[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
| 26 | #include "multishell.h" |
---|
| 27 | |
---|
| 28 | extern "C" { |
---|
| 29 | #include "libSphere.h" |
---|
| 30 | } |
---|
| 31 | |
---|
| 32 | typedef struct { |
---|
| 33 | double scale; |
---|
| 34 | double core_radius; |
---|
| 35 | double s_thickness; |
---|
| 36 | double w_thickness; |
---|
| 37 | double core_sld; |
---|
| 38 | double shell_sld; |
---|
| 39 | double n_pairs; |
---|
| 40 | double background; |
---|
| 41 | |
---|
| 42 | } MultiShellParameters; |
---|
| 43 | |
---|
| 44 | MultiShellModel :: MultiShellModel() { |
---|
| 45 | scale = Parameter(1.0); |
---|
| 46 | core_radius = Parameter(60.0, true); |
---|
| 47 | core_radius.set_min(0.0); |
---|
| 48 | s_thickness = Parameter(10.0, true); |
---|
| 49 | s_thickness.set_min(0.0); |
---|
| 50 | w_thickness = Parameter(10.0, true); |
---|
| 51 | w_thickness.set_min(0.0); |
---|
| 52 | core_sld = Parameter(6.4e-6); |
---|
| 53 | shell_sld = Parameter(4.0e-7); |
---|
| 54 | n_pairs = Parameter(2); |
---|
| 55 | background = Parameter(0.0); |
---|
| 56 | } |
---|
| 57 | |
---|
| 58 | /** |
---|
| 59 | * Function to evaluate 1D scattering function |
---|
| 60 | * The NIST IGOR library is used for the actual calculation. |
---|
| 61 | * @param q: q-value |
---|
| 62 | * @return: function value |
---|
| 63 | */ |
---|
| 64 | double MultiShellModel :: operator()(double q) { |
---|
| 65 | double dp[8]; |
---|
| 66 | |
---|
| 67 | // Fill parameter array for IGOR library |
---|
| 68 | // Add the background after averaging |
---|
| 69 | dp[0] = scale(); |
---|
| 70 | dp[1] = core_radius(); |
---|
| 71 | dp[2] = s_thickness(); |
---|
| 72 | dp[3] = w_thickness(); |
---|
| 73 | dp[4] = core_sld(); |
---|
| 74 | dp[5] = shell_sld(); |
---|
| 75 | dp[6] = n_pairs(); |
---|
| 76 | dp[7] = 0.0; |
---|
| 77 | |
---|
| 78 | // Get the dispersion points for the core radius |
---|
| 79 | vector<WeightPoint> weights_core_radius; |
---|
| 80 | core_radius.get_weights(weights_core_radius); |
---|
| 81 | |
---|
| 82 | // Get the dispersion points for the s_thickness |
---|
| 83 | vector<WeightPoint> weights_s_thickness; |
---|
| 84 | s_thickness.get_weights(weights_s_thickness); |
---|
| 85 | |
---|
| 86 | // Get the dispersion points for the w_thickness |
---|
| 87 | vector<WeightPoint> weights_w_thickness; |
---|
| 88 | w_thickness.get_weights(weights_w_thickness); |
---|
| 89 | |
---|
| 90 | // Perform the computation, with all weight points |
---|
| 91 | double sum = 0.0; |
---|
| 92 | double norm = 0.0; |
---|
| 93 | double vol = 0.0; |
---|
| 94 | |
---|
| 95 | // Loop over radius weight points |
---|
| 96 | for(int i=0; i< (int)weights_core_radius.size(); i++) { |
---|
| 97 | dp[1] = weights_core_radius[i].value; |
---|
| 98 | for(int j=0; j< (int)weights_s_thickness.size(); j++){ |
---|
| 99 | dp[2] = weights_s_thickness[j].value; |
---|
| 100 | for(int k=0; k< (int)weights_w_thickness.size(); k++){ |
---|
| 101 | dp[3] = weights_w_thickness[k].value; |
---|
| 102 | //Un-normalize SphereForm by volume |
---|
| 103 | sum += weights_core_radius[i].weight*weights_s_thickness[j].weight |
---|
| 104 | *weights_w_thickness[k].weight* MultiShell(dp, q) |
---|
| 105 | *pow(weights_core_radius[i].value+dp[6]*weights_s_thickness[j].value+(dp[6]-1)*weights_w_thickness[k].value,3); |
---|
| 106 | //Find average volume |
---|
| 107 | vol += weights_core_radius[i].weight*weights_s_thickness[j].weight |
---|
| 108 | *weights_w_thickness[k].weight |
---|
| 109 | *pow(weights_core_radius[i].value+dp[6]*weights_s_thickness[j].value+(dp[6]-1)*weights_w_thickness[k].value,3); |
---|
| 110 | norm += weights_core_radius[i].weight*weights_s_thickness[j].weight |
---|
| 111 | *weights_w_thickness[k].weight; |
---|
| 112 | } |
---|
| 113 | } |
---|
| 114 | } |
---|
| 115 | if (vol != 0.0 && norm != 0.0) { |
---|
| 116 | //Re-normalize by avg volume |
---|
| 117 | sum = sum/(vol/norm);} |
---|
| 118 | return sum/norm + background(); |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | /** |
---|
| 122 | * Function to evaluate 2D scattering function |
---|
| 123 | * @param q_x: value of Q along x |
---|
| 124 | * @param q_y: value of Q along y |
---|
| 125 | * @return: function value |
---|
| 126 | */ |
---|
| 127 | double MultiShellModel :: operator()(double qx, double qy) { |
---|
| 128 | double q = sqrt(qx*qx + qy*qy); |
---|
| 129 | return (*this).operator()(q); |
---|
| 130 | } |
---|
| 131 | |
---|
| 132 | /** |
---|
| 133 | * Function to evaluate 2D scattering function |
---|
| 134 | * @param pars: parameters of the multishell |
---|
| 135 | * @param q: q-value |
---|
| 136 | * @param phi: angle phi |
---|
| 137 | * @return: function value |
---|
| 138 | */ |
---|
| 139 | double MultiShellModel :: evaluate_rphi(double q, double phi) { |
---|
| 140 | return (*this).operator()(q); |
---|
| 141 | } |
---|
| 142 | /** |
---|
| 143 | * Function to calculate effective radius |
---|
| 144 | * @return: effective radius value |
---|
| 145 | */ |
---|
| 146 | double MultiShellModel :: calculate_ER() { |
---|
| 147 | MultiShellParameters dp; |
---|
| 148 | |
---|
| 149 | dp.core_radius = core_radius(); |
---|
| 150 | dp.s_thickness = s_thickness(); |
---|
| 151 | dp.w_thickness = w_thickness(); |
---|
| 152 | dp.n_pairs = n_pairs(); |
---|
| 153 | |
---|
| 154 | double rad_out = 0.0; |
---|
| 155 | |
---|
| 156 | // Perform the computation, with all weight points |
---|
| 157 | double sum = 0.0; |
---|
| 158 | double norm = 0.0; |
---|
| 159 | if (dp.n_pairs <= 0.0 ){ |
---|
| 160 | dp.n_pairs = 0.0; |
---|
| 161 | } |
---|
| 162 | |
---|
| 163 | // Get the dispersion points for the core radius |
---|
| 164 | vector<WeightPoint> weights_core_radius; |
---|
| 165 | core_radius.get_weights(weights_core_radius); |
---|
| 166 | |
---|
| 167 | // Get the dispersion points for the s_thickness |
---|
| 168 | vector<WeightPoint> weights_s_thickness; |
---|
| 169 | s_thickness.get_weights(weights_s_thickness); |
---|
| 170 | |
---|
| 171 | // Get the dispersion points for the w_thickness |
---|
| 172 | vector<WeightPoint> weights_w_thickness; |
---|
| 173 | w_thickness.get_weights(weights_w_thickness); |
---|
| 174 | |
---|
| 175 | // Loop over major shell weight points |
---|
| 176 | for(int i=0; i< (int)weights_s_thickness.size(); i++) { |
---|
| 177 | dp.s_thickness = weights_s_thickness[i].value; |
---|
| 178 | for(int j=0; j< (int)weights_w_thickness.size(); j++) { |
---|
| 179 | dp.w_thickness = weights_w_thickness[j].value; |
---|
| 180 | for(int k=0; k< (int)weights_core_radius.size(); k++) { |
---|
| 181 | dp.core_radius = weights_core_radius[k].value; |
---|
| 182 | sum += weights_s_thickness[i].weight*weights_w_thickness[j].weight |
---|
| 183 | * weights_core_radius[k].weight*(dp.core_radius+dp.n_pairs*dp.s_thickness+(dp.n_pairs-1.0)*dp.w_thickness); |
---|
| 184 | norm += weights_s_thickness[i].weight*weights_w_thickness[j].weight* weights_core_radius[k].weight; |
---|
| 185 | } |
---|
| 186 | } |
---|
| 187 | } |
---|
| 188 | if (norm != 0){ |
---|
| 189 | //return the averaged value |
---|
| 190 | rad_out = sum/norm;} |
---|
| 191 | else{ |
---|
| 192 | //return normal value |
---|
| 193 | rad_out = (dp.core_radius+dp.n_pairs*dp.s_thickness+(dp.n_pairs-1.0)*dp.w_thickness);} |
---|
| 194 | |
---|
| 195 | return rad_out; |
---|
| 196 | } |
---|
| 197 | double MultiShellModel :: calculate_VR() { |
---|
| 198 | return 1.0; |
---|
| 199 | } |
---|