[c9636f7] | 1 | |
---|
[79492222] | 2 | from sas.models.BaseComponent import BaseComponent |
---|
[7fdb332] | 3 | #import numpy, math |
---|
[a68efd1] | 4 | import copy |
---|
[79492222] | 5 | #from sas.models.pluginmodel import Model1DPlugin |
---|
[c9636f7] | 6 | class MultiplicationModel(BaseComponent): |
---|
[ac7be54] | 7 | r""" |
---|
| 8 | Use for P(Q)\*S(Q); function call must be in the order of P(Q) and then S(Q): |
---|
[c52f66f] | 9 | The model parameters are combined from both models, P(Q) and S(Q), except 1) 'effect_radius' of S(Q) |
---|
| 10 | which will be calculated from P(Q) via calculate_ER(), |
---|
| 11 | and 2) 'scale' in P model which is synchronized w/ volfraction in S |
---|
[fb3f9af] | 12 | then P*S is multiplied by a new parameter, 'scale_factor'. |
---|
[1affe64] | 13 | The polydispersion is applicable only to P(Q), not to S(Q). |
---|
[fb3f9af] | 14 | |
---|
| 15 | .. note:: P(Q) refers to 'form factor' model while S(Q) does to 'structure factor'. |
---|
[c9636f7] | 16 | """ |
---|
[1affe64] | 17 | def __init__(self, p_model, s_model ): |
---|
[c9636f7] | 18 | BaseComponent.__init__(self) |
---|
[1affe64] | 19 | """ |
---|
[7fdb332] | 20 | :param p_model: form factor, P(Q) |
---|
| 21 | :param s_model: structure factor, S(Q) |
---|
[1affe64] | 22 | """ |
---|
[c9636f7] | 23 | |
---|
[8cfdd5e] | 24 | ## Setting model name model description |
---|
[7fdb332] | 25 | self.description = "" |
---|
[1affe64] | 26 | self.name = p_model.name +" * "+ s_model.name |
---|
[7fdb332] | 27 | self.description= self.name + "\n" |
---|
[1affe64] | 28 | self.fill_description(p_model, s_model) |
---|
[c52f66f] | 29 | |
---|
| 30 | ## Define parameters |
---|
| 31 | self.params = {} |
---|
| 32 | |
---|
| 33 | ## Parameter details [units, min, max] |
---|
| 34 | self.details = {} |
---|
[35aface] | 35 | |
---|
[1affe64] | 36 | ##models |
---|
[7fdb332] | 37 | self.p_model = p_model |
---|
| 38 | self.s_model = s_model |
---|
[318b5bbb] | 39 | self.magnetic_params = [] |
---|
[c9636f7] | 40 | ## dispersion |
---|
| 41 | self._set_dispersion() |
---|
| 42 | ## Define parameters |
---|
| 43 | self._set_params() |
---|
[c52f66f] | 44 | ## New parameter:Scaling factor |
---|
| 45 | self.params['scale_factor'] = 1 |
---|
| 46 | |
---|
[c9636f7] | 47 | ## Parameter details [units, min, max] |
---|
| 48 | self._set_details() |
---|
[c52f66f] | 49 | self.details['scale_factor'] = ['', None, None] |
---|
| 50 | |
---|
[c9636f7] | 51 | #list of parameter that can be fitted |
---|
| 52 | self._set_fixed_params() |
---|
[5fc8e22] | 53 | ## parameters with orientation |
---|
[1affe64] | 54 | for item in self.p_model.orientation_params: |
---|
[5fc8e22] | 55 | self.orientation_params.append(item) |
---|
[318b5bbb] | 56 | for item in self.p_model.magnetic_params: |
---|
| 57 | self.magnetic_params.append(item) |
---|
[1affe64] | 58 | for item in self.s_model.orientation_params: |
---|
[5fc8e22] | 59 | if not item in self.orientation_params: |
---|
[8b677ec] | 60 | self.orientation_params.append(item) |
---|
[35aface] | 61 | # get multiplicity if model provide it, else 1. |
---|
| 62 | try: |
---|
| 63 | multiplicity = p_model.multiplicity |
---|
| 64 | except: |
---|
| 65 | multiplicity = 1 |
---|
| 66 | ## functional multiplicity of the model |
---|
[8960479] | 67 | self.multiplicity = multiplicity |
---|
| 68 | |
---|
| 69 | # non-fittable parameters |
---|
| 70 | self.non_fittable = p_model.non_fittable |
---|
| 71 | self.multiplicity_info = [] |
---|
| 72 | self.fun_list = {} |
---|
| 73 | if self.non_fittable > 1: |
---|
| 74 | try: |
---|
| 75 | self.multiplicity_info = p_model.multiplicity_info |
---|
| 76 | self.fun_list = p_model.fun_list |
---|
| 77 | except: |
---|
| 78 | pass |
---|
| 79 | else: |
---|
| 80 | self.multiplicity_info = [] |
---|
| 81 | |
---|
[a68efd1] | 82 | def _clone(self, obj): |
---|
| 83 | """ |
---|
[fb3f9af] | 84 | Internal utility function to copy the internal data members to a |
---|
| 85 | fresh copy. |
---|
[a68efd1] | 86 | """ |
---|
| 87 | obj.params = copy.deepcopy(self.params) |
---|
| 88 | obj.description = copy.deepcopy(self.description) |
---|
| 89 | obj.details = copy.deepcopy(self.details) |
---|
| 90 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
[1affe64] | 91 | obj.p_model = self.p_model.clone() |
---|
| 92 | obj.s_model = self.s_model.clone() |
---|
[fe9c19b4] | 93 | #obj = copy.deepcopy(self) |
---|
[a68efd1] | 94 | return obj |
---|
| 95 | |
---|
| 96 | |
---|
[c9636f7] | 97 | def _set_dispersion(self): |
---|
| 98 | """ |
---|
[fb3f9af] | 99 | combine the two models' dispersions. Polydispersity should not be |
---|
| 100 | applied to s_model |
---|
[c9636f7] | 101 | """ |
---|
[1affe64] | 102 | ##set dispersion only from p_model |
---|
| 103 | for name , value in self.p_model.dispersion.iteritems(): |
---|
[7fdb332] | 104 | self.dispersion[name] = value |
---|
[a1b2471] | 105 | |
---|
| 106 | def getProfile(self): |
---|
| 107 | """ |
---|
| 108 | Get SLD profile of p_model if exists |
---|
| 109 | |
---|
[fb3f9af] | 110 | :return: (r, beta) where r is a list of radius of the transition points\ |
---|
| 111 | beta is a list of the corresponding SLD values |
---|
| 112 | |
---|
| 113 | .. note:: This works only for func_shell num = 2 (exp function). |
---|
[a1b2471] | 114 | """ |
---|
| 115 | try: |
---|
[7fdb332] | 116 | x, y = self.p_model.getProfile() |
---|
[a1b2471] | 117 | except: |
---|
| 118 | x = None |
---|
| 119 | y = None |
---|
| 120 | |
---|
| 121 | return x, y |
---|
| 122 | |
---|
[c9636f7] | 123 | def _set_params(self): |
---|
| 124 | """ |
---|
[fb3f9af] | 125 | Concatenate the parameters of the two models to create |
---|
| 126 | these model parameters |
---|
[c9636f7] | 127 | """ |
---|
[1affe64] | 128 | |
---|
| 129 | for name , value in self.p_model.params.iteritems(): |
---|
[c52f66f] | 130 | if not name in self.params.keys() and name != 'scale': |
---|
[7fdb332] | 131 | self.params[name] = value |
---|
[3740b11] | 132 | |
---|
[1affe64] | 133 | for name , value in self.s_model.params.iteritems(): |
---|
| 134 | #Remove the effect_radius from the (P*S) model parameters. |
---|
| 135 | if not name in self.params.keys() and name != 'effect_radius': |
---|
[7fdb332] | 136 | self.params[name] = value |
---|
[c52f66f] | 137 | |
---|
| 138 | # Set "scale and effec_radius to P and S model as initializing |
---|
| 139 | # since run P*S comes from P and S separately. |
---|
| 140 | self._set_scale_factor() |
---|
| 141 | self._set_effect_radius() |
---|
[c9636f7] | 142 | |
---|
| 143 | def _set_details(self): |
---|
| 144 | """ |
---|
[fb3f9af] | 145 | Concatenate details of the two models to create |
---|
| 146 | this model's details |
---|
[c9636f7] | 147 | """ |
---|
[7fdb332] | 148 | for name, detail in self.p_model.details.iteritems(): |
---|
[c52f66f] | 149 | if name != 'scale': |
---|
[7fdb332] | 150 | self.details[name] = detail |
---|
[c9636f7] | 151 | |
---|
[1affe64] | 152 | for name , detail in self.s_model.details.iteritems(): |
---|
[c52f66f] | 153 | if not name in self.details.keys() or name != 'effect_radius': |
---|
[7fdb332] | 154 | self.details[name] = detail |
---|
[c52f66f] | 155 | |
---|
| 156 | def _set_scale_factor(self): |
---|
| 157 | """ |
---|
[fb3f9af] | 158 | Set scale=volfraction for P model |
---|
[c52f66f] | 159 | """ |
---|
| 160 | value = self.params['volfraction'] |
---|
| 161 | if value != None: |
---|
[e08bd5b] | 162 | factor = self.p_model.calculate_VR() |
---|
[a8a55f2] | 163 | if factor == None or factor == NotImplemented or factor == 0.0: |
---|
[7fdb332] | 164 | val = value |
---|
[2d6f1f1] | 165 | else: |
---|
| 166 | val = value / factor |
---|
[a8a55f2] | 167 | self.p_model.setParam('scale', value) |
---|
| 168 | self.s_model.setParam('volfraction', val) |
---|
[c52f66f] | 169 | |
---|
| 170 | def _set_effect_radius(self): |
---|
| 171 | """ |
---|
[fb3f9af] | 172 | Set effective radius to S(Q) model |
---|
[c52f66f] | 173 | """ |
---|
[ccb7363] | 174 | if not 'effect_radius' in self.s_model.params.keys(): |
---|
| 175 | return |
---|
[c52f66f] | 176 | effective_radius = self.p_model.calculate_ER() |
---|
| 177 | #Reset the effective_radius of s_model just before the run |
---|
| 178 | if effective_radius != None and effective_radius != NotImplemented: |
---|
[7fdb332] | 179 | self.s_model.setParam('effect_radius', effective_radius) |
---|
[c9636f7] | 180 | |
---|
[8cfdd5e] | 181 | def setParam(self, name, value): |
---|
| 182 | """ |
---|
[7fdb332] | 183 | Set the value of a model parameter |
---|
[8cfdd5e] | 184 | |
---|
[7fdb332] | 185 | :param name: name of the parameter |
---|
| 186 | :param value: value of the parameter |
---|
[8cfdd5e] | 187 | """ |
---|
[c52f66f] | 188 | # set param to P*S model |
---|
[3740b11] | 189 | self._setParamHelper( name, value) |
---|
[c52f66f] | 190 | |
---|
| 191 | ## setParam to p model |
---|
| 192 | # set 'scale' in P(Q) equal to volfraction |
---|
| 193 | if name == 'volfraction': |
---|
| 194 | self._set_scale_factor() |
---|
| 195 | elif name in self.p_model.getParamList(): |
---|
[1affe64] | 196 | self.p_model.setParam( name, value) |
---|
[c52f66f] | 197 | |
---|
| 198 | ## setParam to s model |
---|
| 199 | # This is a little bit abundant: Todo: find better way |
---|
| 200 | self._set_effect_radius() |
---|
[1affe64] | 201 | if name in self.s_model.getParamList(): |
---|
[2d6f1f1] | 202 | if name != 'volfraction': |
---|
| 203 | self.s_model.setParam( name, value) |
---|
[c52f66f] | 204 | |
---|
[5eb9154] | 205 | |
---|
[c52f66f] | 206 | #self._setParamHelper( name, value) |
---|
[8cfdd5e] | 207 | |
---|
| 208 | def _setParamHelper(self, name, value): |
---|
| 209 | """ |
---|
[fb3f9af] | 210 | Helper function to setparam |
---|
[8cfdd5e] | 211 | """ |
---|
| 212 | # Look for dispersion parameters |
---|
| 213 | toks = name.split('.') |
---|
| 214 | if len(toks)==2: |
---|
| 215 | for item in self.dispersion.keys(): |
---|
| 216 | if item.lower()==toks[0].lower(): |
---|
| 217 | for par in self.dispersion[item]: |
---|
| 218 | if par.lower() == toks[1].lower(): |
---|
| 219 | self.dispersion[item][par] = value |
---|
| 220 | return |
---|
| 221 | else: |
---|
| 222 | # Look for standard parameter |
---|
| 223 | for item in self.params.keys(): |
---|
[ae4c139] | 224 | if item.lower() == name.lower(): |
---|
[8cfdd5e] | 225 | self.params[item] = value |
---|
| 226 | return |
---|
| 227 | |
---|
| 228 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 229 | |
---|
| 230 | |
---|
[c9636f7] | 231 | def _set_fixed_params(self): |
---|
| 232 | """ |
---|
[fb3f9af] | 233 | Fill the self.fixed list with the p_model fixed list |
---|
[c9636f7] | 234 | """ |
---|
[1affe64] | 235 | for item in self.p_model.fixed: |
---|
[c9636f7] | 236 | self.fixed.append(item) |
---|
[8b677ec] | 237 | |
---|
[c9636f7] | 238 | self.fixed.sort() |
---|
[5eb9154] | 239 | |
---|
| 240 | |
---|
[c9636f7] | 241 | def run(self, x = 0.0): |
---|
[7fdb332] | 242 | """ |
---|
| 243 | Evaluate the model |
---|
[fb3f9af] | 244 | |
---|
[7fdb332] | 245 | :param x: input q-value (float or [float, float] as [r, theta]) |
---|
| 246 | :return: (scattering function value) |
---|
[c9636f7] | 247 | """ |
---|
[c52f66f] | 248 | # set effective radius and scaling factor before run |
---|
| 249 | self._set_effect_radius() |
---|
| 250 | self._set_scale_factor() |
---|
[7fdb332] | 251 | return self.params['scale_factor'] * self.p_model.run(x) * \ |
---|
| 252 | self.s_model.run(x) |
---|
[1affe64] | 253 | |
---|
[c9636f7] | 254 | def runXY(self, x = 0.0): |
---|
[fb3f9af] | 255 | """ |
---|
| 256 | Evaluate the model |
---|
| 257 | |
---|
| 258 | :param x: input q-value (float or [float, float] as [qx, qy]) |
---|
| 259 | :return: scattering function value |
---|
[c52f66f] | 260 | """ |
---|
| 261 | # set effective radius and scaling factor before run |
---|
| 262 | self._set_effect_radius() |
---|
| 263 | self._set_scale_factor() |
---|
[7fdb332] | 264 | out = self.params['scale_factor'] * self.p_model.runXY(x) * \ |
---|
| 265 | self.s_model.runXY(x) |
---|
| 266 | return out |
---|
[06c7fcc] | 267 | |
---|
| 268 | ## Now (May27,10) directly uses the model eval function |
---|
| 269 | ## instead of the for-loop in Base Component. |
---|
| 270 | def evalDistribution(self, x = []): |
---|
[7fdb332] | 271 | """ |
---|
| 272 | Evaluate the model in cartesian coordinates |
---|
[fb3f9af] | 273 | |
---|
[7fdb332] | 274 | :param x: input q[], or [qx[], qy[]] |
---|
| 275 | :return: scattering function P(q[]) |
---|
[06c7fcc] | 276 | """ |
---|
| 277 | # set effective radius and scaling factor before run |
---|
| 278 | self._set_effect_radius() |
---|
| 279 | self._set_scale_factor() |
---|
[7fdb332] | 280 | out = self.params['scale_factor'] * self.p_model.evalDistribution(x) * \ |
---|
| 281 | self.s_model.evalDistribution(x) |
---|
| 282 | return out |
---|
[5eb9154] | 283 | |
---|
[c9636f7] | 284 | def set_dispersion(self, parameter, dispersion): |
---|
| 285 | """ |
---|
[7fdb332] | 286 | Set the dispersion object for a model parameter |
---|
[fb3f9af] | 287 | |
---|
[7fdb332] | 288 | :param parameter: name of the parameter [string] |
---|
| 289 | :dispersion: dispersion object of type DispersionModel |
---|
[c9636f7] | 290 | """ |
---|
[7fdb332] | 291 | value = None |
---|
[db39b2a] | 292 | try: |
---|
[1affe64] | 293 | if parameter in self.p_model.dispersion.keys(): |
---|
[7fdb332] | 294 | value = self.p_model.set_dispersion(parameter, dispersion) |
---|
[8077fc4] | 295 | self._set_dispersion() |
---|
[db39b2a] | 296 | return value |
---|
| 297 | except: |
---|
| 298 | raise |
---|
[c9636f7] | 299 | |
---|
[1affe64] | 300 | def fill_description(self, p_model, s_model): |
---|
[8b677ec] | 301 | """ |
---|
[fb3f9af] | 302 | Fill the description for P(Q)*S(Q) |
---|
[8b677ec] | 303 | """ |
---|
| 304 | description = "" |
---|
[7fdb332] | 305 | description += "Note:1) The effect_radius (effective radius) of %s \n"%\ |
---|
| 306 | (s_model.name) |
---|
| 307 | description += " is automatically calculated " |
---|
| 308 | description += "from size parameters (radius...).\n" |
---|
| 309 | description += " 2) For non-spherical shape, " |
---|
| 310 | description += "this approximation is valid \n" |
---|
| 311 | description += " only for limited systems. " |
---|
| 312 | description += "Thus, use it at your own risk.\n" |
---|
| 313 | description += "See %s description and %s description \n"% \ |
---|
| 314 | ( p_model.name, s_model.name ) |
---|
[1affe64] | 315 | description += " for details of individual models." |
---|
[8b677ec] | 316 | self.description += description |
---|
[c9636f7] | 317 | |
---|