1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | using namespace std; |
---|
26 | |
---|
27 | extern "C" { |
---|
28 | #include "libCylinder.h" |
---|
29 | #include "GaussWeights.h" |
---|
30 | #include "barbell.h" |
---|
31 | } |
---|
32 | |
---|
33 | BarBellModel :: BarBellModel() { |
---|
34 | scale = Parameter(1.0); |
---|
35 | rad_bar = Parameter(20.0); |
---|
36 | rad_bar.set_min(0.0); |
---|
37 | len_bar = Parameter(400.0, true); |
---|
38 | len_bar.set_min(0.0); |
---|
39 | rad_bell = Parameter(40.0); |
---|
40 | rad_bell.set_min(0.0); |
---|
41 | sld_barbell = Parameter(1.0e-6); |
---|
42 | sld_solv = Parameter(6.3e-6); |
---|
43 | background = Parameter(0.0); |
---|
44 | theta = Parameter(0.0, true); |
---|
45 | phi = Parameter(0.0, true); |
---|
46 | } |
---|
47 | |
---|
48 | double bar2d_kernel(double dp[], double q, double alpha) { |
---|
49 | int j; |
---|
50 | double Pi; |
---|
51 | double scale,contr,bkg,sldc,slds; |
---|
52 | double len,rad,hDist,endRad; |
---|
53 | int nordj=76; |
---|
54 | double zi=alpha,yyy,answer; //running tally of integration |
---|
55 | double summj,vaj,vbj,zij; //for the inner integration |
---|
56 | double arg1,arg2,inner,be; |
---|
57 | |
---|
58 | |
---|
59 | scale = dp[0]; |
---|
60 | rad = dp[1]; |
---|
61 | len = dp[2]; |
---|
62 | endRad = dp[3]; |
---|
63 | sldc = dp[4]; |
---|
64 | slds = dp[5]; |
---|
65 | bkg = dp[6]; |
---|
66 | |
---|
67 | hDist = sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
68 | |
---|
69 | contr = sldc-slds; |
---|
70 | |
---|
71 | Pi = 4.0*atan(1.0); |
---|
72 | vaj = -1.0*hDist/endRad; |
---|
73 | vbj = 1.0; //endpoints of inner integral |
---|
74 | |
---|
75 | summj=0.0; |
---|
76 | |
---|
77 | for(j=0;j<nordj;j++) { |
---|
78 | //20 gauss points for the inner integral |
---|
79 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
80 | yyy = Gauss76Wt[j] * Dumb_kernel(dp,q,zij,zi); //uses the same Kernel as the Dumbbell, here L>0 |
---|
81 | summj += yyy; |
---|
82 | } |
---|
83 | //now calculate the value of the inner integral |
---|
84 | inner = (vbj-vaj)/2.0*summj; |
---|
85 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
86 | |
---|
87 | //now calculate outer integrand |
---|
88 | arg1 = q*len/2.0*cos(zi); |
---|
89 | arg2 = q*rad*sin(zi); |
---|
90 | yyy = inner; |
---|
91 | |
---|
92 | if(arg2 == 0) { |
---|
93 | be = 0.5; |
---|
94 | } else { |
---|
95 | be = NR_BessJ1(arg2)/arg2; |
---|
96 | } |
---|
97 | |
---|
98 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
99 | yyy += Pi*rad*rad*len*2.0*be; |
---|
100 | } else { |
---|
101 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
102 | } |
---|
103 | yyy *= yyy; //sin(zi); |
---|
104 | answer = yyy; |
---|
105 | |
---|
106 | |
---|
107 | answer /= Pi*rad*rad*len + 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume |
---|
108 | answer *= 1.0e8; //convert to cm^-1 |
---|
109 | answer *= contr*contr; |
---|
110 | answer *= scale; |
---|
111 | answer += bkg; |
---|
112 | |
---|
113 | return answer; |
---|
114 | } |
---|
115 | /** |
---|
116 | * Function to evaluate 1D scattering function |
---|
117 | * The NIST IGOR library is used for the actual calculation. |
---|
118 | * @param q: q-value |
---|
119 | * @return: function value |
---|
120 | */ |
---|
121 | double BarBellModel :: operator()(double q) { |
---|
122 | double dp[7]; |
---|
123 | |
---|
124 | // Fill parameter array for IGOR library |
---|
125 | // Add the background after averaging |
---|
126 | dp[0] = scale(); |
---|
127 | dp[1] = rad_bar(); |
---|
128 | dp[2] = len_bar(); |
---|
129 | dp[3] = rad_bell(); |
---|
130 | dp[4] = sld_barbell(); |
---|
131 | dp[5] = sld_solv(); |
---|
132 | dp[6] = 0.0; |
---|
133 | |
---|
134 | // Get the dispersion points for the rad_bar |
---|
135 | vector<WeightPoint> weights_rad_bar; |
---|
136 | rad_bar.get_weights(weights_rad_bar); |
---|
137 | // Get the dispersion points for the len_bar |
---|
138 | vector<WeightPoint> weights_len_bar; |
---|
139 | len_bar.get_weights(weights_len_bar); |
---|
140 | // Get the dispersion points for the rad_bell |
---|
141 | vector<WeightPoint> weights_rad_bell; |
---|
142 | rad_bell.get_weights(weights_rad_bell); |
---|
143 | |
---|
144 | // Perform the computation, with all weight points |
---|
145 | double sum = 0.0; |
---|
146 | double norm = 0.0; |
---|
147 | double vol = 0.0; |
---|
148 | double pi,hDist,result; |
---|
149 | double vol_i = 0.0; |
---|
150 | pi = 4.0*atan(1.0); |
---|
151 | // Loop over radius weight points |
---|
152 | for(size_t i=0; i<weights_rad_bar.size(); i++) { |
---|
153 | dp[1] = weights_rad_bar[i].value; |
---|
154 | for(size_t j=0; j<weights_len_bar.size(); j++) { |
---|
155 | dp[2] = weights_len_bar[j].value; |
---|
156 | for(size_t k=0; k<weights_rad_bell.size(); k++) { |
---|
157 | dp[3] = weights_rad_bell[k].value; |
---|
158 | |
---|
159 | //Un-normalize SphereForm by volume |
---|
160 | hDist = sqrt(fabs(dp[3]*dp[3]-dp[1]*dp[1])); |
---|
161 | vol_i = pi*dp[1]*dp[1]*dp[2]+2.0*pi*(2.0*dp[3]*dp[3]*dp[3]/3.0 |
---|
162 | +dp[3]*dp[3]*hDist-hDist*hDist*hDist/3.0); |
---|
163 | result = Barbell(dp, q) * vol_i; |
---|
164 | // This FIXES a singualrity the kernel in libigor. |
---|
165 | if ( result == INFINITY || result == NAN){ |
---|
166 | result = 0.0; |
---|
167 | } |
---|
168 | sum += weights_rad_bar[i].weight*weights_len_bar[j].weight*weights_rad_bell[k].weight |
---|
169 | * result; |
---|
170 | //Find average volume |
---|
171 | vol += weights_rad_bar[i].weight*weights_len_bar[j].weight*weights_rad_bell[k].weight |
---|
172 | * vol_i; |
---|
173 | |
---|
174 | norm += weights_rad_bar[i].weight*weights_len_bar[j].weight*weights_rad_bell[k].weight; |
---|
175 | } |
---|
176 | } |
---|
177 | } |
---|
178 | |
---|
179 | if (vol != 0.0 && norm != 0.0) { |
---|
180 | //Re-normalize by avg volume |
---|
181 | sum = sum/(vol/norm);} |
---|
182 | return sum/norm + background(); |
---|
183 | } |
---|
184 | |
---|
185 | /** |
---|
186 | * Function to evaluate 2D scattering function |
---|
187 | * @param q_x: value of Q along x |
---|
188 | * @param q_y: value of Q along y |
---|
189 | * @return: function value |
---|
190 | */ |
---|
191 | double BarBellModel :: operator()(double qx, double qy) { |
---|
192 | double dp[7]; |
---|
193 | |
---|
194 | // Fill parameter array for IGOR library |
---|
195 | // Add the background after averaging |
---|
196 | dp[0] = scale(); |
---|
197 | dp[1] = rad_bar(); |
---|
198 | dp[2] = len_bar(); |
---|
199 | dp[3] = rad_bell(); |
---|
200 | dp[4] = sld_barbell(); |
---|
201 | dp[5] = sld_solv(); |
---|
202 | dp[6] = 0.0; |
---|
203 | |
---|
204 | double _theta = theta(); |
---|
205 | double _phi = phi(); |
---|
206 | |
---|
207 | // Get the dispersion points for the rad_bar |
---|
208 | vector<WeightPoint> weights_rad_bar; |
---|
209 | rad_bar.get_weights(weights_rad_bar); |
---|
210 | |
---|
211 | // Get the dispersion points for the len_bar |
---|
212 | vector<WeightPoint> weights_len_bar; |
---|
213 | len_bar.get_weights(weights_len_bar); |
---|
214 | |
---|
215 | // Get the dispersion points for the rad_bell |
---|
216 | vector<WeightPoint> weights_rad_bell; |
---|
217 | rad_bell.get_weights(weights_rad_bell); |
---|
218 | |
---|
219 | // Get angular averaging for theta |
---|
220 | vector<WeightPoint> weights_theta; |
---|
221 | theta.get_weights(weights_theta); |
---|
222 | |
---|
223 | // Get angular averaging for phi |
---|
224 | vector<WeightPoint> weights_phi; |
---|
225 | phi.get_weights(weights_phi); |
---|
226 | |
---|
227 | |
---|
228 | // Perform the computation, with all weight points |
---|
229 | double sum = 0.0; |
---|
230 | double norm = 0.0; |
---|
231 | double norm_vol = 0.0; |
---|
232 | double vol = 0.0; |
---|
233 | double pi,hDist; |
---|
234 | double vol_i = 0.0; |
---|
235 | pi = 4.0*atan(1.0); |
---|
236 | |
---|
237 | // Loop over radius weight points |
---|
238 | for(size_t i=0; i<weights_rad_bar.size(); i++) { |
---|
239 | dp[1] = weights_rad_bar[i].value; |
---|
240 | for(size_t j=0; j<weights_len_bar.size(); j++) { |
---|
241 | dp[2] = weights_len_bar[j].value; |
---|
242 | for(size_t k=0; k<weights_rad_bell.size(); k++) { |
---|
243 | dp[3] = weights_rad_bell[k].value; |
---|
244 | // Average over theta distribution |
---|
245 | for(size_t l=0; l< weights_theta.size(); l++) { |
---|
246 | _theta = weights_theta[l].value; |
---|
247 | // Average over phi distribution |
---|
248 | for(size_t m=0; m< weights_phi.size(); m++) { |
---|
249 | _phi = weights_phi[m].value; |
---|
250 | //Un-normalize Form by volume |
---|
251 | hDist = sqrt(fabs(dp[3]*dp[3]-dp[1]*dp[1])); |
---|
252 | vol_i = pi*dp[1]*dp[1]*dp[2]+2.0*pi*(2.0*dp[3]*dp[3]*dp[3]/3.0 |
---|
253 | +dp[3]*dp[3]*hDist-hDist*hDist*hDist/3.0); |
---|
254 | |
---|
255 | const double q = sqrt(qx*qx+qy*qy); |
---|
256 | //convert angle degree to radian |
---|
257 | const double pi = 4.0*atan(1.0); |
---|
258 | |
---|
259 | // Cylinder orientation |
---|
260 | const double cyl_x = cos(_theta * pi/180.0) * cos(_phi * pi/180.0); |
---|
261 | const double cyl_y = sin(_theta * pi/180.0); |
---|
262 | |
---|
263 | // Compute the angle btw vector q and the |
---|
264 | // axis of the cylinder (assume qz = 0) |
---|
265 | const double cos_val = cyl_x*qx + cyl_y*qy; |
---|
266 | |
---|
267 | // The following test should always pass |
---|
268 | if (fabs(cos_val)>1.0) { |
---|
269 | return 0; |
---|
270 | } |
---|
271 | |
---|
272 | // Note: cos(alpha) = 0 and 1 will get an |
---|
273 | // undefined value from CylKernel |
---|
274 | const double alpha = acos( cos_val ); |
---|
275 | |
---|
276 | // Call the IGOR library function to get the kernel |
---|
277 | const double output = bar2d_kernel(dp, q, alpha)/sin(alpha); |
---|
278 | |
---|
279 | double _ptvalue = weights_rad_bar[i].weight |
---|
280 | * weights_len_bar[j].weight |
---|
281 | * weights_rad_bell[k].weight |
---|
282 | * weights_theta[l].weight |
---|
283 | * weights_phi[m].weight |
---|
284 | * vol_i |
---|
285 | * output; |
---|
286 | //* pow(weights_rad[i].value,3.0); |
---|
287 | |
---|
288 | // Consider when there is infinte or nan. |
---|
289 | if ( _ptvalue == INFINITY || _ptvalue == NAN){ |
---|
290 | _ptvalue = 0.0; |
---|
291 | } |
---|
292 | if (weights_theta.size()>1) { |
---|
293 | _ptvalue *= fabs(cos(weights_theta[l].value*pi/180.0)); |
---|
294 | } |
---|
295 | sum += _ptvalue; |
---|
296 | // This model dose not need the volume of spheres correction!!! |
---|
297 | //Find average volume |
---|
298 | vol += weights_rad_bar[i].weight |
---|
299 | * weights_len_bar[j].weight |
---|
300 | * weights_rad_bell[k].weight |
---|
301 | * vol_i; |
---|
302 | //Find norm for volume |
---|
303 | norm_vol += weights_rad_bar[i].weight |
---|
304 | * weights_len_bar[j].weight |
---|
305 | * weights_rad_bell[k].weight; |
---|
306 | |
---|
307 | norm += weights_rad_bar[i].weight |
---|
308 | * weights_len_bar[j].weight |
---|
309 | * weights_rad_bell[k].weight |
---|
310 | * weights_theta[l].weight |
---|
311 | * weights_phi[m].weight; |
---|
312 | } |
---|
313 | } |
---|
314 | } |
---|
315 | } |
---|
316 | } |
---|
317 | // Averaging in theta needs an extra normalization |
---|
318 | // factor to account for the sin(theta) term in the |
---|
319 | // integration (see documentation). |
---|
320 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
321 | |
---|
322 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
323 | //Re-normalize by avg volume |
---|
324 | sum = sum/(vol/norm_vol);} |
---|
325 | |
---|
326 | return sum/norm + background(); |
---|
327 | } |
---|
328 | |
---|
329 | /** |
---|
330 | * Function to evaluate 2D scattering function |
---|
331 | * @param pars: parameters of the SCCrystal |
---|
332 | * @param q: q-value |
---|
333 | * @param phi: angle phi |
---|
334 | * @return: function value |
---|
335 | */ |
---|
336 | double BarBellModel :: evaluate_rphi(double q, double phi) { |
---|
337 | return (*this).operator()(q); |
---|
338 | } |
---|
339 | |
---|
340 | /** |
---|
341 | * Function to calculate effective radius |
---|
342 | * @return: effective radius value |
---|
343 | */ |
---|
344 | double BarBellModel :: calculate_ER() { |
---|
345 | //NOT implemented yet!!! |
---|
346 | return 0.0; |
---|
347 | } |
---|
348 | /** |
---|
349 | * Function to calculate volf_ratio for shell/tot |
---|
350 | * @return: volf_ratio value |
---|
351 | */ |
---|
352 | double BarBellModel :: calculate_VR() { |
---|
353 | return 1.0; |
---|
354 | } |
---|