1 | // by jcho |
---|
2 | |
---|
3 | #include <math.h> |
---|
4 | |
---|
5 | #include "libmultifunc/libfunc.h" |
---|
6 | |
---|
7 | #include <stdio.h> |
---|
8 | |
---|
9 | |
---|
10 | |
---|
11 | //used in Si func |
---|
12 | |
---|
13 | int factorial(int i) { |
---|
14 | |
---|
15 | int k, j; |
---|
16 | if (i<2){ |
---|
17 | return 1; |
---|
18 | } |
---|
19 | |
---|
20 | k=1; |
---|
21 | |
---|
22 | for(j=1;j<i;j++) { |
---|
23 | k=k*(j+1); |
---|
24 | } |
---|
25 | |
---|
26 | return k; |
---|
27 | |
---|
28 | } |
---|
29 | |
---|
30 | |
---|
31 | |
---|
32 | // Used in pearl nec model |
---|
33 | |
---|
34 | // Sine integral function: approximated within 1%!!! |
---|
35 | |
---|
36 | // integral of sin(x)/x up to namx term nmax=6 looks the best. |
---|
37 | |
---|
38 | double Si(double x) |
---|
39 | |
---|
40 | { |
---|
41 | int i; |
---|
42 | int nmax=6; |
---|
43 | double out; |
---|
44 | long double power; |
---|
45 | double pi = 4.0*atan(1.0); |
---|
46 | |
---|
47 | if (x >= pi*6.2/4.0){ |
---|
48 | double out_sin = 0.0; |
---|
49 | double out_cos = 0.0; |
---|
50 | out = pi/2.0; |
---|
51 | |
---|
52 | for (i=0; i<nmax-2; i+=1) { |
---|
53 | out_cos += pow(-1.0, i) * (double)factorial(2*i) / pow(x, 2*i+1); |
---|
54 | out_sin += pow(-1.0, i) * (double)factorial(2*i+1) / pow(x, 2*i+2); |
---|
55 | } |
---|
56 | |
---|
57 | out -= cos(x) * out_cos; |
---|
58 | out -= sin(x) * out_sin; |
---|
59 | return out; |
---|
60 | } |
---|
61 | |
---|
62 | out = 0.0; |
---|
63 | |
---|
64 | for (i=0; i<nmax; i+=1) { |
---|
65 | if (i==0) { |
---|
66 | out += x; |
---|
67 | continue; |
---|
68 | } |
---|
69 | |
---|
70 | power = pow(x,(2 * i + 1)); |
---|
71 | out += (double)pow(-1, i) * power / ((2.0 * (double)i + 1.0) * (double)factorial(2 * i + 1)); |
---|
72 | |
---|
73 | //printf ("Si=%g %g %d\n", x, out, i); |
---|
74 | } |
---|
75 | |
---|
76 | return out; |
---|
77 | } |
---|
78 | |
---|
79 | |
---|
80 | |
---|
81 | double sinc(double x) |
---|
82 | { |
---|
83 | if (x==0.0){ |
---|
84 | return 1.0; |
---|
85 | } |
---|
86 | return sin(x)/x; |
---|
87 | } |
---|
88 | |
---|
89 | |
---|
90 | double gamln(double xx) { |
---|
91 | |
---|
92 | double x,y,tmp,ser; |
---|
93 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
94 | 24.01409824083091,-1.231739572450155, |
---|
95 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
96 | int j; |
---|
97 | |
---|
98 | y=x=xx; |
---|
99 | tmp=x+5.5; |
---|
100 | tmp -= (x+0.5)*log(tmp); |
---|
101 | ser=1.000000000190015; |
---|
102 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
103 | return -tmp+log(2.5066282746310005*ser/x); |
---|
104 | } |
---|
105 | |
---|
106 | // calculate magnetic sld and return total sld |
---|
107 | // bn : contrast (not just sld of the layer) |
---|
108 | // m0: max mag of M; mtheta: angle from x-z plane; |
---|
109 | // mphi: angle (anti-clock-wise)of x-z projection(M) from x axis |
---|
110 | // spinfraci: the fraction of UP among UP+Down (before sample) |
---|
111 | // spinfracf: the fraction of UP among UP+Down (after sample and before detector) |
---|
112 | // spintheta: angle (anti-clock-wise) between neutron spin(up) and x axis |
---|
113 | // Note: all angles are in degrees. |
---|
114 | polar_sld cal_msld(int isangle, double qx, double qy, double bn, |
---|
115 | double m01, double mtheta1, double mphi1, |
---|
116 | double spinfraci, double spinfracf, double spintheta) |
---|
117 | { |
---|
118 | //locals |
---|
119 | double q_x = qx; |
---|
120 | double q_y = qy; |
---|
121 | double sld = bn; |
---|
122 | int is_angle = isangle; |
---|
123 | double pi = 4.0*atan(1.0); |
---|
124 | double s_theta = spintheta * pi/180.0; |
---|
125 | double m_max = m01; |
---|
126 | double m_phi = mphi1; |
---|
127 | double m_theta = mtheta1; |
---|
128 | double in_spin = spinfraci; |
---|
129 | double out_spin = spinfracf; |
---|
130 | |
---|
131 | double m_perp = 0.0; |
---|
132 | double m_perp_z = 0.0; |
---|
133 | double m_perp_y = 0.0; |
---|
134 | double m_perp_x = 0.0; |
---|
135 | double m_sigma_x = 0.0; |
---|
136 | double m_sigma_z = 0.0; |
---|
137 | double m_sigma_y = 0.0; |
---|
138 | //double b_m = 0.0; |
---|
139 | double q_angle = 0.0; |
---|
140 | double mx = 0.0; |
---|
141 | double my = 0.0; |
---|
142 | double mz = 0.0; |
---|
143 | polar_sld p_sld; |
---|
144 | p_sld.uu = sld; |
---|
145 | p_sld.dd = sld; |
---|
146 | p_sld.re_ud = 0.0; |
---|
147 | p_sld.im_ud = 0.0; |
---|
148 | p_sld.re_du = 0.0; |
---|
149 | p_sld.im_du = 0.0; |
---|
150 | |
---|
151 | //No mag means no further calculation |
---|
152 | if (isangle>0){ |
---|
153 | if (m_max < 1.0e-32){ |
---|
154 | p_sld.uu = sqrt(sqrt(in_spin * out_spin)) * p_sld.uu; |
---|
155 | p_sld.dd = sqrt(sqrt((1.0 - in_spin) * (1.0 - out_spin))) * p_sld.dd; |
---|
156 | return p_sld; |
---|
157 | } |
---|
158 | } |
---|
159 | else{ |
---|
160 | if (fabs(m_max)< 1.0e-32 && fabs(m_phi)< 1.0e-32 && fabs(m_theta)< 1.0e-32){ |
---|
161 | p_sld.uu = sqrt(sqrt(in_spin * out_spin)) * p_sld.uu; |
---|
162 | p_sld.dd = sqrt(sqrt((1.0 - in_spin) * (1.0 - out_spin))) * p_sld.dd; |
---|
163 | return p_sld; |
---|
164 | } |
---|
165 | } |
---|
166 | |
---|
167 | //These are needed because of the precision of inputs |
---|
168 | if (in_spin < 0.0) in_spin = 0.0; |
---|
169 | if (in_spin > 1.0) in_spin = 1.0; |
---|
170 | if (out_spin < 0.0) out_spin = 0.0; |
---|
171 | if (out_spin > 1.0) out_spin = 1.0; |
---|
172 | |
---|
173 | if (q_x == 0.0) q_angle = pi / 2.0; |
---|
174 | else q_angle = atan(q_y/q_x); |
---|
175 | if (q_y < 0.0 && q_x < 0.0) q_angle -= pi; |
---|
176 | else if (q_y > 0.0 && q_x < 0.0) q_angle += pi; |
---|
177 | |
---|
178 | q_angle = pi/2.0 - q_angle; |
---|
179 | if (q_angle > pi) q_angle -= 2.0 * pi; |
---|
180 | else if (q_angle < -pi) q_angle += 2.0 * pi; |
---|
181 | |
---|
182 | if (fabs(q_x) < 1.0e-16 && fabs(q_y) < 1.0e-16){ |
---|
183 | m_perp = 0.0; |
---|
184 | } |
---|
185 | else { |
---|
186 | m_perp = m_max; |
---|
187 | } |
---|
188 | if (is_angle > 0){ |
---|
189 | m_phi *= pi/180.0; |
---|
190 | m_theta *= pi/180.0; |
---|
191 | mx = m_perp * cos(m_theta) * cos(m_phi); |
---|
192 | my = m_perp * sin(m_theta); |
---|
193 | mz = -(m_perp * cos(m_theta) * sin(m_phi)); |
---|
194 | } |
---|
195 | else{ |
---|
196 | mx = m_perp; |
---|
197 | my = m_phi; |
---|
198 | mz = m_theta; |
---|
199 | } |
---|
200 | //ToDo: simplify these steps |
---|
201 | // m_perp1 -m_perp2 |
---|
202 | m_perp_x = (mx) * cos(q_angle); |
---|
203 | m_perp_x -= (my) * sin(q_angle); |
---|
204 | m_perp_y = m_perp_x; |
---|
205 | m_perp_x *= cos(-q_angle); |
---|
206 | m_perp_y *= sin(-q_angle); |
---|
207 | m_perp_z = mz; |
---|
208 | |
---|
209 | m_sigma_x = (m_perp_x * cos(-s_theta) - m_perp_y * sin(-s_theta)); |
---|
210 | m_sigma_y = (m_perp_x * sin(-s_theta) + m_perp_y * cos(-s_theta)); |
---|
211 | m_sigma_z = (m_perp_z); |
---|
212 | |
---|
213 | //Find b |
---|
214 | p_sld.uu -= m_sigma_x; |
---|
215 | p_sld.dd += m_sigma_x; |
---|
216 | p_sld.re_ud = m_sigma_y; |
---|
217 | p_sld.re_du = m_sigma_y; |
---|
218 | p_sld.im_ud = m_sigma_z; |
---|
219 | p_sld.im_du = -m_sigma_z; |
---|
220 | |
---|
221 | p_sld.uu = sqrt(sqrt(in_spin * out_spin)) * p_sld.uu; |
---|
222 | p_sld.dd = sqrt(sqrt((1.0 - in_spin) * (1.0 - out_spin))) * p_sld.dd; |
---|
223 | |
---|
224 | p_sld.re_ud = sqrt(sqrt(in_spin * (1.0 - out_spin))) * p_sld.re_ud; |
---|
225 | p_sld.im_ud = sqrt(sqrt(in_spin * (1.0 - out_spin))) * p_sld.im_ud; |
---|
226 | p_sld.re_du = sqrt(sqrt((1.0 - in_spin) * out_spin)) * p_sld.re_du; |
---|
227 | p_sld.im_du = sqrt(sqrt((1.0 - in_spin) * out_spin)) * p_sld.im_du; |
---|
228 | |
---|
229 | return p_sld; |
---|
230 | } |
---|
231 | |
---|
232 | |
---|
233 | /** Modifications below by kieranrcampbell@gmail.com |
---|
234 | Institut Laue-Langevin, July 2012 |
---|
235 | **/ |
---|
236 | |
---|
237 | /** |
---|
238 | Implements eq 6.2.5 (small gamma) of Numerical Recipes in C, essentially |
---|
239 | the incomplete gamma function multiplied by the gamma function. |
---|
240 | Required for implementation of fast error function (erf) |
---|
241 | **/ |
---|
242 | |
---|
243 | |
---|
244 | #define ITMAX 100 |
---|
245 | #define EPS 3.0e-7 |
---|
246 | #define FPMIN 1.0e-30 |
---|
247 | |
---|
248 | void gser(float *gamser, float a, float x, float *gln) { |
---|
249 | int n; |
---|
250 | float sum,del,ap; |
---|
251 | |
---|
252 | *gln = gamln(a); |
---|
253 | if(x <= 0.0) { |
---|
254 | if (x < 0.0) printf("Error: x less than 0 in routine gser"); |
---|
255 | *gamser = 0.0; |
---|
256 | return; |
---|
257 | } else { |
---|
258 | ap = a; |
---|
259 | del = sum = 1.0/a; |
---|
260 | |
---|
261 | for(n=1;n<=ITMAX;n++) { |
---|
262 | ++ap; |
---|
263 | del *= x/ap; |
---|
264 | sum += del; |
---|
265 | if(fabs(del) < fabs(sum)*EPS) { |
---|
266 | *gamser = sum * exp(-x + a * log(x) - (*gln)); |
---|
267 | return; |
---|
268 | } |
---|
269 | } |
---|
270 | printf("a too large, ITMAX too small in routine gser"); |
---|
271 | return; |
---|
272 | |
---|
273 | } |
---|
274 | |
---|
275 | |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | Implements the incomplete gamma function Q(a,x) evaluated by its continued fraction |
---|
280 | representation |
---|
281 | **/ |
---|
282 | |
---|
283 | void gcf(float *gammcf, float a, float x, float *gln) { |
---|
284 | int i; |
---|
285 | float an,b,c,d,del,h; |
---|
286 | |
---|
287 | *gln = gamln(a); |
---|
288 | b = x+1.0-a; |
---|
289 | c = 1.0/FPMIN; |
---|
290 | d = 1.0/b; |
---|
291 | h=d; |
---|
292 | for (i=1;i <= ITMAX; i++) { |
---|
293 | an = -i*(i-a); |
---|
294 | b += 2.0; |
---|
295 | d = an*d + b; |
---|
296 | if (fabs(d) < FPMIN) d = FPMIN; |
---|
297 | c = b+an/c; |
---|
298 | if (fabs(c) < FPMIN) c = FPMIN; |
---|
299 | d = 1.0/d; |
---|
300 | del = d*c; |
---|
301 | h += del; |
---|
302 | if (fabs(del-1.0) < EPS) break; |
---|
303 | } |
---|
304 | if (i > ITMAX) printf("a too large, ITMAX too small in gcf"); |
---|
305 | *gammcf = exp(-x+a*log(x)-(*gln))*h; |
---|
306 | return; |
---|
307 | } |
---|
308 | |
---|
309 | |
---|
310 | /** |
---|
311 | Represents incomplete error function, P(a,x) |
---|
312 | **/ |
---|
313 | float gammp(float a, float x) { |
---|
314 | float gamser,gammcf,gln; |
---|
315 | if(x < 0.0 || a <= 0.0) printf("Invalid arguments in routine gammp"); |
---|
316 | if (x < (a+1.0)) { |
---|
317 | gser(&gamser,a,x,&gln); |
---|
318 | return gamser; |
---|
319 | } else { |
---|
320 | gcf(&gammcf,a,x,&gln); |
---|
321 | return 1.0 - gammcf; |
---|
322 | } |
---|
323 | } |
---|
324 | |
---|
325 | /** |
---|
326 | Implementation of the error function, erf(x) |
---|
327 | **/ |
---|
328 | |
---|
329 | float erff(float x) { |
---|
330 | return x < 0.0 ? -gammp(0.5,x*x) : gammp(0.5,x*x); |
---|
331 | } |
---|
332 | |
---|