[230f479] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
| 26 | #include "hollow_cylinder.h" |
---|
| 27 | |
---|
| 28 | extern "C" { |
---|
| 29 | #include "libCylinder.h" |
---|
| 30 | #include "libStructureFactor.h" |
---|
| 31 | } |
---|
| 32 | |
---|
| 33 | typedef struct { |
---|
| 34 | double scale; |
---|
| 35 | double core_radius; |
---|
| 36 | double radius; |
---|
| 37 | double length; |
---|
| 38 | double sldCyl; |
---|
| 39 | double sldSolv; |
---|
| 40 | double background; |
---|
| 41 | double axis_theta; |
---|
| 42 | double axis_phi; |
---|
| 43 | } HollowCylinderParameters; |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | * Function to evaluate 2D scattering function |
---|
| 47 | * @param pars: parameters of the hollow cylinder |
---|
| 48 | * @param q: q-value |
---|
| 49 | * @param q_x: q_x / q |
---|
| 50 | * @param q_y: q_y / q |
---|
| 51 | * @return: function value |
---|
| 52 | */ |
---|
| 53 | static double hollow_cylinder_analytical_2D_scaled(HollowCylinderParameters *pars, double q, double q_x, double q_y) { |
---|
| 54 | double cyl_x, cyl_y; //, cyl_z |
---|
| 55 | //double q_z; |
---|
| 56 | double alpha,vol, cos_val; |
---|
| 57 | double answer; |
---|
| 58 | //convert angle degree to radian |
---|
| 59 | double pi = 4.0*atan(1.0); |
---|
| 60 | double theta = pars->axis_theta * pi/180.0; |
---|
| 61 | double phi = pars->axis_phi * pi/180.0; |
---|
| 62 | |
---|
| 63 | // Cylinder orientation |
---|
| 64 | cyl_x = cos(theta) * cos(phi); |
---|
| 65 | cyl_y = sin(theta); |
---|
| 66 | //cyl_z = -cos(theta) * sin(phi); |
---|
| 67 | |
---|
| 68 | // q vector |
---|
| 69 | //q_z = 0; |
---|
| 70 | |
---|
| 71 | // Compute the angle btw vector q and the |
---|
| 72 | // axis of the cylinder |
---|
| 73 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
| 74 | |
---|
| 75 | // The following test should always pass |
---|
| 76 | if (fabs(cos_val)>1.0) { |
---|
| 77 | printf("core_shell_cylinder_analytical_2D: Unexpected error: cos(alpha)=%g\n", cos_val); |
---|
| 78 | return 0; |
---|
| 79 | } |
---|
| 80 | |
---|
| 81 | alpha = acos( cos_val ); |
---|
| 82 | |
---|
| 83 | // Call the IGOR library function to get the kernel |
---|
| 84 | answer = HolCylKernel(q, pars->core_radius, pars->radius, pars->length, cos_val); |
---|
| 85 | |
---|
| 86 | // Multiply by contrast^2 |
---|
| 87 | answer *= (pars->sldCyl - pars->sldSolv)*(pars->sldCyl - pars->sldSolv); |
---|
| 88 | |
---|
| 89 | //normalize by cylinder volume |
---|
| 90 | vol=pi*((pars->radius*pars->radius)-(pars->core_radius *pars->core_radius)) |
---|
| 91 | *(pars->length); |
---|
| 92 | answer *= vol; |
---|
| 93 | |
---|
| 94 | //convert to [cm-1] |
---|
| 95 | answer *= 1.0e8; |
---|
| 96 | |
---|
| 97 | //Scale |
---|
| 98 | answer *= pars->scale; |
---|
| 99 | |
---|
| 100 | // add in the background |
---|
| 101 | answer += pars->background; |
---|
| 102 | |
---|
| 103 | return answer; |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | /** |
---|
| 109 | * Function to evaluate 2D scattering function |
---|
| 110 | * @param pars: parameters of the Hollow cylinder |
---|
| 111 | * @param q: q-value |
---|
| 112 | * @return: function value |
---|
| 113 | */ |
---|
| 114 | static double hollow_cylinder_analytical_2DXY(HollowCylinderParameters *pars, double qx, double qy) { |
---|
| 115 | double q; |
---|
| 116 | q = sqrt(qx*qx+qy*qy); |
---|
| 117 | return hollow_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 118 | } |
---|
| 119 | |
---|
| 120 | HollowCylinderModel :: HollowCylinderModel() { |
---|
| 121 | scale = Parameter(1.0); |
---|
| 122 | core_radius = Parameter(20.0, true); |
---|
| 123 | core_radius.set_min(0.0); |
---|
| 124 | radius = Parameter(30.0, true); |
---|
| 125 | radius.set_min(0.0); |
---|
| 126 | length = Parameter(400.0, true); |
---|
| 127 | length.set_min(0.0); |
---|
| 128 | sldCyl = Parameter(6.3e-6); |
---|
| 129 | sldSolv = Parameter(1.0e-6); |
---|
| 130 | background = Parameter(0.0); |
---|
| 131 | axis_theta = Parameter(0.0, true); |
---|
| 132 | axis_phi = Parameter(0.0, true); |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | /** |
---|
| 136 | * Function to evaluate 1D scattering function |
---|
| 137 | * The NIST IGOR library is used for the actual calculation. |
---|
| 138 | * @param q: q-value |
---|
| 139 | * @return: function value |
---|
| 140 | */ |
---|
| 141 | double HollowCylinderModel :: operator()(double q) { |
---|
| 142 | double dp[7]; |
---|
| 143 | |
---|
| 144 | dp[0] = scale(); |
---|
| 145 | dp[1] = core_radius(); |
---|
| 146 | dp[2] = radius(); |
---|
| 147 | dp[3] = length(); |
---|
| 148 | dp[4] = sldCyl(); |
---|
| 149 | dp[5] = sldSolv(); |
---|
| 150 | dp[6] = 0.0; |
---|
| 151 | |
---|
| 152 | // Get the dispersion points for the core radius |
---|
| 153 | vector<WeightPoint> weights_core_radius; |
---|
| 154 | core_radius.get_weights(weights_core_radius); |
---|
| 155 | |
---|
| 156 | // Get the dispersion points for the shell radius |
---|
| 157 | vector<WeightPoint> weights_radius; |
---|
| 158 | radius.get_weights(weights_radius); |
---|
| 159 | |
---|
| 160 | // Get the dispersion points for the length |
---|
| 161 | vector<WeightPoint> weights_length; |
---|
| 162 | length.get_weights(weights_length); |
---|
| 163 | |
---|
| 164 | // Perform the computation, with all weight points |
---|
| 165 | double sum = 0.0; |
---|
| 166 | double norm = 0.0; |
---|
| 167 | double vol = 0.0; |
---|
| 168 | |
---|
| 169 | // Loop over core radius weight points |
---|
| 170 | for(int i=0; i< (int)weights_core_radius.size(); i++) { |
---|
| 171 | dp[1] = weights_core_radius[i].value; |
---|
| 172 | |
---|
| 173 | // Loop over length weight points |
---|
| 174 | for(int j=0; j< (int)weights_length.size(); j++) { |
---|
| 175 | dp[3] = weights_length[j].value; |
---|
| 176 | |
---|
| 177 | // Loop over shell radius weight points |
---|
| 178 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 179 | dp[2] = weights_radius[k].value; |
---|
| 180 | //Un-normalize by volume |
---|
| 181 | sum += weights_core_radius[i].weight |
---|
| 182 | * weights_length[j].weight |
---|
| 183 | * weights_radius[k].weight |
---|
| 184 | * HollowCylinder(dp, q) |
---|
| 185 | * (pow(weights_radius[k].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 186 | * weights_length[j].value; |
---|
| 187 | //Find average volume |
---|
| 188 | vol += weights_core_radius[i].weight |
---|
| 189 | * weights_length[j].weight |
---|
| 190 | * weights_radius[k].weight |
---|
| 191 | * (pow(weights_radius[k].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 192 | * weights_length[j].value; |
---|
| 193 | |
---|
| 194 | norm += weights_core_radius[i].weight |
---|
| 195 | * weights_length[j].weight |
---|
| 196 | * weights_radius[k].weight; |
---|
| 197 | } |
---|
| 198 | } |
---|
| 199 | } |
---|
| 200 | if (vol != 0.0 && norm != 0.0) { |
---|
| 201 | //Re-normalize by avg volume |
---|
| 202 | sum = sum/(vol/norm);} |
---|
| 203 | |
---|
| 204 | return sum/norm + background(); |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | /** |
---|
| 208 | * Function to evaluate 2D scattering function |
---|
| 209 | * @param q_x: value of Q along x |
---|
| 210 | * @param q_y: value of Q along y |
---|
| 211 | * @return: function value |
---|
| 212 | */ |
---|
| 213 | double HollowCylinderModel :: operator()(double qx, double qy) { |
---|
| 214 | HollowCylinderParameters dp; |
---|
| 215 | // Fill parameter array |
---|
| 216 | dp.scale = scale(); |
---|
| 217 | dp.core_radius = core_radius(); |
---|
| 218 | dp.radius = radius(); |
---|
| 219 | dp.length = length(); |
---|
| 220 | dp.sldCyl = sldCyl(); |
---|
| 221 | dp.sldSolv = sldSolv(); |
---|
| 222 | dp.background = 0.0; |
---|
| 223 | dp.axis_theta = axis_theta(); |
---|
| 224 | dp.axis_phi = axis_phi(); |
---|
| 225 | |
---|
| 226 | // Get the dispersion points for the core radius |
---|
| 227 | vector<WeightPoint> weights_core_radius; |
---|
| 228 | core_radius.get_weights(weights_core_radius); |
---|
| 229 | |
---|
| 230 | // Get the dispersion points for the shell radius |
---|
| 231 | vector<WeightPoint> weights_radius; |
---|
| 232 | radius.get_weights(weights_radius); |
---|
| 233 | |
---|
| 234 | // Get the dispersion points for the length |
---|
| 235 | vector<WeightPoint> weights_length; |
---|
| 236 | length.get_weights(weights_length); |
---|
| 237 | |
---|
| 238 | // Get angular averaging for theta |
---|
| 239 | vector<WeightPoint> weights_theta; |
---|
| 240 | axis_theta.get_weights(weights_theta); |
---|
| 241 | |
---|
| 242 | // Get angular averaging for phi |
---|
| 243 | vector<WeightPoint> weights_phi; |
---|
| 244 | axis_phi.get_weights(weights_phi); |
---|
| 245 | |
---|
| 246 | // Perform the computation, with all weight points |
---|
| 247 | double sum = 0.0; |
---|
| 248 | double norm = 0.0; |
---|
| 249 | double norm_vol = 0.0; |
---|
| 250 | double vol = 0.0; |
---|
| 251 | double pi = 4.0*atan(1.0); |
---|
| 252 | // Loop over core radius weight points |
---|
| 253 | for(int i=0; i<(int)weights_core_radius.size(); i++) { |
---|
| 254 | dp.core_radius = weights_core_radius[i].value; |
---|
| 255 | |
---|
| 256 | |
---|
| 257 | // Loop over length weight points |
---|
| 258 | for(int j=0; j<(int)weights_length.size(); j++) { |
---|
| 259 | dp.length = weights_length[j].value; |
---|
| 260 | |
---|
| 261 | // Loop over shell radius weight points |
---|
| 262 | for(int m=0; m< (int)weights_radius.size(); m++) { |
---|
| 263 | dp.radius = weights_radius[m].value; |
---|
| 264 | |
---|
| 265 | // Average over theta distribution |
---|
| 266 | for(int k=0; k< (int)weights_theta.size(); k++) { |
---|
| 267 | dp.axis_theta = weights_theta[k].value; |
---|
| 268 | |
---|
| 269 | // Average over phi distribution |
---|
| 270 | for(int l=0; l< (int)weights_phi.size(); l++) { |
---|
| 271 | dp.axis_phi = weights_phi[l].value; |
---|
| 272 | //Un-normalize by volume |
---|
| 273 | double _ptvalue = weights_core_radius[i].weight |
---|
| 274 | * weights_length[j].weight |
---|
| 275 | * weights_radius[m].weight |
---|
| 276 | * weights_theta[k].weight |
---|
| 277 | * weights_phi[l].weight |
---|
| 278 | * hollow_cylinder_analytical_2DXY(&dp, qx, qy) |
---|
| 279 | / ((pow(weights_radius[m].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 280 | * weights_length[j].value); |
---|
| 281 | if (weights_theta.size()>1) { |
---|
| 282 | _ptvalue *= fabs(cos(weights_theta[k].value * pi/180.0)); |
---|
| 283 | } |
---|
| 284 | sum += _ptvalue; |
---|
| 285 | //Find average volume |
---|
| 286 | vol += weights_core_radius[i].weight |
---|
| 287 | * weights_length[j].weight |
---|
| 288 | * weights_radius[m].weight |
---|
| 289 | * (pow(weights_radius[m].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 290 | * weights_length[j].value; |
---|
| 291 | //Find norm for volume |
---|
| 292 | norm_vol += weights_core_radius[i].weight |
---|
| 293 | * weights_length[j].weight |
---|
| 294 | * weights_radius[m].weight; |
---|
| 295 | |
---|
| 296 | norm += weights_core_radius[i].weight |
---|
| 297 | * weights_length[j].weight |
---|
| 298 | * weights_radius[m].weight |
---|
| 299 | * weights_theta[k].weight |
---|
| 300 | * weights_phi[l].weight; |
---|
| 301 | |
---|
| 302 | } |
---|
| 303 | } |
---|
| 304 | } |
---|
| 305 | } |
---|
| 306 | } |
---|
| 307 | // Averaging in theta needs an extra normalization |
---|
| 308 | // factor to account for the sin(theta) term in the |
---|
| 309 | // integration (see documentation). |
---|
| 310 | if (weights_theta.size()>1) norm = norm/asin(1.0); |
---|
| 311 | if (vol != 0.0 || norm_vol != 0.0) { |
---|
| 312 | //Re-normalize by avg volume |
---|
| 313 | sum = sum*(vol/norm_vol);} |
---|
| 314 | return sum/norm + background(); |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | /** |
---|
| 318 | * Function to evaluate 2D scattering function |
---|
| 319 | * @param pars: parameters of the cylinder |
---|
| 320 | * @param q: q-value |
---|
| 321 | * @param phi: angle phi |
---|
| 322 | * @return: function value |
---|
| 323 | */ |
---|
| 324 | double HollowCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
| 325 | double qx = q*cos(phi); |
---|
| 326 | double qy = q*sin(phi); |
---|
| 327 | return (*this).operator()(qx, qy); |
---|
| 328 | } |
---|
| 329 | /** |
---|
| 330 | * Function to calculate effective radius |
---|
| 331 | * @return: effective radius value |
---|
| 332 | */ |
---|
| 333 | double HollowCylinderModel :: calculate_ER() { |
---|
| 334 | HollowCylinderParameters dp; |
---|
| 335 | |
---|
| 336 | dp.radius = radius(); |
---|
| 337 | dp.length = length(); |
---|
| 338 | |
---|
| 339 | double rad_out = 0.0; |
---|
| 340 | |
---|
| 341 | // Perform the computation, with all weight points |
---|
| 342 | double sum = 0.0; |
---|
| 343 | double norm = 0.0; |
---|
| 344 | |
---|
| 345 | // Get the dispersion points for the major shell |
---|
| 346 | vector<WeightPoint> weights_length; |
---|
| 347 | length.get_weights(weights_length); |
---|
| 348 | |
---|
| 349 | // Get the dispersion points for the minor shell |
---|
| 350 | vector<WeightPoint> weights_radius ; |
---|
| 351 | radius.get_weights(weights_radius); |
---|
| 352 | |
---|
| 353 | // Loop over major shell weight points |
---|
| 354 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 355 | dp.length = weights_length[i].value; |
---|
| 356 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 357 | dp.radius = weights_radius[k].value; |
---|
| 358 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 359 | sum +=weights_length[i].weight |
---|
| 360 | * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0; |
---|
| 361 | norm += weights_length[i].weight* weights_radius[k].weight; |
---|
| 362 | } |
---|
| 363 | } |
---|
| 364 | if (norm != 0){ |
---|
| 365 | //return the averaged value |
---|
| 366 | rad_out = sum/norm;} |
---|
| 367 | else{ |
---|
| 368 | //return normal value |
---|
| 369 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 370 | rad_out = DiamCyl(dp.length,dp.radius)/2.0;} |
---|
| 371 | |
---|
| 372 | return rad_out; |
---|
| 373 | } |
---|
| 374 | /** |
---|
| 375 | * Function to calculate volf_ratio for shell |
---|
| 376 | * @return: volf_ratio value |
---|
| 377 | */ |
---|
| 378 | double HollowCylinderModel :: calculate_VR() { |
---|
| 379 | HollowCylinderParameters dp; |
---|
| 380 | dp.core_radius = core_radius(); |
---|
| 381 | dp.radius = radius(); |
---|
| 382 | dp.length = length(); |
---|
| 383 | |
---|
| 384 | double rad_out = 0.0; |
---|
| 385 | |
---|
| 386 | // Perform the computation, with all weight points |
---|
| 387 | double sum_tot = 0.0; |
---|
| 388 | double sum_shell = 0.0; |
---|
| 389 | |
---|
| 390 | // Get the dispersion points for the major shell |
---|
| 391 | vector<WeightPoint> weights_length; |
---|
| 392 | length.get_weights(weights_length); |
---|
| 393 | |
---|
| 394 | // Get the dispersion points for the minor shell |
---|
| 395 | vector<WeightPoint> weights_radius ; |
---|
| 396 | radius.get_weights(weights_radius); |
---|
| 397 | |
---|
| 398 | // Get the dispersion points for the core radius |
---|
| 399 | vector<WeightPoint> weights_core_radius; |
---|
| 400 | core_radius.get_weights(weights_core_radius); |
---|
| 401 | |
---|
| 402 | // Loop over major shell weight points |
---|
| 403 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 404 | dp.length = weights_length[i].value; |
---|
| 405 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 406 | dp.radius = weights_radius[k].value; |
---|
| 407 | for(int j=0; j<(int)weights_core_radius.size(); j++) { |
---|
| 408 | dp.core_radius = weights_core_radius[j].value; |
---|
| 409 | sum_tot +=weights_length[i].weight* weights_core_radius[j].weight |
---|
| 410 | * weights_radius[k].weight*pow(dp.radius, 2); |
---|
| 411 | sum_shell += weights_length[i].weight* weights_core_radius[j].weight |
---|
| 412 | * weights_radius[k].weight*(pow(dp.radius, 2)-pow(dp.core_radius, 2)); |
---|
| 413 | } |
---|
| 414 | } |
---|
| 415 | } |
---|
| 416 | if (sum_tot == 0.0){ |
---|
| 417 | //return the default value |
---|
| 418 | rad_out = 1.0;} |
---|
| 419 | else{ |
---|
| 420 | //return ratio value |
---|
| 421 | return sum_shell/sum_tot; |
---|
| 422 | } |
---|
| 423 | } |
---|