1 | # This program is public domain |
---|
2 | """ |
---|
3 | Error propogation algorithms for simple arithmetic |
---|
4 | |
---|
5 | Warning: like the underlying numpy library, the inplace operations |
---|
6 | may return values of the wrong type if some of the arguments are |
---|
7 | integers, so be sure to create them with floating point inputs. |
---|
8 | """ |
---|
9 | from __future__ import division # Get true division |
---|
10 | import numpy |
---|
11 | |
---|
12 | |
---|
13 | def div(X, varX, Y, varY): |
---|
14 | """Division with error propagation""" |
---|
15 | # Direct algorithm: |
---|
16 | # Z = X/Y |
---|
17 | # varZ = (varX/X**2 + varY/Y**2) * Z**2 |
---|
18 | # = (varX + varY * Z**2) / Y**2 |
---|
19 | # Indirect algorithm to minimize intermediates |
---|
20 | Z = X/Y # truediv => Z is a float |
---|
21 | varZ = Z**2 # Z is a float => varZ is a float |
---|
22 | varZ *= varY |
---|
23 | varZ += varX |
---|
24 | T = Y**2 # Doesn't matter if T is float or int |
---|
25 | varZ /= T |
---|
26 | return Z, varZ |
---|
27 | |
---|
28 | |
---|
29 | def mul(X, varX, Y, varY): |
---|
30 | """Multiplication with error propagation""" |
---|
31 | # Direct algorithm: |
---|
32 | Z = X * Y |
---|
33 | varZ = Y**2 * varX + X**2 * varY |
---|
34 | # Indirect algorithm won't ensure floating point results |
---|
35 | # varZ = Y**2 |
---|
36 | # varZ *= varX |
---|
37 | # Z = X**2 # Using Z to hold the temporary |
---|
38 | # Z *= varY |
---|
39 | # varZ += Z |
---|
40 | # Z[:] = X |
---|
41 | # Z *= Y |
---|
42 | return Z, varZ |
---|
43 | |
---|
44 | |
---|
45 | def sub(X, varX, Y, varY): |
---|
46 | """Subtraction with error propagation""" |
---|
47 | Z = X - Y |
---|
48 | varZ = varX + varY |
---|
49 | return Z, varZ |
---|
50 | |
---|
51 | |
---|
52 | def add(X, varX, Y, varY): |
---|
53 | """Addition with error propagation""" |
---|
54 | Z = X + Y |
---|
55 | varZ = varX + varY |
---|
56 | return Z, varZ |
---|
57 | |
---|
58 | |
---|
59 | def exp(X, varX): |
---|
60 | """Exponentiation with error propagation""" |
---|
61 | Z = numpy.exp(X) |
---|
62 | varZ = varX * Z**2 |
---|
63 | return Z, varZ |
---|
64 | |
---|
65 | |
---|
66 | def log(X, varX): |
---|
67 | """Logarithm with error propagation""" |
---|
68 | Z = numpy.log(X) |
---|
69 | varZ = varX / X**2 |
---|
70 | return Z, varZ |
---|
71 | |
---|
72 | # Confirm this formula before using it |
---|
73 | # def pow(X,varX, Y,varY): |
---|
74 | # Z = X**Y |
---|
75 | # varZ = (Y**2 * varX/X**2 + varY * numpy.log(X)**2) * Z**2 |
---|
76 | # return Z,varZ |
---|
77 | # |
---|
78 | |
---|
79 | |
---|
80 | def pow(X, varX, n): |
---|
81 | """X**n with error propagation""" |
---|
82 | # Direct algorithm |
---|
83 | # Z = X**n |
---|
84 | # varZ = n*n * varX/X**2 * Z**2 |
---|
85 | # Indirect algorithm to minimize intermediates |
---|
86 | Z = X**n |
---|
87 | varZ = varX / X |
---|
88 | varZ /= X |
---|
89 | varZ *= Z |
---|
90 | varZ *= Z |
---|
91 | varZ *= n**2 |
---|
92 | return Z, varZ |
---|
93 | |
---|
94 | |
---|
95 | def div_inplace(X, varX, Y, varY): |
---|
96 | """In-place division with error propagation""" |
---|
97 | # Z = X/Y |
---|
98 | # varZ = (varX + varY * (X/Y)**2) / Y**2 = (varX + varY * Z**2) / Y**2 |
---|
99 | X /= Y # X now has Z = X/Y |
---|
100 | T = X**2 # create T with Z**2 |
---|
101 | T *= varY # T now has varY * Z**2 |
---|
102 | varX += T # varX now has varX + varY*Z**2 |
---|
103 | del T # may want to use T[:] = Y for vectors |
---|
104 | T = Y # reuse T for Y |
---|
105 | T **= 2 # T now has Y**2 |
---|
106 | varX /= T # varX now has varZ |
---|
107 | return X, varX |
---|
108 | |
---|
109 | |
---|
110 | def mul_inplace(X, varX, Y, varY): |
---|
111 | """In-place multiplication with error propagation""" |
---|
112 | # Z = X * Y |
---|
113 | # varZ = Y**2 * varX + X**2 * varY |
---|
114 | T = Y**2 # create T with Y**2 |
---|
115 | varX *= T # varX now has Y**2 * varX |
---|
116 | del T # may want to use T[:] = X for vectors |
---|
117 | T = X # reuse T for X**2 * varY |
---|
118 | T **=2 # T now has X**2 |
---|
119 | T *= varY # T now has X**2 * varY |
---|
120 | varX += T # varX now has varZ |
---|
121 | X *= Y # X now has Z |
---|
122 | return X, varX |
---|
123 | |
---|
124 | |
---|
125 | def sub_inplace(X, varX, Y, varY): |
---|
126 | """In-place subtraction with error propagation""" |
---|
127 | # Z = X - Y |
---|
128 | # varZ = varX + varY |
---|
129 | X -= Y |
---|
130 | varX += varY |
---|
131 | return X, varX |
---|
132 | |
---|
133 | |
---|
134 | def add_inplace(X, varX, Y, varY): |
---|
135 | """In-place addition with error propagation""" |
---|
136 | # Z = X + Y |
---|
137 | # varZ = varX + varY |
---|
138 | X += Y |
---|
139 | varX += varY |
---|
140 | return X, varX |
---|
141 | |
---|
142 | |
---|
143 | def pow_inplace(X, varX, n): |
---|
144 | """In-place X**n with error propagation""" |
---|
145 | # Direct algorithm |
---|
146 | # Z = X**n |
---|
147 | # varZ = abs(n) * varX/X**2 * Z**2 |
---|
148 | # Indirect algorithm to minimize intermediates |
---|
149 | varX /= X |
---|
150 | varX /= X # varX now has varX/X**2 |
---|
151 | X **= n # X now has Z = X**n |
---|
152 | varX *= X |
---|
153 | varX *= X # varX now has varX/X**2 * Z**2 |
---|
154 | varX *= n**2 # varX now has varZ |
---|
155 | return X, varX |
---|