
430 | //Find average volume |
---|
431 | vol += weights_short_a[i].weight |
---|
432 | * weights_short_b[j].weight |
---|
433 | * weights_long_c[k].weight |
---|
434 | * weights_short_a[i].value*weights_short_b[j].value |
---|
435 | * weights_long_c[k].value; |
---|
436 | //Find norm for volume |
---|
437 | norm_vol += weights_short_a[i].weight |
---|
438 | * weights_short_b[j].weight |
---|
439 | * weights_long_c[k].weight; |
---|
440 | |
---|
441 | norm += weights_short_a[i].weight |
---|
442 | * weights_short_b[j].weight |
---|
443 | * weights_long_c[k].weight |
---|
444 | * weights_parallel_theta[l].weight |
---|
445 | * weights_parallel_phi[m].weight |
---|
446 | * weights_parallel_psi[n].weight; |
---|
447 | } |
---|
448 | } |
---|
449 | |
---|
450 | } |
---|
451 | } |
---|
452 | } |
---|
453 | } |
---|
454 | // Averaging in theta needs an extra normalization |
---|
455 | // factor to account for the sin(theta) term in the |
---|
456 | // integration (see documentation). |
---|
457 | if (weights_parallel_theta.size()>1) norm = norm / asin(1.0); |
---|
458 | |
---|
459 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
460 | //Re-normalize by avg volume |
---|
461 | sum = sum/(vol/norm_vol);} |
---|
462 | |
---|
463 | return sum/norm + background(); |
---|
464 | } |
---|
465 | |
---|
466 | |
---|
467 | /** |
---|
468 | * Function to evaluate 2D scattering function |
---|
469 | * @param pars: parameters of the cylinder |
---|
470 | * @param q: q-value |
---|
471 | * @param phi: angle phi |
---|
472 | * @return: function value |
---|
473 | */ |
---|
474 | double ParallelepipedModel :: evaluate_rphi(double q, double phi) { |
---|
475 | double qx = q*cos(phi); |
---|
476 | double qy = q*sin(phi); |
---|
477 | return (*this).operator()(qx, qy); |
---|
478 | } |
---|
479 | /** |
---|
480 | * Function to calculate effective radius |
---|
481 | * @return: effective radius value |
---|
482 | */ |
---|
483 | double ParallelepipedModel :: calculate_ER() { |
---|
484 | ParallelepipedParameters dp; |
---|
485 | dp.short_a = short_a(); |
---|
486 | dp.short_b = short_b(); |
---|
487 | dp.long_c = long_c(); |
---|
488 | double rad_out = 0.0; |
---|
489 | double pi = 4.0*atan(1.0); |
---|
490 | double suf_rad = sqrt(dp.short_a*dp.short_b/pi); |
---|
491 | |
---|
492 | // Perform the computation, with all weight points |
---|
493 | double sum = 0.0; |
---|
494 | double norm = 0.0; |
---|
495 | |
---|
496 | // Get the dispersion points for the short_edgeA |
---|
497 | vector<WeightPoint> weights_short_a; |
---|
498 | short_a.get_weights(weights_short_a); |
---|
499 | |
---|
500 | // Get the dispersion points for the longer_edgeB |
---|
501 | vector<WeightPoint> weights_short_b; |
---|
502 | short_b.get_weights(weights_short_b); |
---|
503 | |
---|
504 | // Get angular averaging for the longuest_edgeC |
---|
505 | vector<WeightPoint> weights_long_c; |
---|
506 | long_c.get_weights(weights_long_c); |
---|
507 | |
---|
508 | // Loop over radius weight points |
---|
509 | for(int i=0; i< (int)weights_short_a.size(); i++) { |
---|
510 | dp.short_a = weights_short_a[i].value; |
---|
511 | |
---|
512 | // Loop over longer_edgeB weight points |
---|
513 | for(int j=0; j< (int)weights_short_b.size(); j++) { |
---|
514 | dp.short_b = weights_short_b[j].value; |
---|
515 | |
---|
516 | // Average over longuest_edgeC distribution |
---|
517 | for(int k=0; k< (int)weights_long_c.size(); k++) { |
---|
518 | dp.long_c = weights_long_c[k].value; |
---|
519 | //Calculate surface averaged radius |
---|
520 | //This is rough approximation. |
---|
521 | suf_rad = sqrt(dp.short_a*dp.short_b/pi); |
---|
522 | |
---|
523 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
524 | sum +=weights_short_a[i].weight* weights_short_b[j].weight |
---|
525 | * weights_long_c[k].weight*DiamCyl(dp.long_c, suf_rad)/2.0; |
---|
526 | norm += weights_short_a[i].weight* weights_short_b[j].weight*weights_long_c[k].weight; |
---|
527 | } |
---|
528 | } |
---|
529 | } |
---|
530 | |
---|
531 | if (norm != 0){ |
---|
532 | //return the averaged value |
---|
533 | rad_out = sum/norm;} |
---|
534 | else{ |
---|
535 | //return normal value |
---|
536 | //Note: output of "DiamCyl(length,radius)" is DIAMETER. |
---|
537 | rad_out = DiamCyl(dp.long_c, suf_rad)/2.0;} |
---|
538 | return rad_out; |
---|
539 | |
---|
540 | } |
---|
541 | double ParallelepipedModel :: calculate_VR() { |
---|
542 | return 1.0; |
---|
543 | } |
---|