1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | using namespace std; |
---|
26 | |
---|
27 | extern "C" { |
---|
28 | #include "GaussWeights.h" |
---|
29 | #include "libCylinder.h" |
---|
30 | } |
---|
31 | #include "capcyl.h" |
---|
32 | |
---|
33 | // Convenience parameter structure |
---|
34 | typedef struct { |
---|
35 | double scale; |
---|
36 | double rad_cyl; |
---|
37 | double len_cyl; |
---|
38 | double rad_cap; |
---|
39 | double sld_capcyl; |
---|
40 | double sld_solv; |
---|
41 | double background; |
---|
42 | double theta; |
---|
43 | double phi; |
---|
44 | } CapCylParameters; |
---|
45 | |
---|
46 | CappedCylinderModel :: CappedCylinderModel() { |
---|
47 | scale = Parameter(1.0); |
---|
48 | rad_cyl = Parameter(20.0); |
---|
49 | rad_cyl.set_min(0.0); |
---|
50 | len_cyl = Parameter(400.0, true); |
---|
51 | len_cyl.set_min(0.0); |
---|
52 | rad_cap = Parameter(40.0); |
---|
53 | rad_cap.set_min(0.0); |
---|
54 | sld_capcyl = Parameter(1.0e-6); |
---|
55 | sld_solv = Parameter(6.3e-6); |
---|
56 | background = Parameter(0.0); |
---|
57 | theta = Parameter(0.0, true); |
---|
58 | phi = Parameter(0.0, true); |
---|
59 | } |
---|
60 | |
---|
61 | static double capcyl2d_kernel(double dp[], double q, double alpha) { |
---|
62 | int j; |
---|
63 | double Pi; |
---|
64 | double scale,contr,bkg,sldc,slds; |
---|
65 | double len,rad,hDist,endRad; |
---|
66 | int nordj=76; |
---|
67 | double zi=alpha,yyy,answer; //running tally of integration |
---|
68 | double summj,vaj,vbj,zij; //for the inner integration |
---|
69 | double arg1,arg2,inner,be; |
---|
70 | |
---|
71 | |
---|
72 | scale = dp[0]; |
---|
73 | rad = dp[1]; |
---|
74 | len = dp[2]; |
---|
75 | endRad = dp[3]; |
---|
76 | sldc = dp[4]; |
---|
77 | slds = dp[5]; |
---|
78 | bkg = dp[6]; |
---|
79 | |
---|
80 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
81 | |
---|
82 | contr = sldc-slds; |
---|
83 | |
---|
84 | Pi = 4.0*atan(1.0); |
---|
85 | vaj = -1.0*hDist/endRad; |
---|
86 | vbj = 1.0; //endpoints of inner integral |
---|
87 | |
---|
88 | summj=0.0; |
---|
89 | |
---|
90 | for(j=0;j<nordj;j++) { |
---|
91 | //20 gauss points for the inner integral |
---|
92 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
93 | yyy = Gauss76Wt[j] * ConvLens_kernel(dp,q,zij,zi); //uses the same Kernel as the Dumbbell, here L>0 |
---|
94 | summj += yyy; |
---|
95 | } |
---|
96 | //now calculate the value of the inner integral |
---|
97 | inner = (vbj-vaj)/2.0*summj; |
---|
98 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
99 | |
---|
100 | //now calculate outer integrand |
---|
101 | arg1 = q*len/2.0*cos(zi); |
---|
102 | arg2 = q*rad*sin(zi); |
---|
103 | yyy = inner; |
---|
104 | |
---|
105 | if(arg2 == 0) { |
---|
106 | be = 0.5; |
---|
107 | } else { |
---|
108 | be = NR_BessJ1(arg2)/arg2; |
---|
109 | } |
---|
110 | |
---|
111 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
112 | yyy += Pi*rad*rad*len*2.0*be; |
---|
113 | } else { |
---|
114 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
115 | } |
---|
116 | yyy *= yyy; //sin(zi); |
---|
117 | answer = yyy; |
---|
118 | |
---|
119 | |
---|
120 | answer /= Pi*rad*rad*len + 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume |
---|
121 | answer *= 1.0e8; //convert to cm^-1 |
---|
122 | answer *= contr*contr; |
---|
123 | answer *= scale; |
---|
124 | answer += bkg; |
---|
125 | |
---|
126 | return answer; |
---|
127 | } |
---|
128 | |
---|
129 | /** |
---|
130 | * Function to evaluate 2D scattering function |
---|
131 | * @param pars: parameters of the BarBell |
---|
132 | * @param q: q-value |
---|
133 | * @param q_x: q_x / q |
---|
134 | * @param q_y: q_y / q |
---|
135 | * @return: function value |
---|
136 | */ |
---|
137 | static double capcyl_analytical_2D_scaled(CapCylParameters *pars, double q, double q_x, double q_y) { |
---|
138 | double cyl_x, cyl_y;//, cyl_z; |
---|
139 | //double q_z; |
---|
140 | double alpha, cos_val; |
---|
141 | double answer; |
---|
142 | double dp[7]; |
---|
143 | //convert angle degree to radian |
---|
144 | double pi = 4.0*atan(1.0); |
---|
145 | double theta = pars->theta * pi/180.0; |
---|
146 | double phi = pars->phi * pi/180.0; |
---|
147 | |
---|
148 | dp[0] = pars->scale; |
---|
149 | dp[1] = pars->rad_cyl; |
---|
150 | dp[2] = pars->len_cyl; |
---|
151 | dp[3] = pars->rad_cap; |
---|
152 | dp[4] = pars->sld_capcyl; |
---|
153 | dp[5] = pars->sld_solv; |
---|
154 | dp[6] = pars->background; |
---|
155 | |
---|
156 | |
---|
157 | //double Pi = 4.0*atan(1.0); |
---|
158 | // Cylinder orientation |
---|
159 | cyl_x = cos(theta) * cos(phi); |
---|
160 | cyl_y = sin(theta); |
---|
161 | //cyl_z = -cos(theta) * sin(phi); |
---|
162 | |
---|
163 | // q vector |
---|
164 | //q_z = 0; |
---|
165 | |
---|
166 | // Compute the angle btw vector q and the |
---|
167 | // axis of the cylinder |
---|
168 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
169 | |
---|
170 | // The following test should always pass |
---|
171 | if (fabs(cos_val)>1.0) { |
---|
172 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
173 | return 0; |
---|
174 | } |
---|
175 | |
---|
176 | // Note: cos(alpha) = 0 and 1 will get an |
---|
177 | // undefined value from CylKernel |
---|
178 | alpha = acos( cos_val ); |
---|
179 | |
---|
180 | answer = capcyl2d_kernel(dp, q, alpha); |
---|
181 | |
---|
182 | |
---|
183 | return answer; |
---|
184 | |
---|
185 | } |
---|
186 | |
---|
187 | /** |
---|
188 | * Function to evaluate 2D scattering function |
---|
189 | * @param pars: parameters of the BarBell |
---|
190 | * @param q: q-value |
---|
191 | * @return: function value |
---|
192 | */ |
---|
193 | static double capcyl_analytical_2DXY(CapCylParameters *pars, double qx, double qy){ |
---|
194 | double q; |
---|
195 | q = sqrt(qx*qx+qy*qy); |
---|
196 | return capcyl_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
197 | } |
---|
198 | |
---|
199 | /** |
---|
200 | * Function to evaluate 1D scattering function |
---|
201 | * The NIST IGOR library is used for the actual calculation. |
---|
202 | * @param q: q-value |
---|
203 | * @return: function value |
---|
204 | */ |
---|
205 | double CappedCylinderModel :: operator()(double q) { |
---|
206 | double dp[7]; |
---|
207 | |
---|
208 | // Fill parameter array for IGOR library |
---|
209 | // Add the background after averaging |
---|
210 | dp[0] = scale(); |
---|
211 | dp[1] = rad_cyl(); |
---|
212 | dp[2] = len_cyl(); |
---|
213 | dp[3] = rad_cap(); |
---|
214 | dp[4] = sld_capcyl(); |
---|
215 | dp[5] = sld_solv(); |
---|
216 | dp[6] = 0.0; |
---|
217 | |
---|
218 | // Get the dispersion points for the rad_cyl |
---|
219 | vector<WeightPoint> weights_rad_cyl; |
---|
220 | rad_cyl.get_weights(weights_rad_cyl); |
---|
221 | // Get the dispersion points for the len_cyl |
---|
222 | vector<WeightPoint> weights_len_cyl; |
---|
223 | len_cyl.get_weights(weights_len_cyl); |
---|
224 | // Get the dispersion points for the rad_cap |
---|
225 | vector<WeightPoint> weights_rad_cap; |
---|
226 | rad_cap.get_weights(weights_rad_cap); |
---|
227 | |
---|
228 | // Perform the computation, with all weight points |
---|
229 | double sum = 0.0; |
---|
230 | double norm = 0.0; |
---|
231 | double vol = 0.0; |
---|
232 | double pi,hDist,result; |
---|
233 | double vol_i = 0.0; |
---|
234 | pi = 4.0*atan(1.0); |
---|
235 | // Loop over radius weight points |
---|
236 | for(size_t i=0; i<weights_rad_cyl.size(); i++) { |
---|
237 | dp[1] = weights_rad_cyl[i].value; |
---|
238 | for(size_t j=0; j<weights_len_cyl.size(); j++) { |
---|
239 | dp[2] = weights_len_cyl[j].value; |
---|
240 | for(size_t k=0; k<weights_rad_cap.size(); k++) { |
---|
241 | dp[3] = weights_rad_cap[k].value; |
---|
242 | |
---|
243 | //Un-normalize SphereForm by volume |
---|
244 | hDist = sqrt(fabs(dp[3]*dp[3]-dp[1]*dp[1])); |
---|
245 | vol_i = pi*dp[1]*dp[1]*dp[2]+2.0*pi/3.0*((dp[3]-hDist)*(dp[3]-hDist)* |
---|
246 | (2.0*dp[3]+hDist)); |
---|
247 | result = CappedCylinder(dp, q) * vol_i; |
---|
248 | // This FIXES a singualrity the kernel in libigor. |
---|
249 | if ( result == INFINITY || result == NAN){ |
---|
250 | result = 0.0; |
---|
251 | } |
---|
252 | sum += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight |
---|
253 | * result; |
---|
254 | //Find average volume |
---|
255 | vol += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight |
---|
256 | * vol_i; |
---|
257 | |
---|
258 | norm += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight; |
---|
259 | } |
---|
260 | } |
---|
261 | } |
---|
262 | |
---|
263 | if (vol != 0.0 && norm != 0.0) { |
---|
264 | //Re-normalize by avg volume |
---|
265 | sum = sum/(vol/norm);} |
---|
266 | return sum/norm + background(); |
---|
267 | } |
---|
268 | |
---|
269 | /** |
---|
270 | * Function to evaluate 2D scattering function |
---|
271 | * @param q_x: value of Q along x |
---|
272 | * @param q_y: value of Q along y |
---|
273 | * @return: function value |
---|
274 | */ |
---|
275 | double CappedCylinderModel :: operator()(double qx, double qy) { |
---|
276 | CapCylParameters dp; |
---|
277 | |
---|
278 | dp.scale = scale(); |
---|
279 | dp.rad_cyl = rad_cyl(); |
---|
280 | dp.len_cyl = len_cyl(); |
---|
281 | dp.rad_cap = rad_cap(); |
---|
282 | dp.sld_capcyl = sld_capcyl(); |
---|
283 | dp.sld_solv = sld_solv(); |
---|
284 | dp.background = 0.0; |
---|
285 | dp.theta = theta(); |
---|
286 | dp.phi = phi(); |
---|
287 | |
---|
288 | // Get the dispersion points for the rad_bar |
---|
289 | vector<WeightPoint> weights_rad_cyl; |
---|
290 | rad_cyl.get_weights(weights_rad_cyl); |
---|
291 | |
---|
292 | // Get the dispersion points for the len_bar |
---|
293 | vector<WeightPoint> weights_len_cyl; |
---|
294 | len_cyl.get_weights(weights_len_cyl); |
---|
295 | |
---|
296 | // Get the dispersion points for the rad_bell |
---|
297 | vector<WeightPoint> weights_rad_cap; |
---|
298 | rad_cap.get_weights(weights_rad_cap); |
---|
299 | |
---|
300 | // Get angular averaging for theta |
---|
301 | vector<WeightPoint> weights_theta; |
---|
302 | theta.get_weights(weights_theta); |
---|
303 | |
---|
304 | // Get angular averaging for phi |
---|
305 | vector<WeightPoint> weights_phi; |
---|
306 | phi.get_weights(weights_phi); |
---|
307 | |
---|
308 | |
---|
309 | // Perform the computation, with all weight points |
---|
310 | double sum = 0.0; |
---|
311 | double norm = 0.0; |
---|
312 | double norm_vol = 0.0; |
---|
313 | double vol = 0.0; |
---|
314 | double pi,hDist; |
---|
315 | double vol_i = 0.0; |
---|
316 | pi = 4.0*atan(1.0); |
---|
317 | |
---|
318 | // Loop over radius weight points |
---|
319 | for(size_t i=0; i<weights_rad_cyl.size(); i++) { |
---|
320 | dp.rad_cyl = weights_rad_cyl[i].value; |
---|
321 | for(size_t j=0; j<weights_len_cyl.size(); j++) { |
---|
322 | dp.len_cyl = weights_len_cyl[j].value; |
---|
323 | for(size_t k=0; k<weights_rad_cap.size(); k++) { |
---|
324 | dp.rad_cap = weights_rad_cap[k].value; |
---|
325 | // Average over theta distribution |
---|
326 | for(size_t l=0; l< weights_theta.size(); l++) { |
---|
327 | dp.theta = weights_theta[l].value; |
---|
328 | // Average over phi distribution |
---|
329 | for(size_t m=0; m< weights_phi.size(); m++) { |
---|
330 | dp.phi = weights_phi[m].value; |
---|
331 | //Un-normalize Form by volume |
---|
332 | hDist = sqrt(fabs(dp.rad_cap*dp.rad_cap-dp.rad_cyl*dp.rad_cyl)); |
---|
333 | vol_i = pi*dp.rad_cyl*dp.rad_cyl*dp.len_cyl+2.0*pi/3.0*((dp.rad_cap-hDist)*(dp.rad_cap-hDist)* |
---|
334 | (2*dp.rad_cap+hDist)); |
---|
335 | |
---|
336 | double _ptvalue = weights_rad_cyl[i].weight |
---|
337 | * weights_len_cyl[j].weight |
---|
338 | * weights_rad_cap[k].weight |
---|
339 | * weights_theta[l].weight |
---|
340 | * weights_phi[m].weight |
---|
341 | * vol_i |
---|
342 | * capcyl_analytical_2DXY(&dp, qx, qy); |
---|
343 | //* pow(weights_rad[i].value,3.0); |
---|
344 | // Consider when there is infinte or nan. |
---|
345 | if ( _ptvalue == INFINITY || _ptvalue == NAN){ |
---|
346 | _ptvalue = 0.0; |
---|
347 | } |
---|
348 | if (weights_theta.size()>1) { |
---|
349 | _ptvalue *= fabs(cos(weights_theta[l].value*pi/180.0)); |
---|
350 | } |
---|
351 | sum += _ptvalue; |
---|
352 | // This model dose not need the volume of spheres correction!!! |
---|
353 | //Find average volume |
---|
354 | vol += weights_rad_cyl[i].weight |
---|
355 | * weights_len_cyl[j].weight |
---|
356 | * weights_rad_cap[k].weight |
---|
357 | * vol_i; |
---|
358 | //Find norm for volume |
---|
359 | norm_vol += weights_rad_cyl[i].weight |
---|
360 | * weights_len_cyl[j].weight |
---|
361 | * weights_rad_cap[k].weight; |
---|
362 | |
---|
363 | norm += weights_rad_cyl[i].weight |
---|
364 | * weights_len_cyl[j].weight |
---|
365 | * weights_rad_cap[k].weight |
---|
366 | * weights_theta[l].weight |
---|
367 | * weights_phi[m].weight; |
---|
368 | } |
---|
369 | } |
---|
370 | } |
---|
371 | } |
---|
372 | } |
---|
373 | // Averaging in theta needs an extra normalization |
---|
374 | // factor to account for the sin(theta) term in the |
---|
375 | // integration (see documentation). |
---|
376 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
377 | |
---|
378 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
379 | //Re-normalize by avg volume |
---|
380 | sum = sum/(vol/norm_vol);} |
---|
381 | |
---|
382 | return sum/norm + background(); |
---|
383 | } |
---|
384 | |
---|
385 | /** |
---|
386 | * Function to evaluate 2D scattering function |
---|
387 | * @param pars: parameters of the SCCrystal |
---|
388 | * @param q: q-value |
---|
389 | * @param phi: angle phi |
---|
390 | * @return: function value |
---|
391 | */ |
---|
392 | double CappedCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
393 | return (*this).operator()(q); |
---|
394 | } |
---|
395 | |
---|
396 | /** |
---|
397 | * Function to calculate effective radius |
---|
398 | * @return: effective radius value |
---|
399 | */ |
---|
400 | double CappedCylinderModel :: calculate_ER() { |
---|
401 | //NOT implemented yet!!! |
---|
402 | return 0.0; |
---|
403 | } |
---|
404 | double CappedCylinderModel :: calculate_VR() { |
---|
405 | return 1.0; |
---|
406 | } |
---|