[ef8d42f] | 1 | """ |
---|
| 2 | Handle Q smearing |
---|
| 3 | """ |
---|
[642b259] | 4 | ##################################################################### |
---|
| 5 | #This software was developed by the University of Tennessee as part of the |
---|
| 6 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 7 | #project funded by the US National Science Foundation. |
---|
| 8 | #See the license text in license.txt |
---|
| 9 | #copyright 2008, University of Tennessee |
---|
| 10 | ###################################################################### |
---|
| 11 | import numpy |
---|
| 12 | import math |
---|
| 13 | import logging |
---|
| 14 | import sys |
---|
[2b440504] | 15 | import sans.models.sans_extension.smearer as smearer |
---|
[642b259] | 16 | from sans.models.smearing_2d import Smearer2D |
---|
| 17 | |
---|
| 18 | def smear_selection(data1D, model = None): |
---|
| 19 | """ |
---|
| 20 | Creates the right type of smearer according |
---|
| 21 | to the data. |
---|
| 22 | |
---|
| 23 | The canSAS format has a rule that either |
---|
| 24 | slit smearing data OR resolution smearing data |
---|
| 25 | is available. |
---|
| 26 | |
---|
| 27 | For the present purpose, we choose the one that |
---|
| 28 | has none-zero data. If both slit and resolution |
---|
| 29 | smearing arrays are filled with good data |
---|
| 30 | (which should not happen), then we choose the |
---|
| 31 | resolution smearing data. |
---|
| 32 | |
---|
| 33 | :param data1D: Data1D object |
---|
| 34 | :param model: sans.model instance |
---|
| 35 | """ |
---|
| 36 | # Sanity check. If we are not dealing with a SANS Data1D |
---|
| 37 | # object, just return None |
---|
| 38 | if data1D.__class__.__name__ not in ['Data1D', 'Theory1D']: |
---|
| 39 | if data1D == None: |
---|
| 40 | return None |
---|
| 41 | elif data1D.dqx_data == None or data1D.dqy_data == None: |
---|
| 42 | return None |
---|
| 43 | return Smearer2D(data1D) |
---|
| 44 | |
---|
| 45 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl")\ |
---|
| 46 | and not hasattr(data1D, "dxw"): |
---|
| 47 | return None |
---|
| 48 | |
---|
| 49 | # Look for resolution smearing data |
---|
| 50 | _found_resolution = False |
---|
| 51 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
| 52 | |
---|
| 53 | # Check that we have non-zero data |
---|
| 54 | if data1D.dx[0] > 0.0: |
---|
| 55 | _found_resolution = True |
---|
| 56 | #print "_found_resolution",_found_resolution |
---|
| 57 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
| 58 | # If we found resolution smearing data, return a QSmearer |
---|
| 59 | if _found_resolution == True: |
---|
| 60 | return QSmearer(data1D, model) |
---|
| 61 | |
---|
| 62 | # Look for slit smearing data |
---|
| 63 | _found_slit = False |
---|
| 64 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x) \ |
---|
| 65 | and data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
| 66 | |
---|
| 67 | # Check that we have non-zero data |
---|
| 68 | if data1D.dxl[0] > 0.0 or data1D.dxw[0] > 0.0: |
---|
| 69 | _found_slit = True |
---|
| 70 | |
---|
| 71 | # Sanity check: all data should be the same as a function of Q |
---|
| 72 | for item in data1D.dxl: |
---|
| 73 | if data1D.dxl[0] != item: |
---|
| 74 | _found_resolution = False |
---|
| 75 | break |
---|
| 76 | |
---|
| 77 | for item in data1D.dxw: |
---|
| 78 | if data1D.dxw[0] != item: |
---|
| 79 | _found_resolution = False |
---|
| 80 | break |
---|
| 81 | # If we found slit smearing data, return a slit smearer |
---|
| 82 | if _found_slit == True: |
---|
| 83 | return SlitSmearer(data1D, model) |
---|
| 84 | return None |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | class _BaseSmearer(object): |
---|
[ef8d42f] | 88 | """ |
---|
| 89 | Base class for smearers |
---|
| 90 | """ |
---|
[642b259] | 91 | def __init__(self): |
---|
| 92 | self.nbins = 0 |
---|
| 93 | self.nbins_low = 0 |
---|
| 94 | self.nbins_high = 0 |
---|
| 95 | self._weights = None |
---|
| 96 | ## Internal flag to keep track of C++ smearer initialization |
---|
| 97 | self._init_complete = False |
---|
| 98 | self._smearer = None |
---|
| 99 | self.model = None |
---|
[ef8d42f] | 100 | self.min = None |
---|
| 101 | self.max = None |
---|
| 102 | self.qvalues = [] |
---|
[2b440504] | 103 | |
---|
[ef8d42f] | 104 | def __deepcopy__(self, memo=None): |
---|
[2b440504] | 105 | """ |
---|
| 106 | Return a valid copy of self. |
---|
| 107 | Avoid copying the _smearer C object and force a matrix recompute |
---|
| 108 | when the copy is used. |
---|
| 109 | """ |
---|
| 110 | result = _BaseSmearer() |
---|
| 111 | result.nbins = self.nbins |
---|
| 112 | return result |
---|
| 113 | |
---|
[642b259] | 114 | def _compute_matrix(self): |
---|
| 115 | """ |
---|
[ef8d42f] | 116 | Place holder for matrix computation |
---|
[642b259] | 117 | """ |
---|
| 118 | return NotImplemented |
---|
| 119 | |
---|
[ef8d42f] | 120 | def get_unsmeared_range(self, q_min=None, q_max=None): |
---|
| 121 | """ |
---|
| 122 | Place holder for method returning unsmeared range |
---|
| 123 | """ |
---|
| 124 | return NotImplemented |
---|
| 125 | |
---|
[642b259] | 126 | def get_bin_range(self, q_min=None, q_max=None): |
---|
| 127 | """ |
---|
| 128 | |
---|
| 129 | :param q_min: minimum q-value to smear |
---|
| 130 | :param q_max: maximum q-value to smear |
---|
| 131 | |
---|
| 132 | """ |
---|
| 133 | # If this is the first time we call for smearing, |
---|
| 134 | # initialize the C++ smearer object first |
---|
| 135 | if not self._init_complete: |
---|
| 136 | self._initialize_smearer() |
---|
| 137 | if q_min == None: |
---|
| 138 | q_min = self.min |
---|
| 139 | if q_max == None: |
---|
| 140 | q_max = self.max |
---|
[2b440504] | 141 | |
---|
[642b259] | 142 | _qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min, |
---|
| 143 | q_max) |
---|
| 144 | _first_bin = None |
---|
| 145 | _last_bin = None |
---|
| 146 | |
---|
| 147 | #step = (self.max - self.min) / (self.nbins - 1.0) |
---|
| 148 | # Find the first and last bin number in all extrapolated and real data |
---|
| 149 | try: |
---|
| 150 | for i in range(self.nbins): |
---|
| 151 | q_i = smearer.get_q(self._smearer, i) |
---|
| 152 | if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared): |
---|
| 153 | # Identify first and last bin |
---|
| 154 | if _first_bin is None: |
---|
| 155 | _first_bin = i |
---|
| 156 | else: |
---|
| 157 | _last_bin = i |
---|
| 158 | except: |
---|
| 159 | msg = "_BaseSmearer.get_bin_range: " |
---|
| 160 | msg += " error getting range\n %s" % sys.exc_value |
---|
| 161 | raise RuntimeError, msg |
---|
| 162 | |
---|
| 163 | # Find the first and last bin number only in the real data |
---|
| 164 | _first_bin, _last_bin = self._get_unextrapolated_bin( \ |
---|
| 165 | _first_bin, _last_bin) |
---|
| 166 | |
---|
| 167 | return _first_bin, _last_bin |
---|
| 168 | |
---|
| 169 | def __call__(self, iq_in, first_bin = 0, last_bin = None): |
---|
| 170 | """ |
---|
| 171 | Perform smearing |
---|
| 172 | """ |
---|
| 173 | # If this is the first time we call for smearing, |
---|
| 174 | # initialize the C++ smearer object first |
---|
| 175 | if not self._init_complete: |
---|
| 176 | self._initialize_smearer() |
---|
| 177 | |
---|
| 178 | if last_bin is None or last_bin >= len(iq_in): |
---|
| 179 | last_bin = len(iq_in) - 1 |
---|
| 180 | # Check that the first bin is positive |
---|
| 181 | if first_bin < 0: |
---|
| 182 | first_bin = 0 |
---|
| 183 | |
---|
| 184 | # With a model given, compute I for the extrapolated points and append |
---|
| 185 | # to the iq_in |
---|
| 186 | iq_in_temp = iq_in |
---|
| 187 | if self.model != None: |
---|
[2b440504] | 188 | temp_first, temp_last = self._get_extrapolated_bin( \ |
---|
| 189 | first_bin, last_bin) |
---|
[642b259] | 190 | if self.nbins_low > 0: |
---|
[2b440504] | 191 | iq_in_low = self.model.evalDistribution( \ |
---|
[642b259] | 192 | numpy.fabs(self.qvalues[0:self.nbins_low])) |
---|
[2b440504] | 193 | iq_in_high = self.model.evalDistribution( \ |
---|
[642b259] | 194 | self.qvalues[(len(self.qvalues) - \ |
---|
| 195 | self.nbins_high - 1):]) |
---|
| 196 | # Todo: find out who is sending iq[last_poin] = 0. |
---|
| 197 | if iq_in[len(iq_in) - 1] == 0: |
---|
| 198 | iq_in[len(iq_in) - 1] = iq_in_high[0] |
---|
| 199 | # Append the extrapolated points to the data points |
---|
| 200 | if self.nbins_low > 0: |
---|
| 201 | iq_in_temp = numpy.append(iq_in_low, iq_in) |
---|
| 202 | if self.nbins_high > 0: |
---|
| 203 | iq_in_temp = numpy.append(iq_in_temp, iq_in_high[1:]) |
---|
| 204 | else: |
---|
| 205 | temp_first = first_bin |
---|
| 206 | temp_last = last_bin |
---|
[2b440504] | 207 | #iq_in_temp = iq_in |
---|
| 208 | |
---|
[642b259] | 209 | # Sanity check |
---|
| 210 | if len(iq_in_temp) != self.nbins: |
---|
| 211 | msg = "Invalid I(q) vector: inconsistent array " |
---|
| 212 | msg += " length %d != %s" % (len(iq_in_temp), str(self.nbins)) |
---|
| 213 | raise RuntimeError, msg |
---|
| 214 | |
---|
| 215 | # Storage for smeared I(q) |
---|
| 216 | iq_out = numpy.zeros(self.nbins) |
---|
| 217 | |
---|
| 218 | smear_output = smearer.smear(self._smearer, iq_in_temp, iq_out, |
---|
| 219 | #0, self.nbins - 1) |
---|
| 220 | temp_first, temp_last) |
---|
| 221 | #first_bin, last_bin) |
---|
| 222 | if smear_output < 0: |
---|
| 223 | msg = "_BaseSmearer: could not smear, code = %g" % smear_output |
---|
| 224 | raise RuntimeError, msg |
---|
| 225 | |
---|
| 226 | temp_first = first_bin + self.nbins_low |
---|
| 227 | temp_last = self.nbins - self.nbins_high |
---|
| 228 | out = iq_out[temp_first: temp_last] |
---|
| 229 | |
---|
| 230 | return out |
---|
| 231 | |
---|
| 232 | def _initialize_smearer(self): |
---|
| 233 | """ |
---|
[ef8d42f] | 234 | Place holder for initializing data smearer |
---|
[642b259] | 235 | """ |
---|
| 236 | return NotImplemented |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | def _get_unextrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
| 240 | """ |
---|
| 241 | Get unextrapolated first bin and the last bin |
---|
| 242 | |
---|
| 243 | : param first_bin: extrapolated first_bin |
---|
| 244 | : param last_bin: extrapolated last_bin |
---|
| 245 | |
---|
| 246 | : return fist_bin, last_bin: unextrapolated first and last bin |
---|
| 247 | """ |
---|
| 248 | # For first bin |
---|
| 249 | if first_bin <= self.nbins_low: |
---|
| 250 | first_bin = 0 |
---|
| 251 | else: |
---|
| 252 | first_bin = first_bin - self.nbins_low |
---|
| 253 | # For last bin |
---|
| 254 | if last_bin >= (self.nbins - self.nbins_high): |
---|
| 255 | last_bin = self.nbins - (self.nbins_high + self.nbins_low + 1) |
---|
| 256 | elif last_bin >= self.nbins_low: |
---|
| 257 | last_bin = last_bin - self.nbins_low |
---|
| 258 | else: |
---|
| 259 | last_bin = 0 |
---|
| 260 | return first_bin, last_bin |
---|
| 261 | |
---|
| 262 | def _get_extrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
| 263 | """ |
---|
| 264 | Get extrapolated first bin and the last bin |
---|
| 265 | |
---|
| 266 | : param first_bin: unextrapolated first_bin |
---|
| 267 | : param last_bin: unextrapolated last_bin |
---|
| 268 | |
---|
| 269 | : return first_bin, last_bin: extrapolated first and last bin |
---|
| 270 | """ |
---|
| 271 | # For the first bin |
---|
| 272 | # In the case that needs low extrapolation data |
---|
| 273 | first_bin = 0 |
---|
| 274 | # For last bin |
---|
| 275 | if last_bin >= self.nbins - (self.nbins_high + self.nbins_low + 1): |
---|
| 276 | # In the case that needs higher q extrapolation data |
---|
| 277 | last_bin = self.nbins - 1 |
---|
| 278 | else: |
---|
| 279 | # In the case that doesn't need higher q extrapolation data |
---|
[ef8d42f] | 280 | last_bin += self.nbins_low |
---|
[642b259] | 281 | |
---|
| 282 | return first_bin, last_bin |
---|
| 283 | |
---|
| 284 | class _SlitSmearer(_BaseSmearer): |
---|
| 285 | """ |
---|
| 286 | Slit smearing for I(q) array |
---|
| 287 | """ |
---|
| 288 | |
---|
| 289 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
| 290 | """ |
---|
| 291 | Initialization |
---|
| 292 | |
---|
| 293 | :param iq: I(q) array [cm-1] |
---|
| 294 | :param width: slit width [A-1] |
---|
| 295 | :param height: slit height [A-1] |
---|
| 296 | :param min: Q_min [A-1] |
---|
| 297 | :param max: Q_max [A-1] |
---|
| 298 | |
---|
| 299 | """ |
---|
| 300 | _BaseSmearer.__init__(self) |
---|
| 301 | ## Slit width in Q units |
---|
| 302 | self.width = width |
---|
| 303 | ## Slit height in Q units |
---|
| 304 | self.height = height |
---|
| 305 | ## Q_min (Min Q-value for I(q)) |
---|
| 306 | self.min = min |
---|
| 307 | ## Q_max (Max Q_value for I(q)) |
---|
| 308 | self.max = max |
---|
| 309 | ## Number of Q bins |
---|
| 310 | self.nbins = nbins |
---|
| 311 | ## Number of points used in the smearing computation |
---|
| 312 | self.npts = 3000 |
---|
| 313 | ## Smearing matrix |
---|
| 314 | self._weights = None |
---|
| 315 | self.qvalues = None |
---|
| 316 | |
---|
| 317 | def _initialize_smearer(self): |
---|
| 318 | """ |
---|
| 319 | Initialize the C++ smearer object. |
---|
| 320 | This method HAS to be called before smearing |
---|
| 321 | """ |
---|
| 322 | #self._smearer = smearer.new_slit_smearer(self.width, |
---|
| 323 | # self.height, self.min, self.max, self.nbins) |
---|
| 324 | self._smearer = smearer.new_slit_smearer_with_q(self.width, |
---|
| 325 | self.height, self.qvalues) |
---|
| 326 | self._init_complete = True |
---|
| 327 | |
---|
| 328 | def get_unsmeared_range(self, q_min, q_max): |
---|
| 329 | """ |
---|
| 330 | Determine the range needed in unsmeared-Q to cover |
---|
| 331 | the smeared Q range |
---|
| 332 | """ |
---|
| 333 | # Range used for input to smearing |
---|
| 334 | _qmin_unsmeared = q_min |
---|
| 335 | _qmax_unsmeared = q_max |
---|
| 336 | try: |
---|
| 337 | _qmin_unsmeared = self.min |
---|
| 338 | _qmax_unsmeared = self.max |
---|
| 339 | except: |
---|
| 340 | logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value) |
---|
| 341 | return _qmin_unsmeared, _qmax_unsmeared |
---|
| 342 | |
---|
| 343 | class SlitSmearer(_SlitSmearer): |
---|
| 344 | """ |
---|
| 345 | Adaptor for slit smearing class and SANS data |
---|
| 346 | """ |
---|
| 347 | def __init__(self, data1D, model = None): |
---|
| 348 | """ |
---|
| 349 | Assumption: equally spaced bins of increasing q-values. |
---|
| 350 | |
---|
| 351 | :param data1D: data used to set the smearing parameters |
---|
| 352 | """ |
---|
| 353 | # Initialization from parent class |
---|
| 354 | super(SlitSmearer, self).__init__() |
---|
| 355 | |
---|
| 356 | ## Slit width |
---|
| 357 | self.width = 0 |
---|
| 358 | self.nbins_low = 0 |
---|
| 359 | self.nbins_high = 0 |
---|
| 360 | self.model = model |
---|
| 361 | if data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
| 362 | self.width = data1D.dxw[0] |
---|
| 363 | # Sanity check |
---|
| 364 | for value in data1D.dxw: |
---|
| 365 | if value != self.width: |
---|
| 366 | msg = "Slit smearing parameters must " |
---|
| 367 | msg += " be the same for all data" |
---|
| 368 | raise RuntimeError, msg |
---|
| 369 | ## Slit height |
---|
| 370 | self.height = 0 |
---|
| 371 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x): |
---|
| 372 | self.height = data1D.dxl[0] |
---|
| 373 | # Sanity check |
---|
| 374 | for value in data1D.dxl: |
---|
| 375 | if value != self.height: |
---|
| 376 | msg = "Slit smearing parameters must be" |
---|
| 377 | msg += " the same for all data" |
---|
| 378 | raise RuntimeError, msg |
---|
| 379 | # If a model is given, get the q extrapolation |
---|
| 380 | if self.model == None: |
---|
| 381 | data1d_x = data1D.x |
---|
| 382 | else: |
---|
| 383 | # Take larger sigma |
---|
| 384 | if self.height > self.width: |
---|
| 385 | # The denominator (2.0) covers all the possible w^2 + h^2 range |
---|
| 386 | sigma_in = data1D.dxl / 2.0 |
---|
| 387 | elif self.width > 0: |
---|
| 388 | sigma_in = data1D.dxw / 2.0 |
---|
| 389 | else: |
---|
| 390 | sigma_in = [] |
---|
| 391 | |
---|
| 392 | self.nbins_low, self.nbins_high, _, data1d_x = \ |
---|
| 393 | get_qextrapolate(sigma_in, data1D.x) |
---|
| 394 | |
---|
| 395 | ## Number of Q bins |
---|
| 396 | self.nbins = len(data1d_x) |
---|
| 397 | ## Minimum Q |
---|
| 398 | self.min = min(data1d_x) |
---|
| 399 | ## Maximum |
---|
| 400 | self.max = max(data1d_x) |
---|
| 401 | ## Q-values |
---|
| 402 | self.qvalues = data1d_x |
---|
| 403 | |
---|
| 404 | |
---|
| 405 | class _QSmearer(_BaseSmearer): |
---|
| 406 | """ |
---|
| 407 | Perform Gaussian Q smearing |
---|
| 408 | """ |
---|
| 409 | |
---|
| 410 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
| 411 | """ |
---|
| 412 | Initialization |
---|
| 413 | |
---|
| 414 | :param nbins: number of Q bins |
---|
| 415 | :param width: array standard deviation in Q [A-1] |
---|
| 416 | :param min: Q_min [A-1] |
---|
| 417 | :param max: Q_max [A-1] |
---|
| 418 | """ |
---|
| 419 | _BaseSmearer.__init__(self) |
---|
| 420 | ## Standard deviation in Q [A-1] |
---|
| 421 | self.width = width |
---|
| 422 | ## Q_min (Min Q-value for I(q)) |
---|
| 423 | self.min = min |
---|
| 424 | ## Q_max (Max Q_value for I(q)) |
---|
| 425 | self.max = max |
---|
| 426 | ## Number of Q bins |
---|
| 427 | self.nbins = nbins |
---|
| 428 | ## Smearing matrix |
---|
| 429 | self._weights = None |
---|
| 430 | self.qvalues = None |
---|
| 431 | |
---|
| 432 | def _initialize_smearer(self): |
---|
| 433 | """ |
---|
| 434 | Initialize the C++ smearer object. |
---|
| 435 | This method HAS to be called before smearing |
---|
| 436 | """ |
---|
| 437 | #self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), |
---|
| 438 | # self.min, self.max, self.nbins) |
---|
| 439 | self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width), |
---|
| 440 | self.qvalues) |
---|
| 441 | self._init_complete = True |
---|
| 442 | |
---|
| 443 | def get_unsmeared_range(self, q_min, q_max): |
---|
| 444 | """ |
---|
| 445 | Determine the range needed in unsmeared-Q to cover |
---|
| 446 | the smeared Q range |
---|
| 447 | Take 3 sigmas as the offset between smeared and unsmeared space |
---|
| 448 | """ |
---|
| 449 | # Range used for input to smearing |
---|
| 450 | _qmin_unsmeared = q_min |
---|
| 451 | _qmax_unsmeared = q_max |
---|
| 452 | try: |
---|
| 453 | offset = 3.0 * max(self.width) |
---|
| 454 | _qmin_unsmeared = self.min#max([self.min, q_min - offset]) |
---|
| 455 | _qmax_unsmeared = self.max#min([self.max, q_max + offset]) |
---|
| 456 | except: |
---|
| 457 | logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value) |
---|
| 458 | return _qmin_unsmeared, _qmax_unsmeared |
---|
| 459 | |
---|
| 460 | |
---|
| 461 | class QSmearer(_QSmearer): |
---|
| 462 | """ |
---|
| 463 | Adaptor for Gaussian Q smearing class and SANS data |
---|
| 464 | """ |
---|
| 465 | def __init__(self, data1D, model = None): |
---|
| 466 | """ |
---|
| 467 | Assumption: equally spaced bins of increasing q-values. |
---|
| 468 | |
---|
| 469 | :param data1D: data used to set the smearing parameters |
---|
| 470 | """ |
---|
| 471 | # Initialization from parent class |
---|
| 472 | super(QSmearer, self).__init__() |
---|
| 473 | data1d_x = [] |
---|
| 474 | self.nbins_low = 0 |
---|
| 475 | self.nbins_high = 0 |
---|
[2b440504] | 476 | self.model = model |
---|
[642b259] | 477 | ## Resolution |
---|
| 478 | #self.width = numpy.zeros(len(data1D.x)) |
---|
| 479 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
| 480 | self.width = data1D.dx |
---|
| 481 | |
---|
| 482 | if self.model == None: |
---|
| 483 | data1d_x = data1D.x |
---|
| 484 | else: |
---|
| 485 | self.nbins_low, self.nbins_high, self.width, data1d_x = \ |
---|
| 486 | get_qextrapolate(self.width, data1D.x) |
---|
[2b440504] | 487 | |
---|
[642b259] | 488 | ## Number of Q bins |
---|
| 489 | self.nbins = len(data1d_x) |
---|
| 490 | ## Minimum Q |
---|
| 491 | self.min = min(data1d_x) |
---|
| 492 | ## Maximum |
---|
| 493 | self.max = max(data1d_x) |
---|
| 494 | ## Q-values |
---|
| 495 | self.qvalues = data1d_x |
---|
| 496 | |
---|
| 497 | |
---|
| 498 | def get_qextrapolate(width, data_x): |
---|
| 499 | """ |
---|
| 500 | Make fake data_x points extrapolated outside of the data_x points |
---|
| 501 | |
---|
| 502 | : param width: array of std of q resolution |
---|
| 503 | : param Data1D.x: Data1D.x array |
---|
| 504 | |
---|
| 505 | : return new_width, data_x_ext: extrapolated width array and x array |
---|
| 506 | |
---|
| 507 | : assumption1: data_x is ordered from lower q to higher q |
---|
| 508 | : assumption2: len(data) = len(width) |
---|
| 509 | : assumption3: the distance between the data points is more compact |
---|
| 510 | than the size of width |
---|
| 511 | : Todo1: Make sure that the assumptions are correct for Data1D |
---|
| 512 | : Todo2: This fixes the edge problem in Qsmearer but still needs to make |
---|
| 513 | smearer interface |
---|
| 514 | """ |
---|
| 515 | # Length of the width |
---|
| 516 | length = len(width) |
---|
[5f65636] | 517 | width_low = math.fabs(width[0]) |
---|
[642b259] | 518 | width_high = math.fabs(width[length -1]) |
---|
[5f65636] | 519 | nbins_low = 0.0 |
---|
| 520 | nbins_high = 0.0 |
---|
[642b259] | 521 | # Compare width(dQ) to the data bin size and take smaller one as the bin |
---|
| 522 | # size of the extrapolation; this will correct some weird behavior |
---|
| 523 | # at the edge: This method was out (commented) |
---|
| 524 | # because it becomes very expansive when |
---|
| 525 | # bin size is very small comparing to the width. |
---|
| 526 | # Now on, we will just give the bin size of the extrapolated points |
---|
| 527 | # based on the width. |
---|
| 528 | # Find bin sizes |
---|
| 529 | #bin_size_low = math.fabs(data_x[1] - data_x[0]) |
---|
| 530 | #bin_size_high = math.fabs(data_x[length - 1] - data_x[length - 2]) |
---|
| 531 | # Let's set the bin size 1/3 of the width(sigma), it is good as long as |
---|
| 532 | # the scattering is monotonous. |
---|
| 533 | #if width_low < (bin_size_low): |
---|
| 534 | bin_size_low = width_low / 10.0 |
---|
| 535 | #if width_high < (bin_size_high): |
---|
| 536 | bin_size_high = width_high / 10.0 |
---|
| 537 | |
---|
| 538 | # Number of q points required below the 1st data point in order to extend |
---|
| 539 | # them 3 times of the width (std) |
---|
[5f65636] | 540 | if width_low > 0.0: |
---|
| 541 | nbins_low = math.ceil(3.0 * width_low / bin_size_low) |
---|
[642b259] | 542 | # Number of q points required above the last data point |
---|
[5f65636] | 543 | if width_high > 0.0: |
---|
| 544 | nbins_high = math.ceil(3.0 * width_high / bin_size_high) |
---|
[642b259] | 545 | # Make null q points |
---|
| 546 | extra_low = numpy.zeros(nbins_low) |
---|
| 547 | extra_high = numpy.zeros(nbins_high) |
---|
| 548 | # Give extrapolated values |
---|
| 549 | ind = 0 |
---|
| 550 | qvalue = data_x[0] - bin_size_low |
---|
| 551 | #if qvalue > 0: |
---|
| 552 | while(ind < nbins_low): |
---|
| 553 | extra_low[nbins_low - (ind + 1)] = qvalue |
---|
| 554 | qvalue -= bin_size_low |
---|
| 555 | ind += 1 |
---|
| 556 | #if qvalue <= 0: |
---|
| 557 | # break |
---|
| 558 | # Redefine nbins_low |
---|
| 559 | nbins_low = ind |
---|
| 560 | # Reset ind for another extrapolation |
---|
| 561 | ind = 0 |
---|
| 562 | qvalue = data_x[length -1] + bin_size_high |
---|
| 563 | while(ind < nbins_high): |
---|
| 564 | extra_high[ind] = qvalue |
---|
| 565 | qvalue += bin_size_high |
---|
| 566 | ind += 1 |
---|
| 567 | # Make a new qx array |
---|
| 568 | if nbins_low > 0: |
---|
| 569 | data_x_ext = numpy.append(extra_low, data_x) |
---|
| 570 | else: |
---|
| 571 | data_x_ext = data_x |
---|
| 572 | data_x_ext = numpy.append(data_x_ext, extra_high) |
---|
| 573 | |
---|
| 574 | # Redefine extra_low and high based on corrected nbins |
---|
| 575 | # And note that it is not necessary for extra_width to be a non-zero |
---|
| 576 | if nbins_low > 0: |
---|
| 577 | extra_low = numpy.zeros(nbins_low) |
---|
| 578 | extra_high = numpy.zeros(nbins_high) |
---|
| 579 | # Make new width array |
---|
| 580 | new_width = numpy.append(extra_low, width) |
---|
| 581 | new_width = numpy.append(new_width, extra_high) |
---|
| 582 | |
---|
| 583 | # nbins corrections due to the negative q value |
---|
[ef8d42f] | 584 | nbins_low = nbins_low - len(data_x_ext[data_x_ext <= 0]) |
---|
| 585 | return nbins_low, nbins_high, \ |
---|
| 586 | new_width[data_x_ext > 0], data_x_ext[data_x_ext > 0] |
---|