[79492222] | 1 | from sas.models.BaseComponent import BaseComponent |
---|
[18695bf] | 2 | from math import exp, sqrt |
---|
| 3 | from numpy import power |
---|
[29100cb] | 4 | from scipy.special import erf |
---|
| 5 | max_level_n = 7 |
---|
| 6 | class UnifiedPowerRgModel(BaseComponent): |
---|
| 7 | """ |
---|
| 8 | This model is based on Exponential/Power-law fit method developed |
---|
| 9 | by G. Beaucage |
---|
| 10 | """ |
---|
| 11 | def __init__(self, multfactor=1): |
---|
| 12 | BaseComponent.__init__(self) |
---|
| 13 | """ |
---|
[7fdb332] | 14 | :param multfactor: number of levels in the model, |
---|
| 15 | assumes 0<= level# <=5. |
---|
[29100cb] | 16 | """ |
---|
| 17 | |
---|
| 18 | ## Setting model name model description |
---|
| 19 | self.name = "UnifiedPowerRg" |
---|
[7fdb332] | 20 | self.description = """ |
---|
| 21 | Multiple Levels of Unified Exponential/Power-law Method. |
---|
[29100cb] | 22 | Up to Level 6 is provided. |
---|
| 23 | Note; the additional Level 0 is an inverse linear function, |
---|
| 24 | i.e., y = scale/x + background. |
---|
| 25 | The Level N is defined as |
---|
| 26 | y = background + scale * Sum(1..N)[G_i*exp(-x^2*Rg_i^2/3) |
---|
| 27 | + B_i/x^(power_i)*(erf(x*Rg_i/sqrt(6))^(3*power_i))]. |
---|
| 28 | Ref: |
---|
| 29 | G. Beaucage (1995). J. Appl. Cryst., vol. 28, p717-728. |
---|
| 30 | G. Beaucage (1996). J. Appl. Cryst., vol. 29, p134-146. |
---|
| 31 | """ |
---|
| 32 | self.level_num = multfactor |
---|
| 33 | ## Define parameters |
---|
| 34 | self.params = {} |
---|
| 35 | |
---|
| 36 | ## Parameter details [units, min, max] |
---|
| 37 | self.details = {} |
---|
| 38 | |
---|
| 39 | # non-fittable parameters |
---|
| 40 | self.non_fittable = [] |
---|
| 41 | |
---|
| 42 | # list of function in order of the function number |
---|
| 43 | self.fun_list = self._get_func_list() |
---|
| 44 | ## dispersion |
---|
| 45 | self._set_dispersion() |
---|
| 46 | ## Define parameters |
---|
| 47 | self._set_params() |
---|
| 48 | |
---|
| 49 | ## Parameter details [units, min, max] |
---|
| 50 | self._set_details() |
---|
| 51 | |
---|
| 52 | #list of parameter that can be fitted |
---|
| 53 | self._set_fixed_params() |
---|
| 54 | |
---|
| 55 | ## functional multiplicity of the model |
---|
[7fdb332] | 56 | self.multiplicity_info = [max_level_n, "Level No.:", [], []] |
---|
[29100cb] | 57 | |
---|
[7fdb332] | 58 | def _unifiedpowerrg(self, x): |
---|
[29100cb] | 59 | """ |
---|
| 60 | Scattering function |
---|
| 61 | |
---|
| 62 | :param x: q value(s) |
---|
| 63 | :return answer: output of the function |
---|
| 64 | """ |
---|
| 65 | # common parameters for the model functions |
---|
| 66 | bkg = self.params['background'] |
---|
| 67 | scale = self.params['scale'] |
---|
| 68 | l_num = self.level_num |
---|
| 69 | # set default output |
---|
| 70 | answer = 0.0 |
---|
| 71 | # Set constant on lebel zero (special case) |
---|
| 72 | if l_num == 0: |
---|
| 73 | answer = scale / x + bkg |
---|
| 74 | return answer |
---|
| 75 | # rearrange the parameters for the given label no. |
---|
[7fdb332] | 76 | for ind in range(1, l_num+1): |
---|
[29100cb] | 77 | # get exp term |
---|
[7fdb332] | 78 | exp_now = exp(-power(x*self.params['Rg%s'% ind], 2)/3.0) |
---|
[29100cb] | 79 | # get erf term |
---|
| 80 | erf_now = erf(x*self.params['Rg%s'% ind]/sqrt(6.0)) |
---|
| 81 | # get power term |
---|
[7fdb332] | 82 | pow_now = power((erf_now*erf_now*erf_now/x), |
---|
| 83 | self.params['power%s'% ind]) |
---|
[29100cb] | 84 | # get next exp term only if it exists |
---|
| 85 | try: |
---|
[7fdb332] | 86 | exp_next = exp(-power(x*self.params['Rg%s'% (ind+1)], 2)/3.0) |
---|
[29100cb] | 87 | except: |
---|
| 88 | exp_next = 1.0 |
---|
| 89 | # get to the calculation |
---|
[7fdb332] | 90 | answer += self.params['G%s'% ind]*exp_now + \ |
---|
| 91 | self.params['B%s'% ind] * exp_next * pow_now |
---|
[29100cb] | 92 | # take care of the singular point |
---|
| 93 | if x == 0.0: |
---|
| 94 | answer = 0.0 |
---|
[7fdb332] | 95 | for ind in range(1, l_num+1): |
---|
[29100cb] | 96 | answer += self.params['G%s'% ind] |
---|
| 97 | # get scaled |
---|
| 98 | answer *= scale |
---|
| 99 | # add background |
---|
| 100 | answer += bkg |
---|
| 101 | return answer |
---|
| 102 | |
---|
| 103 | def _set_dispersion(self): |
---|
| 104 | """ |
---|
| 105 | model dispersions |
---|
| 106 | """ |
---|
| 107 | ##set dispersion from model |
---|
| 108 | self.dispersion = {} |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | def _set_params(self): |
---|
| 112 | """ |
---|
| 113 | Concatenate the parameters of the model to create |
---|
| 114 | this model parameters |
---|
| 115 | """ |
---|
| 116 | # common parameters for the model functions |
---|
| 117 | self.params['background'] = 0.0 |
---|
| 118 | self.params['scale'] = 1.0 |
---|
| 119 | l_num = self.level_num |
---|
| 120 | # rearrange the parameters for the given label no. |
---|
[7fdb332] | 121 | for ind in range(0, l_num+1): |
---|
[29100cb] | 122 | if ind == 0: |
---|
| 123 | continue |
---|
| 124 | # multiple factor for higher labels |
---|
| 125 | mult = 1.0 |
---|
| 126 | mul_pow = 1.0 |
---|
| 127 | if ind != l_num: |
---|
| 128 | mult = 10.0 * 4.0/3.0 |
---|
| 129 | mul_pow = 2.0 |
---|
| 130 | # Set reasonably define default values that consistent |
---|
| 131 | # w/NIST for label #1 |
---|
[7fdb332] | 132 | self.params['G%s'% ind] = 0.3 * mult * pow(10, \ |
---|
[29100cb] | 133 | (l_num+1 - float('%s'% ind))) |
---|
[7fdb332] | 134 | self.params['Rg%s'% ind] = 21.0 / mult * pow(10, \ |
---|
[29100cb] | 135 | (l_num - float('%s'% ind))) |
---|
[7fdb332] | 136 | self.params['B%s'% ind] = 6e-03/mult * pow(10, \ |
---|
[29100cb] | 137 | -(l_num+1 - float('%s'% ind))) |
---|
| 138 | self.params['power%s'% ind] = 2.0 * mul_pow |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | def _set_details(self): |
---|
| 142 | """ |
---|
| 143 | Concatenate details of the original model to create |
---|
| 144 | this model details |
---|
| 145 | """ |
---|
| 146 | # common parameters for the model functions |
---|
| 147 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 148 | self.details['scale'] = ['', None, None] |
---|
| 149 | # rearrange the parameters for the given label no. |
---|
[7fdb332] | 150 | for ind in range(0, self.level_num+1): |
---|
[29100cb] | 151 | if ind == 0: |
---|
| 152 | continue |
---|
| 153 | self.details['G%s'% ind] = ['[1/(cm.sr)]', None, None] |
---|
| 154 | self.details['Rg%s'% ind] = ['[A]', None, None] |
---|
| 155 | self.details['B%s'% ind] = ['[1/(cm.sr)]', None, None] |
---|
| 156 | self.details['power%s'% ind] = ['', None, None] |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | def _get_func_list(self): |
---|
| 160 | """ |
---|
| 161 | Get the list of functions in each cases |
---|
| 162 | """ |
---|
| 163 | func_list = {} |
---|
| 164 | return func_list |
---|
| 165 | |
---|
| 166 | def getProfile(self): |
---|
| 167 | """ |
---|
| 168 | Get SLD profile |
---|
| 169 | |
---|
| 170 | : return: None, No SLD profile supporting for this model |
---|
| 171 | """ |
---|
| 172 | return None |
---|
| 173 | |
---|
| 174 | def setParam(self, name, value): |
---|
| 175 | """ |
---|
| 176 | Set the value of a model parameter |
---|
| 177 | |
---|
| 178 | : param name: name of the parameter |
---|
| 179 | : param value: value of the parameter |
---|
| 180 | """ |
---|
| 181 | # set param to new model |
---|
| 182 | self._setParamHelper(name, value) |
---|
| 183 | |
---|
| 184 | def _setParamHelper(self, name, value): |
---|
| 185 | """ |
---|
| 186 | Helper function to setParam |
---|
| 187 | """ |
---|
| 188 | |
---|
| 189 | # Look for standard parameter |
---|
| 190 | for item in self.params.keys(): |
---|
| 191 | if item.lower()==name.lower(): |
---|
| 192 | self.params[item] = value |
---|
| 193 | return |
---|
| 194 | |
---|
| 195 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | def _set_fixed_params(self): |
---|
| 199 | """ |
---|
| 200 | Fill the self.fixed list with the model fixed list |
---|
| 201 | """ |
---|
| 202 | pass |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | def run(self, x = 0.0): |
---|
| 206 | """ |
---|
| 207 | Evaluate the model |
---|
| 208 | |
---|
| 209 | : param x: input q-value (float or [float, float] as [r, theta]) |
---|
| 210 | : return: (DAB value) |
---|
| 211 | """ |
---|
| 212 | if x.__class__.__name__ == 'list': |
---|
| 213 | # Take absolute value of Q, since this model is really meant to |
---|
| 214 | # be defined in 1D for a given length of Q |
---|
| 215 | #qx = math.fabs(x[0]*math.cos(x[1])) |
---|
| 216 | #qy = math.fabs(x[0]*math.sin(x[1])) |
---|
| 217 | return self._unifiedpowerrg(x) |
---|
| 218 | elif x.__class__.__name__ == 'tuple': |
---|
[7fdb332] | 219 | msg = "Tuples are not allowed as input to BaseComponent models" |
---|
| 220 | raise ValueError, msg |
---|
[29100cb] | 221 | else: |
---|
| 222 | return self._unifiedpowerrg(x) |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | return self._unifiedpowerrg(x) |
---|
| 226 | |
---|
| 227 | def runXY(self, x = 0.0): |
---|
| 228 | """ |
---|
| 229 | Evaluate the model |
---|
| 230 | |
---|
| 231 | : param x: input q-value (float or [float, float] as [qx, qy]) |
---|
| 232 | : return: DAB value |
---|
| 233 | """ |
---|
| 234 | if x.__class__.__name__ == 'list': |
---|
[eace08e] | 235 | q = sqrt(x[0]**2 + x[1]**2) |
---|
[29100cb] | 236 | return self._unifiedpowerrg(x) |
---|
| 237 | elif x.__class__.__name__ == 'tuple': |
---|
[7fdb332] | 238 | msg = "Tuples are not allowed as input to BaseComponent models" |
---|
| 239 | raise ValueError, msg |
---|
[29100cb] | 240 | else: |
---|
| 241 | return self._unifiedpowerrg(x) |
---|
| 242 | |
---|
| 243 | def calculate_ER(self): |
---|
| 244 | """ |
---|
| 245 | """ |
---|
| 246 | # Not implemented!!! |
---|
| 247 | pass |
---|
| 248 | |
---|
| 249 | def set_dispersion(self, parameter, dispersion): |
---|
| 250 | """ |
---|
| 251 | Set the dispersion object for a model parameter |
---|
| 252 | |
---|
| 253 | : param parameter: name of the parameter [string] |
---|
| 254 | :dispersion: dispersion object of type DispersionModel |
---|
| 255 | """ |
---|
| 256 | pass |
---|