[c9636f7] | 1 | |
---|
[79492222] | 2 | from sas.models.BaseComponent import BaseComponent |
---|
[7fdb332] | 3 | #import numpy, math |
---|
[a68efd1] | 4 | import copy |
---|
[79492222] | 5 | #from sas.models.pluginmodel import Model1DPlugin |
---|
[c9636f7] | 6 | class MultiplicationModel(BaseComponent): |
---|
| 7 | """ |
---|
[1affe64] | 8 | Use for P(Q)*S(Q); function call must be in the order of P(Q) and then S(Q): |
---|
[c52f66f] | 9 | The model parameters are combined from both models, P(Q) and S(Q), except 1) 'effect_radius' of S(Q) |
---|
| 10 | which will be calculated from P(Q) via calculate_ER(), |
---|
| 11 | and 2) 'scale' in P model which is synchronized w/ volfraction in S |
---|
| 12 | then P*S is multiplied by a new param, 'scale_factor'. |
---|
[1affe64] | 13 | The polydispersion is applicable only to P(Q), not to S(Q). |
---|
| 14 | Note: P(Q) refers to 'form factor' model while S(Q) does to 'structure factor'. |
---|
[c9636f7] | 15 | """ |
---|
[1affe64] | 16 | def __init__(self, p_model, s_model ): |
---|
[c9636f7] | 17 | BaseComponent.__init__(self) |
---|
[1affe64] | 18 | """ |
---|
[7fdb332] | 19 | :param p_model: form factor, P(Q) |
---|
| 20 | :param s_model: structure factor, S(Q) |
---|
[1affe64] | 21 | """ |
---|
[c9636f7] | 22 | |
---|
[8cfdd5e] | 23 | ## Setting model name model description |
---|
[7fdb332] | 24 | self.description = "" |
---|
[1affe64] | 25 | self.name = p_model.name +" * "+ s_model.name |
---|
[7fdb332] | 26 | self.description= self.name + "\n" |
---|
[1affe64] | 27 | self.fill_description(p_model, s_model) |
---|
[c52f66f] | 28 | |
---|
| 29 | ## Define parameters |
---|
| 30 | self.params = {} |
---|
| 31 | |
---|
| 32 | ## Parameter details [units, min, max] |
---|
| 33 | self.details = {} |
---|
[35aface] | 34 | |
---|
[1affe64] | 35 | ##models |
---|
[7fdb332] | 36 | self.p_model = p_model |
---|
| 37 | self.s_model = s_model |
---|
[318b5bbb] | 38 | self.magnetic_params = [] |
---|
[c9636f7] | 39 | ## dispersion |
---|
| 40 | self._set_dispersion() |
---|
| 41 | ## Define parameters |
---|
| 42 | self._set_params() |
---|
[c52f66f] | 43 | ## New parameter:Scaling factor |
---|
| 44 | self.params['scale_factor'] = 1 |
---|
| 45 | |
---|
[c9636f7] | 46 | ## Parameter details [units, min, max] |
---|
| 47 | self._set_details() |
---|
[c52f66f] | 48 | self.details['scale_factor'] = ['', None, None] |
---|
| 49 | |
---|
[c9636f7] | 50 | #list of parameter that can be fitted |
---|
| 51 | self._set_fixed_params() |
---|
[5fc8e22] | 52 | ## parameters with orientation |
---|
[1affe64] | 53 | for item in self.p_model.orientation_params: |
---|
[5fc8e22] | 54 | self.orientation_params.append(item) |
---|
[318b5bbb] | 55 | for item in self.p_model.magnetic_params: |
---|
| 56 | self.magnetic_params.append(item) |
---|
[1affe64] | 57 | for item in self.s_model.orientation_params: |
---|
[5fc8e22] | 58 | if not item in self.orientation_params: |
---|
[8b677ec] | 59 | self.orientation_params.append(item) |
---|
[35aface] | 60 | # get multiplicity if model provide it, else 1. |
---|
| 61 | try: |
---|
| 62 | multiplicity = p_model.multiplicity |
---|
| 63 | except: |
---|
| 64 | multiplicity = 1 |
---|
| 65 | ## functional multiplicity of the model |
---|
[8960479] | 66 | self.multiplicity = multiplicity |
---|
| 67 | |
---|
| 68 | # non-fittable parameters |
---|
| 69 | self.non_fittable = p_model.non_fittable |
---|
| 70 | self.multiplicity_info = [] |
---|
| 71 | self.fun_list = {} |
---|
| 72 | if self.non_fittable > 1: |
---|
| 73 | try: |
---|
| 74 | self.multiplicity_info = p_model.multiplicity_info |
---|
| 75 | self.fun_list = p_model.fun_list |
---|
| 76 | except: |
---|
| 77 | pass |
---|
| 78 | else: |
---|
| 79 | self.multiplicity_info = [] |
---|
| 80 | |
---|
[a68efd1] | 81 | def _clone(self, obj): |
---|
| 82 | """ |
---|
| 83 | Internal utility function to copy the internal |
---|
| 84 | data members to a fresh copy. |
---|
| 85 | """ |
---|
| 86 | obj.params = copy.deepcopy(self.params) |
---|
| 87 | obj.description = copy.deepcopy(self.description) |
---|
| 88 | obj.details = copy.deepcopy(self.details) |
---|
| 89 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
[1affe64] | 90 | obj.p_model = self.p_model.clone() |
---|
| 91 | obj.s_model = self.s_model.clone() |
---|
[fe9c19b4] | 92 | #obj = copy.deepcopy(self) |
---|
[a68efd1] | 93 | return obj |
---|
| 94 | |
---|
| 95 | |
---|
[c9636f7] | 96 | def _set_dispersion(self): |
---|
| 97 | """ |
---|
| 98 | combined the two models dispersions |
---|
[1affe64] | 99 | Polydispersion should not be applied to s_model |
---|
[c9636f7] | 100 | """ |
---|
[1affe64] | 101 | ##set dispersion only from p_model |
---|
| 102 | for name , value in self.p_model.dispersion.iteritems(): |
---|
[7fdb332] | 103 | self.dispersion[name] = value |
---|
[a1b2471] | 104 | |
---|
| 105 | def getProfile(self): |
---|
| 106 | """ |
---|
| 107 | Get SLD profile of p_model if exists |
---|
| 108 | |
---|
| 109 | : return: (r, beta) where r is a list of radius of the transition points |
---|
| 110 | beta is a list of the corresponding SLD values |
---|
| 111 | : Note: This works only for func_shell# = 2 (exp function). |
---|
| 112 | """ |
---|
| 113 | try: |
---|
[7fdb332] | 114 | x, y = self.p_model.getProfile() |
---|
[a1b2471] | 115 | except: |
---|
| 116 | x = None |
---|
| 117 | y = None |
---|
| 118 | |
---|
| 119 | return x, y |
---|
| 120 | |
---|
[c9636f7] | 121 | def _set_params(self): |
---|
| 122 | """ |
---|
| 123 | Concatenate the parameters of the two models to create |
---|
| 124 | this model parameters |
---|
| 125 | """ |
---|
[1affe64] | 126 | |
---|
| 127 | for name , value in self.p_model.params.iteritems(): |
---|
[c52f66f] | 128 | if not name in self.params.keys() and name != 'scale': |
---|
[7fdb332] | 129 | self.params[name] = value |
---|
[3740b11] | 130 | |
---|
[1affe64] | 131 | for name , value in self.s_model.params.iteritems(): |
---|
| 132 | #Remove the effect_radius from the (P*S) model parameters. |
---|
| 133 | if not name in self.params.keys() and name != 'effect_radius': |
---|
[7fdb332] | 134 | self.params[name] = value |
---|
[c52f66f] | 135 | |
---|
| 136 | # Set "scale and effec_radius to P and S model as initializing |
---|
| 137 | # since run P*S comes from P and S separately. |
---|
| 138 | self._set_scale_factor() |
---|
| 139 | self._set_effect_radius() |
---|
[c9636f7] | 140 | |
---|
| 141 | def _set_details(self): |
---|
| 142 | """ |
---|
| 143 | Concatenate details of the two models to create |
---|
| 144 | this model details |
---|
| 145 | """ |
---|
[7fdb332] | 146 | for name, detail in self.p_model.details.iteritems(): |
---|
[c52f66f] | 147 | if name != 'scale': |
---|
[7fdb332] | 148 | self.details[name] = detail |
---|
[c9636f7] | 149 | |
---|
[1affe64] | 150 | for name , detail in self.s_model.details.iteritems(): |
---|
[c52f66f] | 151 | if not name in self.details.keys() or name != 'effect_radius': |
---|
[7fdb332] | 152 | self.details[name] = detail |
---|
[c52f66f] | 153 | |
---|
| 154 | def _set_scale_factor(self): |
---|
| 155 | """ |
---|
| 156 | Set scale=volfraction to P model |
---|
| 157 | """ |
---|
| 158 | value = self.params['volfraction'] |
---|
| 159 | if value != None: |
---|
[e08bd5b] | 160 | factor = self.p_model.calculate_VR() |
---|
[a8a55f2] | 161 | if factor == None or factor == NotImplemented or factor == 0.0: |
---|
[7fdb332] | 162 | val = value |
---|
[2d6f1f1] | 163 | else: |
---|
| 164 | val = value / factor |
---|
[a8a55f2] | 165 | self.p_model.setParam('scale', value) |
---|
| 166 | self.s_model.setParam('volfraction', val) |
---|
[c52f66f] | 167 | |
---|
| 168 | def _set_effect_radius(self): |
---|
| 169 | """ |
---|
| 170 | Set effective radius to S(Q) model |
---|
| 171 | """ |
---|
[ccb7363] | 172 | if not 'effect_radius' in self.s_model.params.keys(): |
---|
| 173 | return |
---|
[c52f66f] | 174 | effective_radius = self.p_model.calculate_ER() |
---|
| 175 | #Reset the effective_radius of s_model just before the run |
---|
| 176 | if effective_radius != None and effective_radius != NotImplemented: |
---|
[7fdb332] | 177 | self.s_model.setParam('effect_radius', effective_radius) |
---|
[c9636f7] | 178 | |
---|
[8cfdd5e] | 179 | def setParam(self, name, value): |
---|
| 180 | """ |
---|
[7fdb332] | 181 | Set the value of a model parameter |
---|
[8cfdd5e] | 182 | |
---|
[7fdb332] | 183 | :param name: name of the parameter |
---|
| 184 | :param value: value of the parameter |
---|
[8cfdd5e] | 185 | """ |
---|
[c52f66f] | 186 | # set param to P*S model |
---|
[3740b11] | 187 | self._setParamHelper( name, value) |
---|
[c52f66f] | 188 | |
---|
| 189 | ## setParam to p model |
---|
| 190 | # set 'scale' in P(Q) equal to volfraction |
---|
| 191 | if name == 'volfraction': |
---|
| 192 | self._set_scale_factor() |
---|
| 193 | elif name in self.p_model.getParamList(): |
---|
[1affe64] | 194 | self.p_model.setParam( name, value) |
---|
[c52f66f] | 195 | |
---|
| 196 | ## setParam to s model |
---|
| 197 | # This is a little bit abundant: Todo: find better way |
---|
| 198 | self._set_effect_radius() |
---|
[1affe64] | 199 | if name in self.s_model.getParamList(): |
---|
[2d6f1f1] | 200 | if name != 'volfraction': |
---|
| 201 | self.s_model.setParam( name, value) |
---|
[c52f66f] | 202 | |
---|
[5eb9154] | 203 | |
---|
[c52f66f] | 204 | #self._setParamHelper( name, value) |
---|
[8cfdd5e] | 205 | |
---|
| 206 | def _setParamHelper(self, name, value): |
---|
| 207 | """ |
---|
| 208 | Helper function to setparam |
---|
| 209 | """ |
---|
| 210 | # Look for dispersion parameters |
---|
| 211 | toks = name.split('.') |
---|
| 212 | if len(toks)==2: |
---|
| 213 | for item in self.dispersion.keys(): |
---|
| 214 | if item.lower()==toks[0].lower(): |
---|
| 215 | for par in self.dispersion[item]: |
---|
| 216 | if par.lower() == toks[1].lower(): |
---|
| 217 | self.dispersion[item][par] = value |
---|
| 218 | return |
---|
| 219 | else: |
---|
| 220 | # Look for standard parameter |
---|
| 221 | for item in self.params.keys(): |
---|
[ae4c139] | 222 | if item.lower() == name.lower(): |
---|
[8cfdd5e] | 223 | self.params[item] = value |
---|
| 224 | return |
---|
| 225 | |
---|
| 226 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 227 | |
---|
| 228 | |
---|
[c9636f7] | 229 | def _set_fixed_params(self): |
---|
| 230 | """ |
---|
[1affe64] | 231 | fill the self.fixed list with the p_model fixed list |
---|
[c9636f7] | 232 | """ |
---|
[1affe64] | 233 | for item in self.p_model.fixed: |
---|
[c9636f7] | 234 | self.fixed.append(item) |
---|
[8b677ec] | 235 | |
---|
[c9636f7] | 236 | self.fixed.sort() |
---|
[5eb9154] | 237 | |
---|
| 238 | |
---|
[c9636f7] | 239 | def run(self, x = 0.0): |
---|
[7fdb332] | 240 | """ |
---|
| 241 | Evaluate the model |
---|
| 242 | :param x: input q-value (float or [float, float] as [r, theta]) |
---|
| 243 | :return: (scattering function value) |
---|
[c9636f7] | 244 | """ |
---|
[c52f66f] | 245 | # set effective radius and scaling factor before run |
---|
| 246 | self._set_effect_radius() |
---|
| 247 | self._set_scale_factor() |
---|
[7fdb332] | 248 | return self.params['scale_factor'] * self.p_model.run(x) * \ |
---|
| 249 | self.s_model.run(x) |
---|
[1affe64] | 250 | |
---|
[c9636f7] | 251 | def runXY(self, x = 0.0): |
---|
| 252 | """ Evaluate the model |
---|
| 253 | @param x: input q-value (float or [float, float] as [qx, qy]) |
---|
[35aface] | 254 | @return: scattering function value |
---|
[c52f66f] | 255 | """ |
---|
| 256 | # set effective radius and scaling factor before run |
---|
| 257 | self._set_effect_radius() |
---|
| 258 | self._set_scale_factor() |
---|
[7fdb332] | 259 | out = self.params['scale_factor'] * self.p_model.runXY(x) * \ |
---|
| 260 | self.s_model.runXY(x) |
---|
| 261 | return out |
---|
[06c7fcc] | 262 | |
---|
| 263 | ## Now (May27,10) directly uses the model eval function |
---|
| 264 | ## instead of the for-loop in Base Component. |
---|
| 265 | def evalDistribution(self, x = []): |
---|
[7fdb332] | 266 | """ |
---|
| 267 | Evaluate the model in cartesian coordinates |
---|
| 268 | :param x: input q[], or [qx[], qy[]] |
---|
| 269 | :return: scattering function P(q[]) |
---|
[06c7fcc] | 270 | """ |
---|
| 271 | # set effective radius and scaling factor before run |
---|
| 272 | self._set_effect_radius() |
---|
| 273 | self._set_scale_factor() |
---|
[7fdb332] | 274 | out = self.params['scale_factor'] * self.p_model.evalDistribution(x) * \ |
---|
| 275 | self.s_model.evalDistribution(x) |
---|
| 276 | return out |
---|
[5eb9154] | 277 | |
---|
[c9636f7] | 278 | def set_dispersion(self, parameter, dispersion): |
---|
| 279 | """ |
---|
[7fdb332] | 280 | Set the dispersion object for a model parameter |
---|
| 281 | :param parameter: name of the parameter [string] |
---|
| 282 | :dispersion: dispersion object of type DispersionModel |
---|
[c9636f7] | 283 | """ |
---|
[7fdb332] | 284 | value = None |
---|
[db39b2a] | 285 | try: |
---|
[1affe64] | 286 | if parameter in self.p_model.dispersion.keys(): |
---|
[7fdb332] | 287 | value = self.p_model.set_dispersion(parameter, dispersion) |
---|
[8077fc4] | 288 | self._set_dispersion() |
---|
[db39b2a] | 289 | return value |
---|
| 290 | except: |
---|
| 291 | raise |
---|
[c9636f7] | 292 | |
---|
[1affe64] | 293 | def fill_description(self, p_model, s_model): |
---|
[8b677ec] | 294 | """ |
---|
| 295 | Fill the description for P(Q)*S(Q) |
---|
| 296 | """ |
---|
| 297 | description = "" |
---|
[7fdb332] | 298 | description += "Note:1) The effect_radius (effective radius) of %s \n"%\ |
---|
| 299 | (s_model.name) |
---|
| 300 | description += " is automatically calculated " |
---|
| 301 | description += "from size parameters (radius...).\n" |
---|
| 302 | description += " 2) For non-spherical shape, " |
---|
| 303 | description += "this approximation is valid \n" |
---|
| 304 | description += " only for limited systems. " |
---|
| 305 | description += "Thus, use it at your own risk.\n" |
---|
| 306 | description += "See %s description and %s description \n"% \ |
---|
| 307 | ( p_model.name, s_model.name ) |
---|
[1affe64] | 308 | description += " for details of individual models." |
---|
[8b677ec] | 309 | self.description += description |
---|
[c9636f7] | 310 | |
---|