source: sasview/src/sans/models/media/model_functions_v0.rest @ 38d4102

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 38d4102 was 1c03e14, checked in by smk78, 11 years ago

Changed encoding to keep Sphinx happy from UCS-Big Endian to ANSII

  • Property mode set to 100644
File size: 127.0 KB
RevLine 
[23f4571]1
2**Model Functions**
3
4
5+ **Introduction**
6+ **Shapes**:
7
8    + Sphere based: > <a href="#SphereModel">SphereModel (Magnetic 2D
9      Model)< a>, BinaryHSModel, FuzzySphereModel, RaspBerryModel,
10      CoreShellModel (Magnetic 2D Model), Core2ndMomentModel,
11      CoreMultiShellModel (Magnetic 2D Model), VesicleModel,
12      MultiShellModel, OnionExpShellModel, SphericalSLDModel,
13      LinearPearlsModel, PearlNecklaceModel
14    + Cylinder based: > <a href="#CylinderModel">CylinderModel (Magnetic
15      2D Model)< a>, CoreShellCylinderModel, CoreShellBicelleModel,
16      HollowCylinderModel, FlexibleCylinderModel, FlexCylEllipXModel,
17      StackedDisksModel, EllipticalCylinderModel, BarBellModel,
18      CappedCylinderModel, PringleModel
19    + Parallelpipeds: > <a href="#ParallelepipedModel">ParallelepipedModel
20      (Magnetic 2D Model)< a>, CSParallelepipedModel
21    + Ellipsoids: > <a href="#EllipsoidModel">EllipsoidModel< a>,
22      CoreShellEllipsoidModel, TriaxialEllipsoidModel
23    + Lamellar: > <a href="#LamellarModel">LamellarModel< a>,
24      LamellarFFHGModel, LamellarPSModel, LamellarPSHGModel
25    + Paracrystals: > <a
26      href="#LamellarPCrystalModel">LamellarPCrystalModel< a>,
27      SCCrystalModel, FCCrystalModel, BCCrystalModel
28
29+ **Shape-Independent**: AbsolutePower_Law, BEPolyelectrolyte,
30  BroadPeakModel, CorrLength, DABModel, Debye, FractalModel,
31  FractalCoreShell, GaussLorentzGel, Guinier, GuinierPorod, Lorentz,
32  MassFractalModel, MassSurfaceFractal, PeakGaussModel,
33  PeakLorentzModel, Poly_GaussCoil, PolyExclVolume, PorodModel,
34  RPA10Model, StarPolymer, SurfaceFractalModel, Teubner Strey,
35  TwoLorentzian, TwoPowerLaw, UnifiedPowerRg, LineModel,
36  ReflectivityModel, ReflectivityIIModel, GelFitModel.
37+ **Customized Models**: testmodel, testmodel_2, sum_p1_p2,
38  sum_Ap1_1_Ap2, polynomial5, sph_bessel_jn.
39+ **Structure Factors**: HardSphereStructure, SquareWellStructure,
40  HayterMSAStructure, StickyHSStructure.
41+ **References**
42
43
44**1.** ** ** **Introduction **
45
46Many of our models use the form factor calculations implemented in a
47c-library provided by the NIST Center for Neutron Research and thus
48some content and figures in this document are originated from or
49shared with the NIST Igor analysis package.
50
51**2.** ** ** **Shapes (Scattering Intensity Models)**
52
53This software provides form factors for various particle shapes. After
54giving a mathematical definition of each model, we draw the list of
55parameters available to the user. Validation plots for each model are
56also presented. Instructions on how to use the software is available
57with the source code.
58
59To easily compare to the scattering intensity measured in experiments,
60we normalize the form factors by the volume of the particle:
61
62
63
64with
65
66
67
68where *P*0 *( **q**)* is the un-normalized form factor, *( **r**)* is
69the scattering length density at a given point in space and the
70integration is done over the volume *V* of the scatterer.
71
72For systems without inter-particle interference, the form factors we
73provide can be related to the scattering intensity by the particle
74volume fraction: .
75
76Our so-called 1D scattering intensity functions provide *P(q) *for the
77case where the scatterer is randomly oriented. In that case, the
78scattering intensity only depends on the length of q. The intensity
79measured on the plane of the SANS detector will have an azimuthal
80symmetry around *q*=0.
81
82Our so-called 2D scattering intensity functions provide *P(q, * *)*
83for an oriented system as a function of a q-vector in the plane of the
84detector. We define the angle as the angle between the q vector and
85the horizontal (x) axis of the plane of the detector.
86
87**2.1.** ** ** **Sphere Model (Magnetic 2D Model)**
88
89This model provides the form factor, P(q), for a monodisperse
90spherical particle with uniform scattering length density. The form
91factor is normalized by the particle volume as described below.
92For magnetic scattering, please see the '`Polarization/Magnetic
93Scattering`_' in Fitting Help.
94**1.1.** ** Definition**
95
96The 1D scattering intensity is calculated in the following way
97(Guinier, 1955):
98
99
100
101where scale is a volume fraction, V is the volume of the scatterer, r
102is the radius of the sphere, bkg is the background level and sldXXX is
103the scattering length density (SLD) of the scatterer or the
104solvent.<\p>
105Note that if your data is in absolute scale, the 'scale' should
106represent the volume fraction (unitless) if you have a good fit. If
107not, it should represent the volume fraction * a factor (by which your
108data might need to be rescaled).
109
110The 2D scattering intensity is the same as above, regardless of the
111orientation of the q vector.
112
113The returned value is scaled to units of [cm-1] and the parameters of
114the sphere model are the following:
115
116Parameter name
117
118Units
119
120Default value
121
122scale
123
124None
125
1261
127
128radius
129
130
131
13260
133
134sldSph
135
136-2
137
1382.0e-6
139
140sldSolv
141
142-2
143
1441.0e-6
145
146background
147
148cm-1
149
1500
151
152Our model uses the form factor calculations implemented in a c-library
153provided by the NIST Center for Neutron Research (Kline, 2006).
154
155**2.1.** ** Validation of the sphere model**
156
157Validation of our code was done by comparing the output of the 1D
158model to the output of the software provided by the NIST (Kline,
1592006). Figure 1 shows a comparison of the output of our model and the
160output of the NIST software.
161
162
163
164
165
166Figure 1: Comparison of the DANSE scattering intensity for a sphere
167with the output of the NIST SANS analysis software. The parameters
168were set to: Scale=1.0, Radius=60 , Contrast=1e-6 -2, and
169Background=0.01 cm -1.
170
1712013/09/09 and 2014/01/06 - Description reviewed by King, S. and
172Parker, P.
173
174**2.2.** ** ** **BinaryHSModel**
175
176This model (binary hard sphere model) provides the scattering
177intensity, for binary mixture of spheres including hard sphere
178interaction between those particles. Using Percus-Yevick closure, the
179calculation is an exact multi-component solution:
180
181
182
183where Sij are the partial structure factors and fi are the scattering
184amplitudes of the particles. And the subscript 1 is for the smaller
185particle and 2 is for the larger. The number fraction of the larger
186particle, ( *x* = n2/(n1+n2), n = the number density) is internally
187calculated based on:
188
189.
190
191The 2D scattering intensity is the same as 1D, regardless of the
192orientation of the *q* vector which is defined as .
193
194The parameters of the binary hard sphere are the following (in the
195names, l (or ls) stands for larger spheres while s (or ss) for the
196smaller spheres):
197
198Parameter name
199
200Units
201
202Default value
203
204background
205
206cm-1
207
2080.001
209
210l_radius
211
212
213
214100.0
215
216ss_sld
217
218-2
219
2200.0
221
222ls_sld
223
224-2
225
2263e-6
227
228solvent_sld
229
230-2
231
2326e-6
233
234s_radius
235
236
237
23825.0
239
240vol_frac_ls
241
242
243
2440.1
245
246vol_frac_ss
247
248
249
2500.2
251
252
253
254**Figure. 1D plot using the default values above (w/200 data point).**
255
256Our model uses the form factor calculations implemented in a c-library
257provided by the NIST Center for Neutron Research (Kline, 2006).
258
259See the reference for details.
260
261REFERENCE
262
263N. W. Ashcroft and D. C. Langreth, Physical Review, v. 156 (1967)
264685-692.
265
266[Errata found in Phys. Rev. 166 (1968) 934.]
267
268**2.3.** ** ** **FuzzySphereModel**
269
270****This model is to calculate the scattering from spherical particles
271with a "fuzzy" interface.
272
273**1.1.** ** Definition**
274
275The 1D scattering intensity is calculated in the following way
276(Guinier, 1955):
277
278The returned value is scaled to units of [cm-1 sr-1], absolute scale.
279
280The scattering intensity I(q) is calculated as:
281
282
283
284where the amplitude A(q) is given as the typical sphere scattering
285convoluted with a Gaussian to get a gradual drop-off in the scattering
286length density:
287
288
289
290Here A2(q) is the form factor, P(q). The scale is equivalent to the
291volume fraction of spheres, each of volume, V. Contrast ( ** ) is the
292difference of scattering length densities of the sphere and the
293surrounding solvent.
294
295The poly-dispersion in radius and in fuzziness is provided.
296
297(direct from the reference)
298
299The "fuzziness" of the interface is defined by the parameter
300(sigma)fuzzy. The particle radius R represents the radius of the
301particle where the scattering length density profile decreased to 1/2
302of the core density. The (sigma)fuzzy is the width of the smeared
303particle surface: i.e., the standard deviation from the average height
304of the fuzzy interface. The inner regions of the microgel that display
305a higher density are described by the radial box profile extending to
306a radius of approximately Rbox ~ R - 2(sigma). the profile approaches
307zero as Rsans ~ R + 2(sigma).
308
309For 2D data: The 2D scattering intensity is calculated in the same way
310as 1D, where the *q* vector is defined as .
311
312REFERENCE
313
314M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20
315(2004) 7283-7292.
316
317TEST DATASET
318
319This example dataset is produced by running the FuzzySphereModel,
320using 200 data points, qmin = 0.001 -1, qmax = 0.7 A-1 and the default
321values:
322
323Parameter name
324
325Units
326
327Default value
328
329scale
330
331None
332
3331.0
334
335radius
336
337
338
33960
340
341fuzziness
342
343
344
34510
346
347sldSolv
348
349-2
350
3513e-6
352
353sldSph
354
355-2
356
3571e-6
358
359background
360
361cm-1
362
3630.001
364
365
366
367**Figure. 1D plot using the default values (w/200 data point).**
368
369
370
371**2.4.** **RaspBerryModel**
372
373
374
375Calculates the form factor, P(q), for a "Raspberry-like" structure
376where there are smaller spheres at the surface of a larger sphere,
377such as the structure of a Pickering emulsion.
378
379**1.1.** ** Definition**
380
381The structure is:
382
383
384
385Ro = the radius of thelarge sphere
386Rp = the radius of the smaller sphere on the surface
387delta = the fractional penetration depth
388surface coverage = fractional coverage of the large sphere surface
389(0.9 max)
390
391
392The large and small spheres have their own SLD, as well as the
393solvent. The surface coverage term is a fractional coverage (maximum
394of approximately 0.9 for hexagonally packed spheres on a surface).
395Since not all of the small spheres are necessarily attached to the
396surface, the excess free (small) spheres scattering is also included
397in the calculation. The function calculated follows equations (8)-(12)
398of the reference below, and the equations are not reproduced here.
399
400The returned value is scaled to units of [cm-1]. No interparticle
401scattering is included in this model.
402
403For 2D data: The 2D scattering intensity is calculated in the same way
404as 1D, where the *q* vector is defined as .
405
406REFERENCE
407Kjersta Larson-Smith, Andrew Jackson, and Danilo C Pozzo, "Small angle
408scattering model for Pickering emulsions and raspberry particles."
409Journal of Colloid and Interface Science (2010) vol. 343 (1) pp.
41036-41.
411
412TEST DATASET
413
414This example dataset is produced by running the RaspBerryModel, using
4152000 data points, qmin = 0.0001 -1, qmax = 0.2 A-1 and the default
416values, where Ssph/Lsph stands for Smaller/Large sphere
417andsurfrac_Ssph for the surface fraction of the smaller spheres.
418
419Parameter name
420
421Units
422
423Default value
424delta_Ssph 0 radius_Lsph 5000 radius_Ssph 100 sld_Lsph -2 -4e-07
425sld_Ssph
426
427-2
428
4293.5e-6
430
431sld_solv
432
433-2
434
4356.3e-6
436
437surfrac_Ssph
438
439
440
4410.4
442
443volf_Lsph
444
4450.05
446
447volf_Lsph
448
449
450
4510.005
452
453background
454
455cm-1
456
4570
458
459
460
461**Figure. 1D plot using the values of /2000 data points.**
462
463
464
465
466
467**2.5.** ** ** **Core Shell (Sphere) Model (Magnetic 2D Model)**
468
469This model provides the form factor, P( *q*), for a spherical particle
470with a core-shell structure. The form factor is normalized by the
471particle volume.
472For magnetic scattering, please see the '`Polarization/Magnetic
473Scattering`_' in Fitting Help.
474**1.1.** ** Definition**
475
476The 1D scattering intensity is calculated in the following way
477(Guinier, 1955):
478
479
480
481
482
483where *scale* is a scale factor, *Vs* is the volume of the outer
484shell, *Vc* is the volume of the core, *rs* is the radius of the
485shell, *rc* is the radius of the core, *c* is the scattering length
486density of the core, *s* is the scattering length density of the
487shell, solv is the scattering length density of the solvent, and *bkg*
488is the background level.
489
490The 2D scattering intensity is the same as P(q) above, regardless of
491the orientation of the q vector.
492
493For P*S: The outer most radius (= radius + thickness) is used as the
494effective radius toward S(Q) when P(Q)*S(Q) is applied.
495
496The returned value is scaled to units of [cm-1] and the parameters of
497the core-shell sphere model are the following:
498
499Here, radius = the radius of the core and thickness = the thickness of
500the shell.
501
502Parameter name
503
504Units
505
506Default value
507
508scale
509
510None
511
5121.0
513
514(core) radius
515
516
517
51860
519
520thickness
521
522
523
52410
525
526core_sld
527
528-2
529
5301e-6
531
532shell_sld
533
534-2
535
5362e-6
537
538solvent_sld
539
540-2
541
5423e-6
543
544background
545
546cm-1
547
5480.001
549
550Our model uses the form factor calculations implemented in a c-library
551provided by the NIST Center for Neutron Research (Kline, 2006).
552
553
554
555REFERENCE
556
557Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John
558Wiley and Sons, New York, (1955).
559
560**2.1.** ** Validation of the core-shell sphere model**
561
562Validation of our code was done by comparing the output of the 1D
563model to the output of the software provided by the NIST (Kline,
5642006). Figure 1 shows a comparison of the output of our model and the
565output of the NIST software.
566
567
568
569Figure 7: Comparison of the DANSE scattering intensity for a core-
570shell sphere with the output of the NIST SANS analysis software. The
571parameters were set to: Scale=1.0, Radius=60 , Contrast=1e-6 -2, and
572Background=0.001 cm -1.
573
574**2.6.** ** ** **Core2ndMomentModel**
575
576This model describes the scattering from a layer of surfactant or
577polymer adsorbed on spherical particles under the conditions that (i)
578theparticles (cores) are contrast-matched to the dispersion medium,
579(ii) S(Q)~1 (ie, the particle volume fraction is dilute), (iii) the
580particle radius is >> layer thickness (ie, the interface is locally
581flat), and (iv) scattering from excess unadsorbed adsorbate in the
582bulk medium is absent or has been corrected for.
583
584Unlike a core-shell model, this model does not assume any form for the
585density distribution of the adsorbed species normal to the interface
586(cf, a core-shell model which assumes the density distribution to be a
587homogeneous step-function). For comparison, if the thickness of a
588(core-shell like) step function distribution is t, the second moment,
589sigma = sqrt((t^2)/12). Thesigma is the second moment about the mean
590of the density distribution (ie, the distance of the centre-of-mass of
591the distribution from the interface).
592
593**1.1.** ** Definition**
594
595The I0 is calculated in the following way (King, 2002):
596
597
598
599
600
601where *scale* is a scale factor, *poly* is the sld of the polymer (or
602surfactant) layer,solv is the sld of the solvent/medium and cores,
603phi_cores is the volume fraction of the core paraticles, and Gamma and
604delta arethe adsorbed amount and the bulk density of the polymers
605respectively. The sigma is the second moment of the thickness
606distribution.
607
608
609
610Note that all parameters except the 'sigma' are correlated for fitting
611so that fittingthose with more than one parameters will be generally
612failed. And note that unlike other shape models, no volume
613normalization was applied to this model.
614
615The returned value is scaled to units of [cm-1] and the parameters are
616the following:
617
618Parameter name
619
620Units
621
622Default value
623
624scale
625
626None
627
6281.0
629
630density_poly
631
632g/cm2
633
6340.7
635
636radius_core
637
638
639
640500
641
642ads_amount
643
644mg/m2
645
6461.9
647second_moment 23.0 volf_cores None 0.14
648sld_poly
649
650-2
651
6521.5e-6
653
654sld_solv
655
656-2
657
6586.3e-6
659
660background
661
662cm-1
663
6640.0
665
666
667
668REFERENCE
669
670S. King, P. Griffiths, J. Hone, and T. Cosgrove, "SANS from Adsorbed
671Polymer Lyaers", Macromol. Symp. 190, 33-42 (2002).
672
673
674
675
676
677**2.7.** ** ** **CoreMultiShell(Sphere)Model (Magnetic 2D Model)**
678
679This model provides the scattering from spherical core with from 1 up
680to 4 shell structures. Ithas a core of a specified radius, with four
681shells. The SLDs of the core and each shell are individually
682specified.
683For magnetic scattering, please see the '`Polarization/Magnetic
684Scattering`_' in Fitting Help.
685**1.1.** ** Definition**
686
687The returned value is scaled to units of [cm-1sr-1], absolute scale.
688
689This model is a trivial extension of the CoreShell function to a
690larger number of shells. See the CoreShell function for a diagram and
691documentation.
692
693Be careful that the SLDs and scale can be highly correlated. Hold as
694many of these fixed as possible.
695
696The 2D scattering intensity is the same as P(q) of 1D, regardless of
697the orientation of the q vector.
698
699For P*S: The outer most radius (= radius + 4 thicknesses) is used as
700the effective radius toward S(Q) if P(Q)*S(Q) is applied.
701
702The returned value is scaled to units of [cm-1] and the parameters of
703the CoreFourshell sphere model are the following:
704
705Here, rad_core = the radius of the core, thick_shelli = the thickness
706of the shell i and sld_shelli = the SLD of the shell i.
707
708And the sld_core and the sld_solv are the SLD of the core and the
709solvent, respectively.
710
711Parameter name
712
713Units
714
715Default value
716
717scale
718
719None
720
7211.0
722
723rad_core
724
725
726
72760
728
729sld_core
730
731-2
732
7336.4e-6
734
735sld_shell1
736
737-2
738
7391e-6
740
741sld_shell2
742
743-2
744
7452e-6
746
747sld_shell3
748
749-2
750
7513e-6
752
753sld_shell4
754
755-2
756
7574e-6
758
759sld_solv
760
761-2
762
7636.4e-6
764
765thick_shell1
766
767
768
76910
770
771thick_shell2
772
773
774
77510
776
777thick_shell3
778
779
780
78110
782
783thick_shell4
784
785
786
78710
788
789background
790
791cm-1
792
7930.001
794
795Our model uses the form factor calculations implemented in a c-library
796provided by the NIST Center for Neutron Research (Kline, 2006).
797
798
799
800REFERENCE
801
802See the CoreShell documentation.
803
804TEST DATASET
805
806This example dataset is produced by running the CoreMultiShellModel
807using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above
808default values.
809
810
811
812**Figure: 1D plot using the default values (w/200 data point).**
813
814The scattering length density profile for the default sld values (w/ 4
815shells).
816
817
818
819**Figure: SLD profile against the radius of the sphere for default
820SLDs.**
821
822**2.8.** ** ** **VesicleModel**
823
824This model provides the form factor, P( *q*), for an unilamellar
825vesicle. The form factor is normalized by the volume of the shell.
826
827The 1D scattering intensity is calculated in the following way
828(Guinier, 1955):
829
830
831
832
833
834where *scale* is a scale factor, *Vshell* is the volume of the shell,
835*V1* is the volume of the core, *V2* is the total volume, *R1* is the
836radius of the core, *r2* is the outer radius of the shell, *1* is the
837scattering length density of the core and the solvent, *2* is the
838scattering length density of the shell, and *bkg* is the background
839level. And *J1* = (sin *x *- *x*cos *x*)/ *x*2. The functional form is
840identical to a "typical" core-shell structure, except that the
841scattering is normalized by the volume that is contributing to the
842scattering, namely the volume of the shell alone. Also, the vesicle is
843best defined in terms of a core radius (= R1) and a shell thickness,
844t.
845
846
847
848The 2D scattering intensity is the same as *P*( *q*) above, regardless
849of the orientation of the *q* vector which is defined as .
850
851For P*S: The outer most radius (= radius + thickness) is used as the
852effective radius toward S(Q) when P(Q)*S(Q) is applied.
853
854The returned value is scaled to units of [cm-1] and the parameters of
855the vesicle model are the following:
856
857In the parameters, the radius represents the core radius (R1) and the
858thickness (R2 R1) is the shell thickness.
859
860Parameter name
861
862Units
863
864Default value
865
866scale
867
868None
869
8701.0
871
872radius
873
874
875
876100
877
878thickness
879
880
881
88230
883
884core_sld
885
886-2
887
8886.3e-6
889
890shell_sld
891
892-2
893
8940
895
896background
897
898cm-1
899
9000.0
901
902
903
904**Figure. 1D plot using the default values (w/200 data point).**
905
906Our model uses the form factor calculations implemented in a c-library
907provided by the NIST Center for Neutron Research (Kline, 2006).
908
909REFERENCE
910
911Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John
912Wiley and Sons, New York, (1955).
913
914**2.9.** ** ** **MultiShellModel**
915
916This model provides the form factor, P( *q*), for a multi-lamellar
917vesicle with N shells where the core is filled with solvent and the
918shells are interleaved with layers of solvent. For N = 1, this return
919to the vesicle model (above).
920
921
922
923The 2D scattering intensity is the same as 1D, regardless of the
924orientation of the *q* vector which is defined as .
925
926For P*S: The outer most radius (= core_radius + n_pairs * s_thickness
927+ (n_pairs -1) * w_thickness) is used as the effective radius toward
928S(Q) when P(Q)*S(Q) is applied.
929
930The returned value is scaled to units of [cm-1] and the parameters of
931the multi-shell model are the following:
932
933In the parameters, the s_thickness is the shell thickness while the
934w_thickness is the solvent thickness, and the n_pair is the number of
935shells.
936
937Parameter name
938
939Units
940
941Default value
942
943scale
944
945None
946
9471.0
948
949core_radius
950
951
952
95360.0
954
955n_pairs
956
957None
958
9592.0
960
961core_sld
962
963-2
964
9656.3e-6
966
967shell_sld
968
969-2
970
9710.0
972
973background
974
975cm-1
976
9770.0
978
979s_thickness
980
981
982
98310
984
985w_thickness
986
987
988
98910
990
991
992
993**Figure. 1D plot using the default values (w/200 data point).**
994
995Our model uses the form factor calculations implemented in a c-library
996provided by the NIST Center for Neutron Research (Kline, 2006).
997
998REFERENCE
999
1000Cabane, B., Small Angle Scattering Methods, Surfactant Solutions: New
1001Methods of Investigation, Ch.2, Surfactant Science Series Vol. 22, Ed.
1002R. Zana, M. Dekker, New York, 1987.
1003
1004**2.10.** ** ** **OnionExpShellModel**
1005
1006
1007
1008This model provides the form factor, *P*( *q*), for a multi-shell
1009sphere where the scattering length density (SLD) of the each shell is
1010described by an exponential (linear, or flat-top) function. The form
1011factor is normalized by the volume of the sphere where the SLD is not
1012identical to the SLD of the solvent. We currently provide up to 9
1013shells with this model.
1014
1015The 1D scattering intensity is calculated in the following way:
1016
1017
1018
1019
1020
1021where, for a spherically symmetric particle with a particle density
1022*r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small-
1023Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987],
1024
1025
1026
1027so that
1028
1029
1030
1031
1032
1033
1034
1035
1036Here we assumed that the SLDs of the core and solvent are constant
1037against *r*. Now lets consider the SLD of a shell, *rshelli*,
1038defineded by
1039
1040
1041
1042An example of a possible SLD profile is shown below where
1043sld_in_shelli ( *rin* ) and thick_shelli ( *Dtshelli* ) stand for the
1044SLD of the inner side of the ith shell and the thickness of the ith
1045shell in the equation above, respectively.
1046
1047For |A|>0,
1048
1049
1050
1051For A **~ **0 (eg., A = - 0.0001), this function converges to that of
1052the linear SLD profile (ie, *rshelli*( *r*) = *A *****( *r* -
1053*rshelli-1*) / *Dtshelli*) + *B *****), so this case it is equivalent
1054to
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064For A = 0, the exponential function has no dependence on the radius
1065(so that sld_out_shell# ( *rout*) is ignored this case) and becomes
1066flat. We set the constant to *rin* for convenience, and thus the form
1067factor contributed by the shells is
1068
1069
1070
1071
1072
1073In the equation,
1074
1075
1076
1077Finally, the form factor can be calculated by
1078
1079
1080
1081where
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093The 2D scattering intensity is the same as *P*( *q*) above, regardless
1094of the orientation of the *q* vector which is defined as .
1095
1096For P*S: The outer most radius is used as the effective radius toward
1097S(Q) when P(Q)*S(Q) is applied.
1098
1099The returned value is scaled to units of [cm-1] and the parameters of
1100this model are the following:
1101
1102In the parameters, the rad_core represents the core radius (R1) and
1103the thick_shell1 (R2 R1) is the thickness of the shell1, etc.
1104
1105Note: Only No. of shells = 1 is given below.
1106
1107Parameter name
1108
1109Units
1110
1111Default value
1112
1113A_shell1
1114
1115None
1116
11171
1118
1119scale
1120
1121None
1122
11231.0
1124
1125rad_core
1126
1127
1128
1129200
1130
1131thick_shell1
1132
1133
1134
113550
1136
1137sld_core
1138
1139-2
1140
11411.0e-06
1142
1143sld_in_shell1
1144
1145-2
1146
11471.7e-06
1148
1149sld_out_shell1
1150
1151-2
1152
11532.0e-06
1154
1155sld_solv
1156
1157-2
1158
11596.4e-06
1160
1161background
1162
1163cm-1
1164
11650.0
1166
1167
1168
1169**Figure. 1D plot using the default values (w/400 point).**
1170
1171
1172
1173**Figure. SLD profile from the default values.**
1174
1175REFERENCE
1176
1177L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray
1178and Neutron Scattering, Plenum Press, New York, 1987
1179
1180**2.11.** ** ** **SphericalSLDModel**
1181
1182
1183
1184Similarly to the OnionExpShellModel, this model provides the form
1185factor, *P*( *q*), for a multi-shell sphere, where the interface
1186between the each neighboring shells can be described by one of the
1187functions including error, power-law, and exponential functions. This
1188model is to calculate the scattering intensity by building a
1189continuous custom SLD profile against the radius of the particle. The
1190SLD profile is composed of a flat core, a flat solvent, a number (up
1191to 9 shells) of flat shells, and the interfacial layers between the
1192adjacent flat shells (or core, and solvent) (See below). Unlike
1193OnionExpShellModel (using an analytical integration), the interfacial
1194layers are sub-divided and numerically integrated assuming each sub-
1195layers are described by a line function. The number of the sub-layer
1196can be given by users by setting the integer values of npts_inter# in
1197GUI. The form factor is normalized by the total volume of the sphere.
1198
1199The 1D scattering intensity is calculated in the following way:
1200
1201
1202
1203
1204
1205where, for a spherically symmetric particle with a particle density
1206*r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small-
1207Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987],
1208
1209
1210
1211so that
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225Here we assumed that the SLDs of the core and solvent are constant
1226against *r*. The SLD at the interface between shells, *rinter_i*, is
1227calculated with a function chosen by an user, where the functions are:
1228
12291) Exp;
1230
1231
1232
12332) Power-Law;
1234
1235
1236
1237
1238
12393) Erf;
1240
1241
1242
1243
1244
1245
1246
1247Then the functions are normalized so that it varies between 0 and 1
1248and they are constrained such that the SLD is continuous at the
1249boundaries of the interface as well as each sub-layers and thus the B
1250and C are determined.
1251
1252Once the *rinter_i* is found at the boundary of the sub-layer of the
1253interface, we can find its contribution to the form factor P(q);
1254
1255
1256
1257
1258
1259
1260
1261where we assume that rho_inter_i (r) can be approximately linear
1262within a sub-layer j.
1263
1264In the equation,
1265
1266
1267
1268Finally, the form factor can be calculated by
1269
1270
1271
1272where
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284The 2D scattering intensity is the same as *P*( *q*) above, regardless
1285of the orientation of the *q* vector which is defined as .
1286
1287For P*S: The outer most radius is used as the effective radius toward
1288S(Q) when P(Q)*S(Q) is applied.
1289
1290The returned value is scaled to units of [cm-1] and the parameters of
1291this model are the following:
1292
1293In the parameters, the rad_core0 represents the core radius (R1).
1294
1295Note: Only No. of shells = 1 is given below.
1296
1297Parameter name
1298
1299Units
1300
1301Default value
1302
1303background
1304
1305cm-1
1306
13070.0
1308
1309npts_inter
1310
131135
1312
1313scale
1314
13151
1316
1317sld_solv
1318
1319-2
1320
13211e-006
1322
1323func_inter1
1324
1325Erf
1326
1327nu_inter
1328
13292.5
1330
1331thick_inter1
1332
1333
1334
133550
1336
1337sld_flat1
1338
1339-2
1340
13414e-006
1342
1343thick_flat1
1344
1345
1346
1347100
1348
1349func_inter0
1350
1351Erf
1352
1353nu_inter0
1354
13552.5
1356
1357rad_core0
1358
1359
1360
136150
1362
1363sld_ core0
1364
1365-2
1366
13672.07e-06
1368
1369thick_ core0
1370
1371
1372
137350
1374
1375
1376
1377**Figure. 1D plot using the default values (w/400 point).**
1378
1379
1380
1381**Figure. SLD profile from the default values.**
1382
1383REFERENCE
1384
1385L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray
1386and Neutron Scattering, Plenum Press, New York, 1987
1387
1388**2.12.** **LinearPearlsModel**
1389
1390This model provides the form factor for pearls linearly joined by
1391short strings: N pearls (homogeneous spheres), the radius R and the
1392string segment length (or edge separation) l (= A- 2R)). The A is the
1393center to center pearl separation distance. The thickness of each
1394string is assumed to be negligable.
1395
1396
1397
1398
1399
1400**1.1.** ** Definition**
1401
1402
1403
1404The output of the scattering intensity function for the linearpearls
1405model is given by (Dobrynin, 1996):
1406
1407
1408
1409where the mass mp is (sld(of a pearl) sld(of solvent)) * (volume of
1410the N pearls), V is the total volume.
1411
1412The 2D scattering intensity is the same as P(q) above, regardless of
1413the orientation of the q vector.
1414
1415The returned value is scaled to units of [cm-1] and the parameters are
1416the following:
1417
1418Parameter name
1419
1420Units
1421
1422Default value
1423
1424scale
1425
1426None
1427
14281.0
1429
1430radius
1431
1432
1433
143480.0
1435
1436edge_separation
1437
1438
1439
1440350.0
1441
1442num_pearls
1443
1444(integer)
1445
14463
1447
1448sld_pearl
1449
1450-2
1451
14521e-6
1453
1454sld_solv
1455
1456-2
1457
14586.3e-6
1459
1460background
1461
1462cm-1
1463
14640.0
1465
1466
1467
1468
1469
1470REFERENCE
1471
1472A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, Macromol. 29,
14732974-2979, 1996.
1474
1475**2.13.** ** ** **PearlNecklaceModel**
1476
1477This model provides the form factor for a pearl necklace composed of
1478two elements: N pearls (homogeneous spheres) freely jointed by M rods
1479(like strings) (with a total mass Mw = M *mr + N * ms, the radius R
1480and the string segment length (or edge separation) l (= A- 2R)). The A
1481is the center to center pearl separation distance.
1482
1483
1484
1485
1486
1487**1.1.** ** Definition**
1488
1489The output of the scattering intensity function for the pearlnecklace
1490model is given by (Schweins, 2004):
1491
1492
1493
1494where
1495
1496,
1497
1498,
1499
1500,
1501
1502,
1503
1504,
1505
1506and
1507
1508.
1509
1510
1511
1512where the mass mi is (sld(of i) sld(of solvent)) * (volume of the N
1513pearls/rods), V is the total volume of the necklace.
1514
1515The 2D scattering intensity is the same as P(q) above, regardless of
1516the orientation of the q vector.
1517
1518The returned value is scaled to units of [cm-1] and the parameters are
1519the following:
1520
1521Parameter name
1522
1523Units
1524
1525Default value
1526
1527scale
1528
1529None
1530
15311.0
1532
1533radius
1534
1535
1536
153780.0
1538
1539edge_separation
1540
1541
1542
1543350.0
1544
1545num_pearls
1546
1547(integer)
1548
15493
1550
1551sld_pearl
1552
1553-2
1554
15551e-6
1556
1557sld_solv
1558
1559-2
1560
15616.3e-6
1562
1563sld_string
1564
1565-2
1566
15671e-6
1568
1569thick_string
1570
1571(=rod diameter)
1572
1573
1574
15752.5
1576
1577background
1578
1579cm-1
1580
15810.0
1582
1583
1584
1585
1586
1587REFERENCE
1588
1589R. Schweins and K. Huber, Particle Scattering Factor of Pearl Necklace
1590Chains, Macromol. Symp., 211, 25-42, 2004.
1591
1592
1593
1594**2.14.** ** ** **Cylinder Model (Magnetic 2D Model)**
1595
1596This model provides the form factor for a right circular cylinder with
1597uniform scattering length density. The form factor is normalized by
1598the particle volume.
1599For magnetic scattering, please see the '`Polarization/Magnetic
1600Scattering`_' in Fitting Help.
1601**1.1.** ** Definition**
1602
1603The output of the 2D scattering intensity function for oriented
1604cylinders is given by (Guinier, 1955):
1605
1606
1607
1608
1609
1610where is the angle between the axis of the cylinder and the q-vector,
1611V is the volume of the cylinder, L is the length of the cylinder, r is
1612the radius of the cylinder, and ** (contrast) is the scattering length
1613density difference between the scatterer and the solvent. J1 is the
1614first order Bessel function.
1615
1616To provide easy access to the orientation of the cylinder, we define
1617the axis of the cylinder using two angles theta and phi. Those angles
1618are defined on Figure 2.
1619
1620
1621
1622Figure 2. Definition of the angles for oriented cylinders.
1623
1624
1625
1626Figure. Examples of the angles for oriented pp against the detector
1627plane.
1628
1629For P*S: The 2nd virial coefficient of the cylinder is calculate based
1630on the radius and length values, and used as the effective radius
1631toward S(Q) when P(Q)*S(Q) is applied.
1632
1633The returned value is scaled to units of [cm-1] and the parameters of
1634the cylinder model are the following:
1635
1636Parameter name
1637
1638Units
1639
1640Default value
1641
1642scale
1643
1644None
1645
16461.0
1647
1648radius
1649
1650
1651
165220.0
1653
1654length
1655
1656
1657
1658400.0
1659
1660contrast
1661
1662-2
1663
16643.0e-6
1665
1666background
1667
1668cm-1
1669
16700.0
1671
1672cyl_theta
1673
1674degree
1675
167660
1677
1678cyl_phi
1679
1680degree
1681
168260
1683
1684The output of the 1D scattering intensity function for randomly
1685oriented cylinders is then given by:
1686
1687
1688
1689The *cyl_theta* and *cyl_phi* parameter are not used for the 1D
1690output. Our implementation of the scattering kernel and the 1D
1691scattering intensity use the c-library from NIST.
1692
1693**2.1.** ** Validation of the cylinder model**
1694
1695Validation of our code was done by comparing the output of the 1D
1696model to the output of the software provided by the NIST (Kline,
16972006). Figure 3 shows a comparison of the 1D output of our model and
1698the output of the NIST software.
1699
1700In general, averaging over a distribution of orientations is done by
1701evaluating the following:
1702
1703
1704
1705where *p(,* *)* is the probability distribution for the orientation
1706and *P0(q,* *)* is the scattering intensity for the fully oriented
1707system. Since we have no other software to compare the implementation
1708of the intensity for fully oriented cylinders, we can compare the
1709result of averaging our 2D output using a uniform distribution *p(,*
1710*)* = 1.0. Figure 4 shows the result of such a cross-check.
1711
1712
1713
1714
1715
1716Figure 3: Comparison of the DANSE scattering intensity for a cylinder
1717with the output of the NIST SANS analysis software. The parameters
1718were set to: Scale=1.0, Radius=20 , Length=400 , Contrast=3e-6 -2, and
1719Background=0.01 cm -1.
1720
1721
1722
1723
1724
1725
1726
1727Figure 4: Comparison of the intensity for uniformly distributed
1728cylinders calculated from our 2D model and the intensity from the NIST
1729SANS analysis software. The parameters used were: Scale=1.0, Radius=20
1730, Length=400 , Contrast=3e-6 -2, and Background=0.0 cm -1.
1731
1732
1733
1734**2.15.** ** ** **Core-Shell Cylinder Model**
1735
1736This model provides the form factor for a circular cylinder with a
1737core-shell scattering length density profile. The form factor is
1738normalized by the particle volume.
1739
1740**1.1.** ** Definition**
1741
1742The output of the 2D scattering intensity function for oriented core-
1743shell cylinders is given by (Kline, 2006):
1744
1745
1746
1747
1748
1749
1750
1751where is the angle between the axis of the cylinder and the q-vector,
1752*Vs* is the volume of the outer shell (i.e. the total volume,
1753including the shell), *Vc* is the volume of the core, *L* is the
1754length of the core, *r* is the radius of the core, *t* is the
1755thickness of the shell, *c* is the scattering length density of the
1756core, *s* is the scattering length density of the shell, solv is the
1757scattering length density of the solvent, and *bkg* is the background
1758level. The outer radius of the shell is given by *r+t* and the total
1759length of the outer shell is given by *L+2t*. J1 is the first order
1760Bessel function.
1761
1762
1763
1764To provide easy access to the orientation of the core-shell cylinder,
1765we define the axis of the cylinder using two angles and . Similarly to
1766the case of the cylinder, those angles are defined on Figure 2 in
1767Cylinder Model.
1768
1769For P*S: The 2nd virial coefficient of the solid cylinder is calculate
1770based on the (radius+thickness) and 2(length +thickness) values, and
1771used as the effective radius toward S(Q) when P(Q)*S(Q) is applied.
1772
1773The returned value is scaled to units of [cm-1] and the parameters of
1774the core-shell cylinder model are the following:
1775
1776Parameter name
1777
1778Units
1779
1780Default value
1781
1782scale
1783
1784None
1785
17861.0
1787
1788radius
1789
1790
1791
179220.0
1793
1794thickness
1795
1796
1797
179810.0
1799
1800length
1801
1802
1803
1804400.0
1805
1806core_sld
1807
1808-2
1809
18101e-6
1811
1812shell_sld
1813
1814-2
1815
18164e-6
1817
1818solvent_sld
1819
1820-2
1821
18221e-6
1823
1824background
1825
1826cm-1
1827
18280.0
1829
1830axis_theta
1831
1832degree
1833
183490
1835
1836axis_phi
1837
1838degree
1839
18400.0
1841
1842The output of the 1D scattering intensity function for randomly
1843oriented cylinders is then given by the equation above.
1844
1845The *axis_theta* and axis *_phi* parameters are not used for the 1D
1846output. Our implementation of the scattering kernel and the 1D
1847scattering intensity use the c-library from NIST.
1848
1849**2.1.** ** Validation of the core-shell cylinder model**
1850
1851Validation of our code was done by comparing the output of the 1D
1852model to the output of the software provided by the NIST (Kline,
18532006). Figure 8 shows a comparison of the 1D output of our model and
1854the output of the NIST software.
1855
1856Averaging over a distribution of orientation is done by evaluating the
1857equation above. Since we have no other software to compare the
1858implementation of the intensity for fully oriented core-shell
1859cylinders, we can compare the result of averaging our 2D output using
1860a uniform distribution *p(,* *)* = 1.0. Figure 9 shows the result of
1861such a cross-check.
1862
1863
1864
1865
1866
1867Figure 8: Comparison of the DANSE scattering intensity for a core-
1868shell cylinder with the output of the NIST SANS analysis software. The
1869parameters were set to: Scale=1.0, Radius=20 , Thickness=10 ,
1870Length=400 , Core_sld=1e-6 -2, Shell_sld=4e-6 -2, Solvent_sld=1e-6 -2,
1871and Background=0.01 cm -1.
1872
1873
1874
1875
1876
1877
1878
1879Figure 9: Comparison of the intensity for uniformly distributed core-
1880shell cylinders calculated from our 2D model and the intensity from
1881the NIST SANS analysis software. The parameters used were: Scale=1.0,
1882Radius=20 , Thickness=10 , Length=400 , Core_sld=1e-6 -2,
1883Shell_sld=4e-6 -2, Solvent_sld=1e-6 -2, and Background=0.0 cm -1.
1884
1885
1886
1887Figure. Definition of the angles for oriented core-shell cylinders.
1888
1889
1890
1891Figure. Examples of the angles for oriented pp against the detector
1892plane.
1893
18942013/11/26 - Description reviewed by Heenan, R.
1895
1896**2.16.** ** ** **Core-Shell (Cylinder) Bicelle Model**
1897
1898This model provides the form factor for a circular cylinder with a
1899core-shell scattering length density profile. The form factor is
1900normalized by the particle volume. This model is a more general case
1901of core-shell cylinder model (seeabove and reference below) in that
1902the parameters of the shell are separated into a face-shell and a rim-
1903shell so that users can set different values of the thicknesses and
1904slds.
1905
1906
1907
1908The returned value is scaled to units of [cm-1] and the parameters of
1909the core-shell cylinder model are the following:
1910
1911Parameter name
1912
1913Units
1914
1915Default value
1916
1917scale
1918
1919None
1920
19211.0
1922
1923radius
1924
1925
1926
192720.0
1928
1929rim_thick
1930
1931
1932
193310.0
1934face_thick 10.0
1935length
1936
1937
1938
1939400.0
1940
1941core_sld
1942
1943-2
1944
19451e-6
1946
1947rim_sld
1948
1949-2
1950
19514e-6
1952face_sld -2 4e-6
1953solvent_sld
1954
1955-2
1956
19571e-6
1958
1959background
1960
1961cm-1
1962
19630.0
1964
1965axis_theta
1966
1967degree
1968
196990
1970
1971axis_phi
1972
1973degree
1974
19750.0
1976
1977The output of the 1D scattering intensity function for randomly
1978oriented cylinders is then given by the equation above.
1979
1980The *axis_theta* and axis *_phi* parameters are not used for the 1D
1981output. Our implementation of the scattering kernel and the 1D
1982scattering intensity use the c-library from NIST.
1983
1984
1985
1986
1987
1988**Figure. 1D plot using the default values (w/200 data point).**
1989
1990
1991
1992Figure. Definition of the angles for the oriented Core-Shell Cylinder
1993Bicelle Model.
1994
1995
1996
1997Figure. Examples of the angles for oriented pp against the detector
1998plane.
1999
2000REFERENCE
2001Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle
2002X-Ray and Neutron Scattering", Plenum Press, New York, (1987).
2003
2004**2.17.** ** ** **HollowCylinderModel**
2005
2006This model provides the form factor, P( *q*), for a monodisperse
2007hollow right angle circular cylinder (tube) where the form factor is
2008normalized by the volume of the tube:
2009
2010P(q) = scale*<f^2>/Vshell+background where the averaging < > id
2011applied only for the 1D calculation. The inside and outside of the
2012hollow cylinder have the same SLD.
2013
2014The 1D scattering intensity is calculated in the following way
2015(Guinier, 1955):
2016
2017
2018
2019
2020
2021where *scale* is a scale factor, *J1* is the 1st order Bessel
2022function, *J1* (x)= (sin *x *- *x*cos *x*)/ *x*2.
2023
2024
2025
2026To provide easy access to the orientation of the core-shell cylinder,
2027we define the axis of the cylinder using two angles and . Similarly to
2028the case of the cylinder, those angles are defined on Figure 2 in
2029Cylinder Model.
2030
2031For P*S: The 2nd virial coefficient of the solid cylinder is calculate
2032based on the (radius) and 2(length) values, and used as the effective
2033radius toward S(Q) when P(Q)*S(Q) is applied.
2034
2035In the parameters, the contrast represents SLD (shell) - SLD (solvent)
2036and the radius = Rhell while core_radius = Rcore.
2037
2038
2039
2040Parameter name
2041
2042Units
2043
2044Default value
2045
2046scale
2047
2048None
2049
20501.0
2051
2052radius
2053
2054
2055
205630
2057
2058length
2059
2060
2061
2062400
2063
2064core_radius
2065
2066
2067
206820
2069
2070sldCyl
2071
2072-2
2073
20746.3e-6
2075
2076sldSolv
2077
2078-2
2079
20805e-06
2081
2082background
2083
2084cm-1
2085
20860.01
2087
2088
2089
2090**Figure. 1D plot using the default values (w/1000 data point).**
2091
2092Our model uses the form factor calculations implemented in a c-library
2093provided by the NIST Center for Neutron Research (Kline, 2006).
2094
2095
2096
2097Figure. Definition of the angles for the oriented HollowCylinderModel.
2098
2099
2100
2101Figure. Examples of the angles for oriented pp against the detector
2102plane.
2103
2104REFERENCE
2105
2106Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle
2107X-Ray and Neutron Scattering", Plenum Press, New York, (1987).
2108
2109**2.18.** ** ** **FlexibleCylinderModel**
2110
2111This model provides the form factor, P( *q*), for a flexible cylinder
2112where the form factor is normalized by the volume of the cylinder:
2113Inter-cylinder interactions are NOT included. P(q) =
2114scale*<f^2>/V+background where the averaging < > is applied over all
2115orientation for 1D. The 2D scattering intensity is the same as 1D,
2116regardless of the orientation of the *q* vector which is defined as .
2117
2118
2119
2120The chain of contour length, L, (the total length) can be described a
2121chain of some number of locally stiff segments of length lp. The
2122persistence length,lp, is the length along the cylinder over which the
2123flexible cylinder can be considered a rigid rod. The Kuhn length (b =
21242*lp) is also used to describe the stiffness of a chain. The returned
2125value is in units of [cm-1], on absolute scale. In the parameters, the
2126sldCyl and sldSolv represent SLD (chain/cylinder) and SLD (solvent)
2127respectively.
2128
2129
2130
2131
2132
2133Parameter name
2134
2135Units
2136
2137Default value
2138
2139scale
2140
2141None
2142
21431.0
2144
2145radius
2146
2147
2148
214920
2150
2151length
2152
2153
2154
21551000
2156
2157sldCyl
2158
2159-2
2160
21611e-06
2162
2163sldSolv
2164
2165-2
2166
21676.3e-06
2168
2169background
2170
2171cm-1
2172
21730.01
2174
2175kuhn_length
2176
2177
2178
2179100
2180
2181
2182
2183**Figure. 1D plot using the default values (w/1000 data point).**
2184
2185Our model uses the form factor calculations implemented in a c-library
2186provided by the NIST Center for Neutron Research (Kline, 2006):
2187
2188From the reference, "Method 3 With Excluded Volume" is used. The model
2189is a parametrization of simulations of a discrete representation of
2190the worm-like chain model of Kratky and Porod applied in the
2191pseudocontinuous limit. See equations (13,26-27) in the original
2192reference for the details.
2193
2194REFERENCE
2195
2196Pedersen, J. S. and P. Schurtenberger (1996). Scattering functions of
2197semiflexible polymers with and without excluded volume effects.
2198Macromolecules 29: 7602-7612.
2199
2200Correction of the formula can be found in:
2201
2202Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating
2203Intermicellar Interactions in the Fitting of SANS Data from Cationic
2204Wormlike Micelles" Langmuir, August 2006.
2205
2206**2.19.** ** ** **FlexCylEllipXModel**
2207
2208**Flexible Cylinder with Elliptical Cross-Section: **Calculates the
2209form factor for a flexible cylinder with an elliptical cross section
2210and a uniform scattering length density. The non-negligible diameter
2211of the cylinder is included by accounting for excluded volume
2212interactions within the walk of a single cylinder. The form factor is
2213normalized by the particle volume such that P(q) = scale*<f^2>/Vol +
2214bkg, where < > is an average over all possible orientations of the
2215flexible cylinder.
2216
2217**1.1.** ** Definition**
2218
2219The function calculated is from the reference given below. From that
2220paper, "Method 3 With Excluded Volume" is used. The model is a
2221parameterization of simulations of a discrete representation of the
2222worm-like chain model of Kratky and Porod applied in the pseudo-
2223continuous limit. See equations (13, 26-27) in the original reference
2224for the details.
2225
2226NOTE: there are several typos in the original reference that have been
2227corrected by WRC. Details of the corrections are in the reference
2228below.
2229
2230- Equation (13): the term (1-w(QR)) should swap position with w(QR)
2231
2232- Equations (23) and (24) are incorrect. WRC has entered these into
2233Mathematica and solved analytically. The results were converted to
2234code.
2235
2236- Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of
2237max(a3*b/sqrt(RgSquare),3)
2238
2239- The scattering function is negative for a range of parameter values
2240and q-values that are experimentally accessible. A correction function
2241has been added to give the proper behavior.
2242
2243
2244
2245The chain of contour length, L, (the total length) can be described a
2246chain of some number of locally stiff segments of length lp. The
2247persistence length, lp, is the length along the cylinder over which
2248the flexible cylinder can be considered a rigid rod. The Kuhn length
2249(b) used in the model is also used to describe the stiffness of a
2250chain, and is simply b = 2*lp.
2251
2252The cross section of the cylinder is elliptical, with minor radius a.
2253The major radius is larger, so of course, the axis ratio (parameter 4)
2254must be greater than one. Simple constraints should be applied during
2255curve fitting to maintain this inequality.
2256
2257The returned value is in units of [cm-1], on absolute scale.
2258
2259The sldCyl = SLD (chain), sldSolv = SLD (solvent). The scale, and the
2260contrast are both multiplicative factors in the model and are
2261perfectly correlated. One or both of these parameters must be held
2262fixed during model fitting.
2263
2264If the scale is set equal to the particle volume fraction, f, the
2265returned value is the scattered intensity per unit volume, I(q) =
2266f*P(q). However, no inter-particle interference effects are included
2267in this calculation.
2268
2269For 2D data: The 2D scattering intensity is calculated in the same way
2270as 1D, where the *q* vector is defined as .
2271
2272REFERENCE
2273
2274Pedersen, J. S. and P. Schurtenberger (1996). Scattering functions of
2275semiflexible polymers with and without excluded volume effects.
2276Macromolecules 29: 7602-7612.
2277
2278Corrections are in:
2279
2280Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating
2281Intermicellar Interactions in the Fitting of SANS Data from Cationic
2282Wormlike Micelles" Langmuir, August 2006.
2283
2284
2285
2286TEST DATASET
2287
2288This example dataset is produced by running the Macro
2289FlexCylEllipXModel, using 200 data points, qmin = 0.001 -1, qmax = 0.7
2290-1 and the default values below.
2291
2292Parameter name
2293
2294Units
2295
2296Default value
2297
2298axis_ratio
2299
23001.5
2301
2302background
2303
2304cm-1
2305
23060.0001
2307
2308Kuhn_length
2309
2310
2311
2312100
2313
2314(Contour) length
2315
2316
2317
23181e+3
2319
2320radius
2321
2322
2323
232420.0
2325
2326scale
2327
23281.0
2329
2330sldCyl
2331
2332-2
2333
23341e-6
2335
2336sldSolv
2337
2338-2
2339
23406.3e-6
2341
2342
2343
2344**Figure. 1D plot using the default values (w/200 data points).**
2345
2346**2.20.** ** ** **StackedDisksModel **
2347
2348This model provides the form factor, P( *q*), for stacked discs
2349(tactoids) with a core/layer structure where the form factor is
2350normalized by the volume of the cylinder. Assuming the next neighbor
2351distance (d-spacing) in a stack of parallel discs obeys a Gaussian
2352distribution, a structure factor S(q) proposed by Kratky and Porod in
23531949 is used in this function. Note that the resolution smearing
2354calculation uses 76 Gauss quadrature points to properly smear the
2355model since the function is HIGHLY oscillatory, especially around the
2356q-values that correspond to the repeat distance of the layers.
2357
2358The 2D scattering intensity is the same as 1D, regardless of the
2359orientation of the *q* vector which is defined as .
2360
2361
2362
2363
2364
2365
2366
2367The returned value is in units of [cm-1 sr-1], on absolute scale.
2368
2369The scattering intensity I(q) is:
2370
2371
2372
2373where the contrast,
2374
2375
2376
2377N is the number of discs per unit volume, ais the angle between the
2378axis of the disc and q, and Vt and Vc are the total volume and the
2379core volume of a single disc, respectively.
2380
2381
2382
2383
2384
2385
2386
2387where d = thickness of the layer (layer_thick), 2h= core thickness
2388(core_thick), and R = radius of the disc (radius).
2389
2390
2391
2392where n = the total number of the disc stacked (n_stacking), D=the
2393next neighbor center to cent distance (d-spacing), and sD= the
2394Gaussian standard deviation of the d-spacing (sigma_d).
2395
2396To provide easy access to the orientation of the stackeddisks, we
2397define the axis of the cylinder using two angles and . Similarly to
2398the case of the cylinder, those angles are defined on Figure 2 of
2399CylinderModel.
2400
2401For P*S: The 2nd virial coefficient of the solid cylinder is calculate
2402based on the (radius) and length = n_stacking*(core_thick
2403+2*layer_thick) values, and used as the effective radius toward S(Q)
2404when P(Q)*S(Q) is applied.
2405
2406Parameter name
2407
2408Units
2409
2410Default value
2411
2412background
2413
2414cm-1
2415
24160.001
2417
2418core_sld
2419
2420-2
2421
24224e-006
2423
2424core_thick
2425
2426
2427
242810
2429
2430layer_sld
2431
2432-2
2433
24340
2435
2436layer_thick
2437
2438
2439
244015
2441
2442n_stacking
2443
24441
2445
2446radius
2447
2448
2449
24503e+003
2451
2452scale
2453
24540.01
2455
2456sigma_d
2457
24580
2459
2460solvent_sld
2461
2462-2
2463
24645e-006
2465
2466
2467
2468**Figure. 1D plot using the default values (w/1000 data point).**
2469
2470
2471
2472Figure. Examples of the angles for oriented stackeddisks against the
2473detector plane.
2474
2475
2476
2477Figure. Examples of the angles for oriented pp against the detector
2478plane.
2479
2480Our model uses the form factor calculations implemented in a c-library
2481provided by the NIST Center for Neutron Research (Kline, 2006):
2482
2483REFERENCE
2484
2485Guinier, A. and Fournet, G., "Small-Angle Scattering of X-Rays", John
2486Wiley and Sons, New York, 1955.
2487
2488Kratky, O. and Porod, G., J. Colloid Science, 4, 35, 1949.
2489
2490Higgins, J.S. and Benoit, H.C., "Polymers and Neutron Scattering",
2491Clarendon, Oxford, 1994.
2492
2493**2.21.** ** ** **Elliptical Cylinder Model**
2494
2495This function calculates the scattering from an oriented elliptical
2496cylinder.
2497
2498**For 2D (orientated system):**
2499
2500The angles theta and phi define the orientation of the axis of the
2501cylinder. The angle psi is defined as the orientation of the major
2502axis of the ellipse with respect to the vector Q. A gaussian
2503poydispersity can be added to any of the orientation angles, and also
2504for the minor radius and the ratio of the ellipse radii.
2505
2506
2507
2508**Figure. a= r_minor and ** **n= r_ratio (i.e., r_major/r_minor).**
2509
2510The function calculated is:
2511
2512
2513
2514with the functions:
2515
2516
2517
2518
2519
2520
2521
2522and the angle psi is defined as the orientation of the major axis of
2523the ellipse with respect to the vector Q.
2524
2525**For 1D (no preferred orientation):**
2526
2527The form factor is averaged over all possible orientation before
2528normalized by the particle volume: P(q) = scale*<f^2>/V .
2529
2530The returned value is scaled to units of [cm-1].
2531
2532To provide easy access to the orientation of the elliptical, we define
2533the axis of the cylinder using two angles , andY. Similarly to the
2534case of the cylinder, those angles, and , are defined on Figure 2 of
2535CylinderModel. The angle Y is the rotational angle around its own
2536long_c axis against the q plane. For example, Y = 0 when the r_minor
2537axis is parallel to the x-axis of the detector.
2538
2539All angle parameters are valid and given only for 2D calculation
2540(Oriented system).
2541
2542
2543
2544**Figure. Definition of angels for 2D**.
2545
2546
2547
2548Figure. Examples of the angles for oriented elliptical cylinders
2549
2550against the detector plane.
2551
2552**For P*S**: The 2nd virial coefficient of the solid cylinder is
2553calculate based on the averaged radius (=sqrt(r_minor^2*r_ratio)) and
2554length values, and used as the effective radius toward S(Q) when
2555P(Q)*S(Q) is applied.
2556
2557Parameter name
2558
2559Units
2560
2561Default value
2562
2563scale
2564
2565None
2566
25671.0
2568
2569r_minor
2570
2571
2572
257320.0
2574
2575r_ratio
2576
2577
2578
25791.5
2580
2581length
2582
2583
2584
2585400.0
2586
2587sldCyl
2588
2589-2
2590
25914e-6
2592
2593sldSolv
2594
2595-2
2596
25971e-006
2598
2599background
2600
26010
2602
2603
2604
2605**Figure. 1D plot using the default values (w/1000 data point).**
2606
2607**Validation of the elliptical cylinder 2D model**
2608
2609Validation of our code was done by comparing the output of the 1D
2610calculation to the angular average of the output of 2 D calculation
2611over all possible angles. The Figure below shows the comparison where
2612the solid dot refers to averaged 2D while the line represents the
2613result of 1D calculation (for 2D averaging, 76, 180, 76 points are
2614taken for the angles of theta, phi, and psi respectively).
2615
2616
2617
2618**Figure. Comparison between 1D and averaged 2D.**
2619
2620****
2621
2622In the 2D average, more binning in the angle phi is necessary to get
2623the proper result. The following figure shows the results of the
2624averaging by varying the number of bin over angles.
2625
2626
2627
2628**Figure. The intensities averaged from 2D over different number **
2629
2630**of points of binning of angles.**
2631
2632REFERENCE
2633
2634L. A. Feigin and D. I. Svergun Structure Analysis by Small-Angle X-Ray
2635and Neutron Scattering, Plenum, New York, (1987).
2636
2637**2.22.** ** ** **BarBell(/DumBell)Model**
2638
2639Calculates the scattering from a barbell-shaped cylinder (This model
2640simply becomes the DumBellModel when the length of the cylinder, L, is
2641set to zero). That is, a sphereocylinder with spherical end caps that
2642have a radius larger than that of the cylinder and the center of the
2643end cap radius lies outside of the cylinder All dimensions of the
2644barbell are considered to be monodisperse. See the diagram for the
2645details of the geometry and restrictions on parameter values.
2646
2647**1.1.** ** Definition**
2648
2649The returned value is scaled to units of [cm-1sr-1], absolute scale.
2650
2651The barbell geometry is defined as:
2652
2653
2654
2655r is the radius of the cylinder. All other parameters are as defined
2656in the diagram. Since the end cap radius R >= r and by definition for
2657this geometry h > 0, h is then defined by r and R as:
2658
2659h = sqrt(R^2 - r^2).
2660
2661The scattering intensity I(q) is calculated as:
2662
2663
2664
2665where the amplitude A(q) is given as:
2666
2667
2668
2669
2670
2671
2672
2673The < > brackets denote an average of the structure over all
2674orientations. <A^2(q)> is then the form factor, P(q). The scale factor
2675is equivalent to the volume fraction of cylinders, each of volume, V.
2676Contrast is the difference of scattering length densities of the
2677cylinder and the surrounding solvent.
2678
2679The volume of the barbell is:
2680
2681
2682
2683and its radius of gyration:
2684
2685
2686
2687The necessary conditions of R >= r is not enforced in the model. It is
2688up to you to restrict this during analysis.
2689
2690REFERENCES
2691
2692H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.
2693
2694H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda
2695and errata)
2696
2697TEST DATASET
2698
2699This example dataset is produced by running the Macro PlotBarbell(),
2700using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above
2701default values.
2702
2703Parameter name
2704
2705Units
2706
2707Default value
2708
2709scale
2710
2711None
2712
27131.0
2714
2715len_bar
2716
2717
2718
2719400.0
2720
2721rad_bar
2722
2723
2724
272520.0
2726
2727rad_bell
2728
2729
2730
273140.0
2732
2733sld_barbell
2734
2735-2
2736
27371.0e-006
2738
2739sld_solv
2740
2741-2
2742
27436.3e-006
2744
2745background
2746
27470
2748
2749
2750
2751**Figure. 1D plot using the default values (w/256 data point).**
2752
2753For 2D data: The 2D scattering intensity is calculated similar to the
27542D cylinder model. At the theta = 45 deg and phi =0 deg with default
2755values for other parameters,
2756
2757
2758
2759**Figure. 2D plot (w/(256X265) data points).**
2760
2761
2762
2763
2764
2765Figure. Examples of the angles for oriented pp against the detector
2766plane.
2767
2768Figure. Definition of the angles for oriented 2D barbells.
2769
2770**2.23.** ** ** **CappedCylinder(/ConvexLens)Model**
2771
2772Calculates the scattering from a cylinder with spherical section end-
2773caps(This model simply becomes the ConvexLensModel when the length of
2774the cylinder L = 0. That is, a sphereocylinder with end caps that have
2775a radius larger than that of the cylinder and the center of the end
2776cap radius lies within the cylinder. See the diagram for the details
2777of the geometry and restrictions on parameter values.
2778
2779
2780
2781**1.1.** ** Definition**
2782
2783The returned value is scaled to units of [cm-1sr-1], absolute scale.
2784
2785The Capped Cylinder geometry is defined as:
2786
2787
2788
2789r is the radius of the cylinder. All other parameters are as defined
2790in the diagram. Since the end cap radius R >= r and by definition for
2791this geometry h < 0, h is then defined by r and R as:
2792
2793h = -1*sqrt(R^2 - r^2).
2794
2795The scattering intensity I(q) is calculated as:
2796
2797
2798
2799where the amplitude A(q) is given as:
2800
2801
2802
2803The < > brackets denote an average of the structure over all
2804orientations. <A^2(q)> is then the form factor, P(q). The scale factor
2805is equivalent to the volume fraction of cylinders, each of volume, V.
2806Contrast is the difference of scattering length densities of the
2807cylinder and the surrounding solvent.
2808
2809The volume of the Capped Cylinder is:
2810
2811(with h as a positive value here)
2812
2813
2814
2815and its radius of gyration:
2816
2817
2818
2819The necessary conditions of R >= r is not enforced in the model. It is
2820up to you to restrict this during analysis.
2821
2822REFERENCES
2823
2824H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.
2825
2826H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda
2827and errata)
2828
2829TEST DATASET
2830
2831This example dataset is produced by running the Macro
2832CappedCylinder(), using 200 data points, qmin = 0.001 -1, qmax = 0.7
2833-1 and the above default values.
2834
2835Parameter name
2836
2837Units
2838
2839Default value
2840
2841scale
2842
2843None
2844
28451.0
2846
2847len_cyl
2848
2849
2850
2851400.0
2852
2853rad_cap
2854
2855
2856
285740.0
2858
2859rad_cyl
2860
2861
2862
286320.0
2864
2865sld_capcyl
2866
2867-2
2868
28691.0e-006
2870
2871sld_solv
2872
2873-2
2874
28756.3e-006
2876
2877background
2878
28790
2880
2881
2882
2883**Figure. 1D plot using the default values (w/256 data point).**
2884
2885For 2D data: The 2D scattering intensity is calculated similar to the
28862D cylinder model. At the theta = 45 deg and phi =0 deg with default
2887values for other parameters,
2888
2889
2890
2891**Figure. 2D plot (w/(256X265) data points).**
2892
2893
2894
2895Figure. Definition of the angles for oriented 2D cylinders.
2896
2897
2898
2899Figure. Examples of the angles for oriented pp against the detector
2900plane.
2901
2902**2.24.** ** ** **PringleModel**
2903
2904This model provides the form factor, P( *q*), for a 'pringle' or
2905'saddle-shaped' object (a hyperbolic paraboloid).
2906
2907
2908
2909The returned value is in units of [cm-1], on absolute scale.
2910
2911The form factor calculated is:
2912
2913
2914
2915where
2916
2917
2918
2919
2920
2921The parameters of the model and a plot comparing the pringle model
2922with the equivalent cylinder are shown below.
2923
2924Parameter name
2925
2926Units
2927
2928Default value
2929
2930background
2931
2932cm-1
2933
29340.0
2935
2936alpha
2937
2938
2939
29400.001
2941
2942beta
2943
2944
2945
29460.02
2947
2948radius
2949
295060
2951
2952scale
2953
2954
2955
29561
2957
2958sld_pringle
2959
2960-2
2961
29621e-006
2963
2964sld_solvent
2965
2966-2
2967
29686.3e-006
2969
2970thickness
2971
2972
2973
297410
2975
2976
2977
2978**Figure. 1D plot using the default values (w/150 data point).**
2979
2980REFERENCE
2981
2982S. Alexandru Rautu, Private Communication.
2983
2984**2.25.** ** ** **ParallelepipedModel (Magnetic 2D Model) **
2985
2986This model provides the form factor, P( *q*), for a rectangular
2987cylinder (below) where the form factor is normalized by the volume of
2988the cylinder. P(q) = scale*<f^2>/V+background where the volume V= ABC
2989and the averaging < > is applied over all orientation for 1D.
2990For magnetic scattering, please see the '`Polarization/Magnetic
2991Scattering`_' in Fitting Help.
2992
2993
2994
2995
2996The side of the solid must be satisfied the condition of A<B
2997
2998By this definition, assuming
2999
3000a = A/B<1; b=B/B=1; c=C/B>1, the form factor,
3001
3002
3003
3004The contrast is defined as
3005
3006
3007
3008The scattering intensity per unit volume is returned in the unit of
3009[cm-1]; I(q) = fP(q).
3010
3011For P*S: The 2nd virial coefficient of the solid cylinder is calculate
3012based on the averaged effective radius (= sqrt(short_a*short_b/pi))
3013and length( = long_c) values, and used as the effective radius toward
3014S(Q) when P(Q)*S(Q) is applied.
3015
3016To provide easy access to the orientation of the parallelepiped, we
3017define the axis of the cylinder using two angles , andY. Similarly to
3018the case of the cylinder, those angles, and , are defined on Figure 2
3019of CylinderModel. The angle Y is the rotational angle around its own
3020long_c axis against the q plane. For example, Y = 0 when the short_b
3021axis is parallel to the x-axis of the detector.
3022
3023
3024
3025**Figure. Definition of angles for 2D**.
3026
3027
3028
3029Figure. Examples of the angles for oriented pp against the detector
3030plane.
3031
3032Parameter name
3033
3034Units
3035
3036Default value
3037
3038background
3039
3040cm-1
3041
30420.0
3043
3044contrast
3045
3046-2
3047
30485e-006
3049
3050long_c
3051
3052
3053
3054400
3055
3056short_a
3057
3058-2
3059
306035
3061
3062short_b
3063
3064
3065
306675
3067
3068scale
3069
30701
3071
3072
3073
3074**Figure. 1D plot using the default values (w/1000 data point).**
3075
3076**Validation of the parallelepiped 2D model**
3077
3078Validation of our code was done by comparing the output of the 1D
3079calculation to the angular average of the output of 2 D calculation
3080over all possible angles. The Figure below shows the comparison where
3081the solid dot refers to averaged 2D while the line represents the
3082result of 1D calculation (for the averaging, 76, 180, 76 points are
3083taken over the angles of theta, phi, and psi respectively).
3084
3085
3086
3087**Figure. Comparison between 1D and averaged 2D.**
3088
3089Our model uses the form factor calculations implemented in a c-library
3090provided by the NIST Center for Neutron Research (Kline, 2006):
3091
3092REFERENCE
3093
3094Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211.
3095
3096Equations (1), (13-14). (in German)
3097
3098**2.26.** ** ** **CSParallelepipedModel**
3099
3100Calculates the form factor for a rectangular solid with a core-shell
3101structure. The thickness and the scattering length density of the
3102shell or "rim" can be different on all three (pairs) of faces. The
3103form factor is normalized by the particle volume such that P(q) =
3104scale*<f^2>/Vol + bkg, where < > is an average over all possible
3105orientations of the rectangular solid. An instrument resolution
3106smeared version is also provided.
3107
3108The function calculated is the form factor of the rectangular solid
3109below. The core of the solid is defined by the dimensions ABC such
3110that A < B < C.
3111
3112
3113
3114There are rectangular "slabs" of thickness tA that add to the A
3115dimension (on the BC faces). There are similar slabs on the AC (=tB)
3116and AB (=tC) faces. The projection in the AB plane is then:
3117
3118
3119
3120The volume of the solid is:
3121
3122
3123
3124meaning that there are "gaps" at the corners of the solid.
3125
3126The intensity calculated follows the parallelepiped model, with the
3127core-shell intensity being calculated as the square of the sum of the
3128amplitudes of the core and shell, in the same manner as a core-shell
3129sphere.
3130
3131For the calculation of the form factor to be valid, the sides of the
3132solid MUST be chosen such that A < B < C. If this inequality in not
3133satisfied, the model will not report an error, and the calculation
3134will not be correct.
3135
3136FITTING NOTES:
3137
3138If the scale is set equal to the particle volume fraction, f, the
3139returned value is the scattered intensity per unit volume, I(q) =
3140f*P(q). However, no interparticle interference effects are included in
3141this calculation.
3142
3143There are many parameters in this model. Hold as many fixed as
3144possible with known values, or you will certainly end up at a solution
3145that is unphysical.
3146
3147Constraints must be applied during fitting to ensure that the
3148inequality A < B < C is not violated. The calculation will not report
3149an error, but the results will not be correct.
3150
3151The returned value is in units of [cm-1], on absolute scale.
3152
3153For P*S: The 2nd virial coefficient of this CSPP is calculate based on
3154the averaged effective radius (=
3155sqrt((short_a+2*rim_a)*(short_b+2*rim_b)/pi)) and length( =
3156long_c+2*rim_c) values, and used as the effective radius toward S(Q)
3157when P(Q)*S(Q) is applied.
3158
3159To provide easy access to the orientation of the CSparallelepiped, we
3160define the axis of the cylinder using two angles , andY. Similarly to
3161the case of the cylinder, those angles, and , are defined on Figure 2
3162of CylinderModel. The angle Y is the rotational angle around its own
3163long_c axis against the q plane. For example, Y = 0 when the short_b
3164axis is parallel to the x-axis of the detector.
3165
3166
3167
3168**Figure. Definition of angles for 2D**.
3169
3170
3171
3172Figure. Examples of the angles for oriented cspp against the detector
3173plane.
3174
3175TEST DATASET
3176
3177This example dataset is produced by running the Macro
3178Plot_CSParallelepiped(), using 100 data points, qmin = 0.001 -1, qmax
3179= 0.7 -1 and the below default values.
3180
3181Parameter name
3182
3183Units
3184
3185Default value
3186
3187background
3188
3189cm-1
3190
31910.06
3192
3193sld_pcore
3194
3195-2
3196
31971e-006
3198
3199sld_rimA
3200
3201-2
3202
32032e-006
3204
3205sld_rimB
3206
3207-2
3208
32094e-006
3210
3211sld_rimC
3212
3213-2
3214
32152e-006
3216
3217sld_solv
3218
3219-2
3220
32216e-006
3222
3223rimA
3224
3225
3226
322710
3228
3229rimB
3230
3231
3232
323310
3234
3235rimC
3236
3237
3238
323910
3240
3241longC
3242
3243
3244
3245400
3246
3247shortA
3248
3249
3250
325135
3252
3253midB
3254
3255
3256
325775
3258
3259scale
3260
32611
3262
3263
3264
3265**Figure. 1D plot using the default values (w/256 data points).**
3266
3267****
3268
3269
3270
3271**Figure. 2D plot using the default values (w/(256X265) data
3272points).**
3273
3274Our model uses the form factor calculations implemented in a c-library
3275provided by the NIST Center for Neutron Research (Kline, 2006):
3276
3277REFERENCE
3278
3279see: Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211.
3280
3281Equations (1), (13-14). (yes, it's in German)
3282
3283**2.27.** ** ** **Ellipsoid Model**
3284
3285This model provides the form factor for an ellipsoid (ellipsoid of
3286revolution) with uniform scattering length density. The form factor is
3287normalized by the particle volume.
3288
3289**1.1.** ** Definition**
3290
3291The output of the 2D scattering intensity function for oriented
3292ellipsoids is given by (Feigin, 1987):
3293
3294
3295
3296
3297
3298
3299
3300where is the angle between the axis of the ellipsoid and the q-vector,
3301V is the volume of the ellipsoid, Ra is the radius along the rotation
3302axis of the ellipsoid, Rb is the radius perpendicular to the rotation
3303axis of the ellipsoid and ** (contrast) is the scattering length
3304density difference between the scatterer and the solvent.
3305
3306To provide easy access to the orientation of the ellipsoid, we define
3307the rotation axis of the ellipsoid using two angles and . Similarly to
3308the case of the cylinder, those angles are defined on Figure 2. For
3309the ellipsoid, is the angle between the rotation axis and the z-axis.
3310
3311For P*S: The 2nd virial coefficient of the solid ellipsoid is
3312calculate based on the radius_a and radius_b values, and used as the
3313effective radius toward S(Q) when P(Q)*S(Q) is applied.
3314
3315The returned value is scaled to units of [cm-1] and the parameters of
3316the ellipsoid model are the following:
3317
3318Parameter name
3319
3320Units
3321
3322Default value
3323
3324scale
3325
3326None
3327
33281.0
3329
3330radius_a (polar)
3331
3332
3333
333420.0
3335
3336radius_b (equatorial)
3337
3338
3339
3340400.0
3341
3342sldEll
3343
3344-2
3345
33464.0e-6
3347
3348sldSolv
3349
3350-2
3351
33521.0e-6
3353
3354background
3355
3356cm-1
3357
33580.0
3359
3360axis_theta
3361
3362degree
3363
336490
3365
3366axis_phi
3367
3368degree
3369
33700.0
3371
3372
3373
3374The output of the 1D scattering intensity function for randomly
3375oriented ellipsoids is then given by the equation above.
3376
3377The *axis_theta* and axis *_phi* parameters are not used for the 1D
3378output. Our implementation of the scattering kernel and the 1D
3379scattering intensity use the c-library from NIST.
3380
3381
3382
3383Figure. The angles for oriented ellipsoid
3384
3385**2.1.** ** Validation of the ellipsoid model**
3386
3387Validation of our code was done by comparing the output of the 1D
3388model to the output of the software provided by the NIST (Kline,
33892006). Figure 5 shows a comparison of the 1D output of our model and
3390the output of the NIST software.
3391
3392Averaging over a distribution of orientation is done by evaluating the
3393equation above. Since we have no other software to compare the
3394implementation of the intensity for fully oriented ellipsoids, we can
3395compare the result of averaging our 2D output using a uniform
3396distribution *p(,* *)* = 1.0. Figure 6 shows the result of such a
3397cross-check.
3398
3399** ****
3400
3401The discrepancy above q=0.3 -1 is due to the way the form factors are
3402calculated in the c-library provided by NIST. A numerical integration
3403has to be performed to obtain P(q) for randomly oriented particles.
3404The NIST software performs that integration with a 76-point Gaussian
3405quadrature rule, which will become imprecise at high q where the
3406amplitude varies quickly as a function of q. The DANSE result shown
3407has been obtained by summing over 501 equidistant points in . Our
3408result was found to be stable over the range of q shown for a number
3409of points higher than 500.
3410
3411** **
3412
3413Figure 5: Comparison of the DANSE scattering intensity for an
3414ellipsoid with the output of the NIST SANS analysis software. The
3415parameters were set to: Scale=1.0, Radius_a=20 , Radius_b=400 ,
3416
3417Contrast=3e-6 -2, and Background=0.01 cm -1.
3418
3419
3420
3421
3422
3423Figure 6: Comparison of the intensity for uniformly distributed
3424ellipsoids calculated from our 2D model and the intensity from the
3425NIST SANS analysis software. The parameters used were: Scale=1.0,
3426Radius_a=20 , Radius_b=400 , Contrast=3e-6 -2, and Background=0.0 cm
3427-1.
3428
3429
3430
3431**2.28.** ** ** **CoreShellEllipsoidModel **
3432
3433This model provides the form factor, P( *q*), for a core shell
3434ellipsoid (below) where the form factor is normalized by the volume of
3435the cylinder. P(q) = scale*<f^2>/V+background where the volume V=
34364pi/3*rmaj*rmin2 and the averaging < > is applied over all orientation
3437for 1D.
3438
3439
3440
3441The returned value is in units of [cm-1], on absolute scale.
3442
3443The form factor calculated is:
3444
3445
3446
3447
3448
3449
3450
3451To provide easy access to the orientation of the coreshell ellipsoid,
3452we define the axis of the solid ellipsoid using two angles , .
3453Similarly to the case of the cylinder, those angles, and , are defined
3454on Figure 2 of CylinderModel.
3455
3456The contrast is defined as SLD(core) SLD(shell) or SLD(shell solvent).
3457In the parameters, equat_core = equatorial core radius, polar_core =
3458polar core radius, equat_shell = rmin (or equatorial outer radius),
3459and polar_shell = = rmaj (or polar outer radius).
3460
3461For P*S: The 2nd virial coefficient of the solid ellipsoid is
3462calculate based on the radius_a (= polar_shell) and radius_b (=
3463equat_shell) values, and used as the effective radius toward S(Q) when
3464P(Q)*S(Q) is applied.
3465
3466
3467
3468Parameter name
3469
3470Units
3471
3472Default value
3473
3474background
3475
3476cm-1
3477
34780.001
3479
3480equat_core
3481
3482
3483
3484200
3485
3486equat_shell
3487
3488
3489
3490250
3491
3492sld_solvent
3493
3494-2
3495
34966e-006
3497
3498ploar_shell
3499
3500
3501
350230
3503
3504ploar_core
3505
3506
3507
350820
3509
3510scale
3511
35121
3513
3514sld_core
3515
3516-2
3517
35182e-006
3519
3520sld_shell
3521
3522-2
3523
35241e-006
3525
3526
3527
3528**Figure. 1D plot using the default values (w/1000 data point).**
3529
3530****
3531
3532
3533
3534Figure. The angles for oriented coreshellellipsoid .
3535
3536Our model uses the form factor calculations implemented in a c-library
3537provided by the NIST Center for Neutron Research (Kline, 2006):
3538
3539REFERENCE
3540
3541Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461.
3542
3543Berr, S. J. Phys. Chem., 1987, 91, 4760.
3544
3545**2.29.** ** ** **TriaxialEllipsoidModel**
3546
3547This model provides the form factor, P( *q*), for an ellipsoid (below)
3548where all three axes are of different lengths, i.e., Ra =< Rb =< Rc
3549(Note that users should maintains this inequality for the all
3550calculations). P(q) = scale*<f^2>/V+background where the volume V=
35514pi/3*Ra*Rb*Rc, and the averaging < > is applied over all orientation
3552for 1D.
3553
3554
3555
3556
3557
3558The returned value is in units of [cm-1], on absolute scale.
3559
3560The form factor calculated is:
3561
3562
3563
3564To provide easy access to the orientation of the triaxial ellipsoid,
3565we define the axis of the cylinder using the angles , andY. Similarly
3566to the case of the cylinder, those angles, and , are defined on Figure
35672 of CylinderModel. The angle Y is the rotational angle around its own
3568semi_axisC axis against the q plane. For example, Y = 0 when the
3569semi_axisA axis is parallel to the x-axis of the detector.
3570
3571The radius of gyration for this system is Rg2 = (Ra2*Rb2*Rc2)/5. The
3572contrast is defined as SLD(ellipsoid) SLD(solvent). In the parameters,
3573semi_axisA = Ra (or minor equatorial radius), semi_axisB = Rb (or
3574major equatorial radius), and semi_axisC = Rc (or polar radius of the
3575ellipsoid).
3576
3577For P*S: The 2nd virial coefficient of the solid ellipsoid is
3578calculate based on the radius_a (=semi_axisC) and radius_b
3579(=sqrt(semi_axisA* semi_axisB)) values, and used as the effective
3580radius toward S(Q) when P(Q)*S(Q) is applied.
3581
3582
3583
3584
3585
3586Parameter name
3587
3588Units
3589
3590Default value
3591
3592background
3593
3594cm-1
3595
35960.0
3597
3598semi_axisA
3599
3600
3601
360235
3603
3604semi_axisB
3605
3606
3607
3608100
3609
3610semi_axisC
3611
3612
3613
3614400
3615
3616scale
3617
36181
3619
3620sldEll
3621
3622-2
3623
36241.0e-006
3625
3626sldSolv
3627
3628-2
3629
36306.3e-006
3631
3632
3633
3634**Figure. 1D plot using the default values (w/1000 data point).**
3635
3636**Validation of the triaxialellipsoid 2D model**
3637
3638Validation of our code was done by comparing the output of the 1D
3639calculation to the angular average of the output of 2 D calculation
3640over all possible angles. The Figure below shows the comparison where
3641the solid dot refers to averaged 2D while the line represents the
3642result of 1D calculation (for 2D averaging, 76, 180, 76 points are
3643taken for the angles of theta, phi, and psi respectively).
3644
3645
3646
3647**Figure. Comparison between 1D and averaged 2D.**
3648
3649
3650
3651Figure. The angles for oriented ellipsoid.
3652
3653Our model uses the form factor calculations implemented in a c-library
3654provided by the NIST Center for Neutron Research (Kline, 2006):
3655
3656REFERENCE
3657
3658L. A. Feigin and D. I. Svergun Structure Analysis by Small-Angle X-Ray
3659and Neutron Scattering, Plenum, New York, 1987.
3660
3661**2.30.** ** ** **LamellarModel**
3662
3663This model provides the scattering intensity, I( *q*), for a lyotropic
3664lamellar phase where a uniform SLD and random distribution in solution
3665are assumed. The ploydispersion in the bilayer thickness can be
3666applied from the GUI.
3667
3668The scattering intensity I(q) is:
3669
3670
3671
3672The form factor is,
3673
3674
3675
3676where d = bilayer thickness.
3677
3678The 2D scattering intensity is calculated in the same way as 1D, where
3679the *q* vector is defined as .
3680
3681
3682
3683The returned value is in units of [cm-1], on absolute scale. In the
3684parameters, sld_bi = SLD of the bilayer, sld_sol = SLD of the solvent,
3685and bi_thick = the thickness of the bilayer.
3686
3687
3688
3689Parameter name
3690
3691Units
3692
3693Default value
3694
3695background
3696
3697cm-1
3698
36990.0
3700
3701sld_bi
3702
3703-2
3704
37051e-006
3706
3707bi_thick
3708
3709
3710
371150
3712
3713sld_sol
3714
3715-2
3716
37176e-006
3718
3719scale
3720
37211
3722
3723
3724
3725**Figure. 1D plot using the default values (w/1000 data point).**
3726
3727Our model uses the form factor calculations implemented in a c-library
3728provided by the NIST Center for Neutron Research (Kline, 2006):
3729
3730REFERENCE
3731
3732Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
3733
3734also in J. Phys. Chem. B, 105, (2001) 11081-11088.
3735
3736**2.31.** ** ** **LamellarFFHGModel**
3737
3738This model provides the scattering intensity, I( *q*), for a lyotropic
3739lamellar phase where a random distribution in solution are assumed.
3740The SLD of the head region is taken to be different from the SLD of
3741the tail region.
3742
3743The scattering intensity I(q) is:
3744
3745
3746
3747The form factor is,
3748
3749
3750
3751where dT = tail length (or t_length), dH = heasd thickness (or
3752h_thickness) , DrH = SLD (headgroup) - SLD(solvent), and DrT = SLD
3753(tail) - SLD(headgroup).
3754
3755The 2D scattering intensity is calculated in the same way as 1D, where
3756the *q* vector is defined as .
3757
3758
3759
3760The returned value is in units of [cm-1], on absolute scale. In the
3761parameters, sld_tail = SLD of the tail group, and sld_head = SLD of
3762the head group.
3763
3764
3765
3766Parameter name
3767
3768Units
3769
3770Default value
3771
3772background
3773
3774cm-1
3775
37760.0
3777
3778sld_head
3779
3780-2
3781
37823e-006
3783
3784scale
3785
37861
3787
3788sld_solvent
3789
3790-2
3791
37926e-006
3793
3794h_thickness
3795
3796
3797
379810
3799
3800t_length
3801
3802
3803
380415
3805
3806sld_tail
3807
3808-2
3809
38100
3811
3812
3813
3814**Figure. 1D plot using the default values (w/1000 data point).**
3815
3816Our model uses the form factor calculations implemented in a c-library
3817provided by the NIST Center for Neutron Research (Kline, 2006):
3818
3819REFERENCE
3820
3821Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
3822
3823also in J. Phys. Chem. B, 105, (2001) 11081-11088.
3824
3825**2.32.** ** ** **LamellarPSModel**
3826
3827This model provides the scattering intensity ( **form factor** *****
3828**structure factor**), I( *q*), for a lyotropic lamellar phase where a
3829random distribution in solution are assumed.
3830
3831The scattering intensity I(q) is:
3832
3833
3834
3835The form factor is
3836
3837
3838
3839and the structure is
3840
3841
3842
3843where
3844
3845
3846
3847
3848
3849
3850
3851Here d= (repeat) spacing, d = bilayer thickness, the contrast Dr = SLD
3852(headgroup) - SLD(solvent), K=smectic bending elasticity,
3853B=compression modulus, and N = number of lamellar plates (n_plates).
3854
3855Note: When the Caille parameter is greater than approximately 0.8 to
38561.0, the assumptions of the model are incorrect. And due to the
3857complication of the model function, users are responsible to make sure
3858that all the assumptions are handled accurately: see the original
3859reference (below) for more details.
3860
3861The 2D scattering intensity is calculated in the same way as 1D, where
3862the *q* vector is defined as .
3863
3864The returned value is in units of [cm-1], on absolute scale.
3865
3866
3867
3868Parameter name
3869
3870Units
3871
3872Default value
3873
3874background
3875
3876cm-1
3877
38780.0
3879
3880contrast
3881
3882-2
3883
38845e-006
3885
3886scale
3887
38881
3889
3890delta
3891
3892
3893
389430
3895
3896n_plates
3897
389820
3899
3900spacing
3901
3902
3903
3904400
3905
3906caille
3907
3908-2
3909
39100.1
3911
3912
3913
3914**Figure. 1D plot using the default values (w/6000 data point).**
3915
3916Our model uses the form factor calculations implemented in a c-library
3917provided by the NIST Center for Neutron Research (Kline, 2006):
3918
3919REFERENCE
3920
3921Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
3922
3923also in J. Phys. Chem. B, 105, (2001) 11081-11088.
3924
3925**2.33.** ** ** **LamellarPSHGModel**
3926
3927This model provides the scattering intensity ( **form factor** *****
3928**structure factor**), I( *q*), for a lyotropic lamellar phase where a
3929random distribution in solution are assumed. The SLD of the head
3930region is taken to be different from the SLD of the tail region.
3931
3932The scattering intensity I(q) is:
3933
3934
3935
3936The form factor is,
3937
3938
3939
3940The structure factor is
3941
3942
3943
3944where
3945
3946
3947
3948
3949
3950
3951
3952where dT = tail length (or t_length), dH = heasd thickness (or
3953h_thickness) , DrH = SLD (headgroup) - SLD(solvent), and DrT = SLD
3954(tail) - SLD(headgroup). Here d= (repeat) spacing, K=smectic bending
3955elasticity, B=compression modulus, and N = number of lamellar plates
3956(n_plates).
3957
3958Note: When the Caille parameter is greater than approximately 0.8 to
39591.0, the assumptions of the model are incorrect. And due to the
3960complication of the model function, users are responsible to make sure
3961that all the assumptions are handled accurately: see the original
3962reference (below) for more details.
3963
3964The 2D scattering intensity is calculated in the same way as 1D, where
3965the *q* vector is defined as .
3966
3967
3968
3969The returned value is in units of [cm-1], on absolute scale. In the
3970parameters, sld_tail = SLD of the tail group, sld_head = SLD of the
3971head group, and sld_solvent = SLD of the solvent.
3972
3973
3974
3975Parameter name
3976
3977Units
3978
3979Default value
3980
3981background
3982
3983cm-1
3984
39850.001
3986
3987sld_head
3988
3989-2
3990
39912e-006
3992
3993scale
3994
39951
3996
3997sld_solvent
3998
3999-2
4000
40016e-006
4002
4003deltaH
4004
4005
4006
40072
4008
4009deltaT
4010
4011
4012
401310
4014
4015sld_tail
4016
4017-2
4018
40190
4020
4021n_plates
4022
402330
4024
4025spacing
4026
4027
4028
402940
4030
4031caille
4032
4033-2
4034
40350.001
4036
4037
4038
4039**Figure. 1D plot using the default values (w/6000 data point).**
4040
4041Our model uses the form factor calculations implemented in a c-library
4042provided by the NIST Center for Neutron Research (Kline, 2006):
4043
4044REFERENCE
4045
4046Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
4047
4048also in J. Phys. Chem. B, 105, (2001) 11081-11088.
4049
4050**2.34.** ** ** **LamellarPCrystalModel**
4051
4052Lamella ParaCrystal Model: Calculates the scattering from a stack of
4053repeating lamellar structures. The stacks of lamellae (infinite in
4054lateral dimension) are treated as a paracrystal to account for the
4055repeating spacing. The repeat distance is further characterized by a
4056Gaussian polydispersity. This model can be used for large
4057multilamellar vesicles.
4058
4059The scattering intensity I(q) is calculated as:
4060
4061
4062
4063The form factor of the bilayer is approximated as the cross section of
4064an infinite, planar bilayer of thickness t.
4065
4066
4067
4068Here, the scale factor is used instead of the mass per area of the
4069bilayer (G). The scale factor is the volume fraction of the material
4070in the bilayer, not the total excluded volume of the paracrystal.
4071ZN(q) describes the interference effects for aggregates consisting of
4072more than one bilayer. The equations used are (3-5) from the Bergstrom
4073reference below.
4074
4075Non-integer numbers of stacks are calculated as a linear combination
4076of the lower and higher values:
4077
4078
4079
4080The 2D scattering intensity is the same as 1D, regardless of the
4081orientation of the *q* vector which is defined as .
4082
4083The parameters of the model are the following (Nlayers= no. of layers,
4084pd_spacing= polydispersity of spacing):
4085
4086Parameter name
4087
4088Units
4089
4090Default value
4091
4092background
4093
4094cm-1
4095
40960
4097
4098scale
4099
41001
4101
4102Nlayers
4103
410420
4105
4106pd_spacing
4107
41080.2
4109
4110sld_layer
4111
4112-2
4113
41141e-6
4115
4116sld_solvent
4117
4118-2
4119
41206.34e-6
4121
4122spacing
4123
4124
4125
4126250
4127
4128thickness
4129
4130
4131
413233
4133
4134
4135
4136**Figure. 1D plot using the default values above (w/20000 data
4137point).**
4138
4139Our model uses the form factor calculations implemented in a c-library
4140provided by the NIST Center for Neutron Research (Kline, 2006).
4141
4142See the reference for details.
4143
4144REFERENCE
4145
4146M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, J.
4147Phys. Chem. B, 103 (1999) 9888-9897.
4148
4149**2.35.** ** ** **SC(Simple Cubic Para-)CrystalModel**
4150
4151Calculates the scattering from a simple cubic lattice with
4152paracrystalline distortion. Thermal vibrations are considered to be
4153negligible, and the size of the paracrystal is infinitely large.
4154Paracrystalline distortion is assumed to be isotropic and
4155characterized by a Gaussian distribution.
4156
4157The returned value is scaled to units of [cm-1sr-1], absolute scale.
4158
4159The scattering intensity I(q) is calculated as:
4160
4161
4162
4163where scale is the volume fraction of spheres, Vp is the volume of the
4164primary particle, V(lattice) is a volume correction for the crystal
4165structure, P(q) is the form factor of the sphere (normalized) and Z(q)
4166is the paracrystalline structure factor for a simple cubic structure.
4167Equation (16) of the 1987 reference is used to calculate Z(q), using
4168equations (13)-(15) from the 1987 paper for Z1, Z2, and Z3.
4169
4170The lattice correction (the occupied volume of the lattice) for a
4171simple cubic structure of particles of radius R and nearest neighbor
4172separation D is:
4173
4174
4175
4176The distortion factor (one standard deviation) of the paracrystal is
4177included in the calculation of Z(q):
4178
4179
4180
4181where g is a fractional distortion based on the nearest neighbor
4182distance.
4183
4184The simple cubic lattice is:
4185
4186
4187
4188For a crystal, diffraction peaks appear at reduced q-values givn by:
4189
4190
4191
4192where for a simple cubic lattice any h, k, l are allowed and none are
4193forbidden. Thus the peak positions correspond to (just the first 5):
4194
4195
4196
4197NOTE: The calculation of Z(q) is a double numerical integral that must
4198be carried out with a high density of points to properly capture the
4199sharp peaks of the paracrystalline scattering. So be warned that the
4200calculation is SLOW. Go get some coffee. Fitting of any experimental
4201data must be resolution smeared for any meaningful fit. This makes a
4202triple integral. Very, very slow. Go get lunch.
4203
4204REFERENCES
4205
4206Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765.
4207(Original Paper)
4208
4209Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856.
4210(Corrections to FCC and BCC lattice structure calculation)
4211
4212
4213
4214Parameter name
4215
4216Units
4217
4218Default value
4219
4220background
4221
4222cm-1
4223
42240
4225
4226dnn
4227
4228
4229
4230220
4231
4232scale
4233
42341
4235
4236sldSolv
4237
4238-2
4239
42406.3e-006
4241
4242radius
4243
4244
4245
424640
4247
4248sld_Sph
4249
4250-2
4251
42523e-006
4253
4254d_factor
4255
42560.06
4257
4258TEST DATASET
4259
4260This example dataset is produced using 200 data points, qmin = 0.01
4261-1, qmax = 0.1 -1 and the above default values.
4262
4263
4264
4265**Figure. 1D plot in the linear scale using the default values (w/200
4266data point).**
4267
4268The 2D (Anisotropic model) is based on the reference (above) which
4269I(q) is approximated for 1d scattering. Thus the scattering pattern
4270for 2D may not be accurate. Note that we are not responsible for any
4271incorrectness of the 2D model computation.
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283** **
4284
4285**Figure. 2D plot using the default values (w/200X200 pixels).**
4286
4287**2.36.** ** ** **FC(Face Centered Cubic Para-)CrystalModel**
4288
4289Calculates the scattering from a face-centered cubic lattice with
4290paracrystalline distortion. Thermal vibrations are considered to be
4291negligible, and the size of the paracrystal is infinitely large.
4292Paracrystalline distortion is assumed to be isotropic and
4293characterized by a Gaussian distribution.
4294
4295The returned value is scaled to units of [cm-1sr-1], absolute scale.
4296
4297The scattering intensity I(q) is calculated as:
4298
4299
4300
4301where scale is the volume fraction of spheres, Vp is the volume of the
4302primary particle, V(lattice) is a volume correction for the crystal
4303structure, P(q) is the form factor of the sphere (normalized) and Z(q)
4304is the paracrystalline structure factor for a face-centered cubic
4305structure. Equation (1) of the 1990 reference is used to calculate
4306Z(q), using equations (23)-(25) from the 1987 paper for Z1, Z2, and
4307Z3.
4308
4309The lattice correction (the occupied volume of the lattice) for a
4310face-centered cubic structure of particles of radius R and nearest
4311neighbor separation D is:
4312
4313
4314
4315The distortion factor (one standard deviation) of the paracrystal is
4316included in the calculation of Z(q):
4317
4318
4319
4320where g is a fractional distortion based on the nearest neighbor
4321distance.
4322
4323The face-centered cubic lattice is:
4324
4325
4326
4327For a crystal, diffraction peaks appear at reduced q-values givn by:
4328
4329
4330
4331where for a face-centered cubic lattice h, k, l all odd or all even
4332are allowed and reflections where h, k, l are mixed odd/even are
4333forbidden. Thus the peak positions correspond to (just the first 5):
4334
4335
4336
4337NOTE: The calculation of Z(q) is a double numerical integral that must
4338be carried out with a high density of points to properly capture the
4339sharp peaks of the paracrystalline scattering. So be warned that the
4340calculation is SLOW. Go get some coffee. Fitting of any experimental
4341data must be resolution smeared for any meaningful fit. This makes a
4342triple integral. Very, very slow. Go get lunch.
4343
4344REFERENCES
4345
4346Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765.
4347(Original Paper)
4348
4349Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856.
4350(Corrections to FCC and BCC lattice structure calculation)
4351
4352
4353
4354
4355
4356Parameter name
4357
4358Units
4359
4360Default value
4361
4362background
4363
4364cm-1
4365
43660
4367
4368dnn
4369
4370
4371
4372220
4373
4374scale
4375
43761
4377
4378sldSolv
4379
4380-2
4381
43826.3e-006
4383
4384radius
4385
4386
4387
438840
4389
4390sld_Sph
4391
4392-2
4393
43943e-006
4395
4396d_factor
4397
43980.06
4399
4400TEST DATASET
4401
4402This example dataset is produced using 200 data points, qmin = 0.01
4403-1, qmax = 0.1 -1 and the above default values.
4404
4405
4406
4407**Figure. 1D plot in the linear scale using the default values (w/200
4408data point).**
4409
4410The 2D (Anisotropic model) is based on the reference (above) in which
4411I(q) is approximated for 1d scattering. Thus the scattering pattern
4412for 2D may not be accurate. Note that we are not responsible for any
4413incorrectness of the 2D model computation.
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427**Figure. 2D plot using the default values (w/200X200 pixels).**
4428
4429**2.37.** ** ** **BC(Body Centered Cubic Para-)CrystalModel**
4430
4431Calculates the scattering from a body-centered cubic lattice with
4432paracrystalline distortion. Thermal vibrations are considered to be
4433negligible, and the size of the paracrystal is infinitely large.
4434Paracrystalline distortion is assumed to be isotropic and
4435characterized by a Gaussian distribution.The returned value is scaled
4436to units of [cm-1sr-1], absolute scale.
4437
4438The scattering intensity I(q) is calculated as:
4439
4440
4441
4442where scale is the volume fraction of spheres, Vp is the volume of the
4443primary particle, V(lattice) is a volume correction for the crystal
4444structure, P(q) is the form factor of the sphere (normalized) and Z(q)
4445is the paracrystalline structure factor for a body-centered cubic
4446structure. Equation (1) of the 1990 reference is used to calculate
4447Z(q), using equations (29)-(31) from the 1987 paper for Z1, Z2, and
4448Z3.
4449
4450The lattice correction (the occupied volume of the lattice) for a
4451body-centered cubic structure of particles of radius R and nearest
4452neighbor separation D is:
4453
4454
4455
4456The distortion factor (one standard deviation) of the paracrystal is
4457included in the calculation of Z(q):
4458
4459
4460
4461where g is a fractional distortion based on the nearest neighbor
4462distance.
4463
4464The body-centered cubic lattice is:
4465
4466
4467
4468For a crystal, diffraction peaks appear at reduced q-values givn by:
4469
4470
4471
4472where for a body-centered cubic lattice, only reflections where
4473(h+k+l) = even are allowed and reflections where (h+k+l) = odd are
4474forbidden. Thus the peak positions correspond to (just the first 5):
4475
4476
4477
4478NOTE: The calculation of Z(q) is a double numerical integral that must
4479be carried out with a high density of points to properly capture the
4480sharp peaks of the paracrystalline scattering. So be warned that the
4481calculation is SLOW. Go get some coffee. Fitting of any experimental
4482data must be resolution smeared for any meaningful fit. This makes a
4483triple integral. Very, very slow. Go get lunch.
4484
4485REFERENCES
4486
4487Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765.
4488(Original Paper)
4489
4490Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856.
4491(Corrections to FCC and BCC lattice structure calculation)
4492
4493
4494
4495
4496
4497Parameter name
4498
4499Units
4500
4501Default value
4502
4503background
4504
4505cm-1
4506
45070
4508
4509dnn
4510
4511
4512
4513220
4514
4515scale
4516
45171
4518
4519sldSolv
4520
4521-2
4522
45236.3e-006
4524
4525radius
4526
4527
4528
452940
4530
4531sld_Sph
4532
4533-2
4534
45353e-006
4536
4537d_factor
4538
45390.06
4540
4541TEST DATASET
4542
4543This example dataset is produced using 200 data points, qmin = 0.001
4544-1, qmax = 0.1 -1 and the above default values.
4545
4546
4547
4548**Figure. 1D plot in the linear scale using the default values (w/200
4549data point).**
4550
4551The 2D (Anisotropic model) is based on the reference (1987) in which
4552I(q) is approximated for 1d scattering. Thus the scattering pattern
4553for 2D may not be accurate. Note that we are not responsible for any
4554incorrectness of the 2D model computation.
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568**Figure. 2D plot using the default values (w/200X200 pixels).**
4569
4570**3.** ** ** **Shape-Independent Models **
4571
4572The following are models used for shape-independent SANS analysis.
4573
4574**3.1.** ** ** **Debye (Model)**
4575
4576The Debye model is a form factor for a linear polymer chain. In
4577addition to the radius of gyration, Rg, a scale factor "scale", and a
4578constant background term are included in the calculation.
4579
4580
4581
4582
4583
4584
4585
4586For 2D plot, the wave transfer is defined as .
4587
4588
4589
4590Parameter name
4591
4592Units
4593
4594Default value
4595
4596scale
4597
4598None
4599
46001.0
4601
4602rg
4603
4604
4605
460650.0
4607
4608background
4609
4610cm-1
4611
46120.0
4613
4614
4615
4616**Figure. 1D plot using the default values (w/200 data point).**
4617
4618
4619
4620Reference: Roe, R.-J., "Methods of X-Ray and Neutron Scattering in
4621Polymer Science", Oxford University Press, New York (2000).
4622
4623**3.2.** ** ** **BroadPeak Model**
4624
4625Calculate an empirical functional form for SANS data characterized by
4626a broad scattering peak. Many SANS spectra are characterized by a
4627broad peak even though they are from amorphous soft materials. The
4628d-spacing corresponding to the broad peak is a characteristic distance
4629between the scattering inhomogeneities (such as in lamellar,
4630cylindrical, or spherical morphologies or for bicontinuous
4631structures).
4632
4633The returned value is scaled to units of [cm-1sr-1], absolute scale.
4634
4635The scattering intensity I(q) is calculated by:
4636
4637
4638
4639Here the peak position is related to the d-spacing as Q0 = 2pi/d0.
4640Soft systems that show a SANS peak include copolymers,
4641polyelectrolytes, multiphase systems, layered structures, etc.
4642
4643
4644
4645
4646
4647For 2D plot, the wave transfer is defined as .
4648
4649
4650
4651Parameter name
4652
4653Units
4654
4655Default value
4656
4657scale_l (= C)
4658
465910
4660
4661scale_p (=A)
4662
46631e-05
4664
4665length_l (=x)
4666
4667
4668
466950
4670
4671q_peak (= Q0)
4672
4673-1
4674
46750.1
4676
4677exponent_p (=n)
4678
46792
4680
4681exponent_l (=m)
4682
46833
4684
4685Background (=B)
4686
4687cm-1
4688
46890.1
4690
4691
4692
4693**Figure. 1D plot using the default values (w/200 data point).**
4694
4695
4696
4697Reference: None.
4698
46992013/09/09 - Description reviewed by King, S. and Parker, P.
4700
4701**3.3.** ** ** **CorrLength (CorrelationLengthModel)**
4702
4703Calculate an empirical functional form for SANS data characterized by
4704a low-Q signal and a high-Q signal
4705
4706The returned value is scaled to units of [cm-1sr-1], absolute scale.
4707
4708The scattering intensity I(q) is calculated by:
4709
4710
4711
4712The first term describes Porod scattering from clusters (exponent = n)
4713and the second term is a Lorentzian function describing scattering
4714from polymer chains (exponent = m). This second term characterizes the
4715polymer/solvent interactions and therefore the thermodynamics. The two
4716multiplicative factors A and C, the incoherent background B and the
4717two exponents n and m are used as fitting parameters. The final
4718parameter (xi) is a correlation length for the polymer chains. Note
4719that when m = 2, this functional form becomes the familiar Lorentzian
4720function.
4721
4722
4723
4724For 2D plot, the wave transfer is defined as .
4725
4726
4727
4728Parameter name
4729
4730Units
4731
4732Default value
4733
4734scale_l (= C)
4735
473610
4737
4738scale_p (=A)
4739
47401e-06
4741
4742length_l (=x)
4743
4744
4745
474650
4747
4748exponent_p (=n)
4749
47502
4751
4752exponent_l (=m)
4753
47543
4755
4756Background (=B)
4757
4758cm-1
4759
47600.1
4761
4762
4763
4764**Figure. 1D plot using the default values (w/500 data points).**
4765
4766
4767
4768REFERENCE
4769
4770B. Hammouda, D.L. Ho and S.R. Kline, Insight into Clustering in
4771Poly(ethylene oxide) Solutions, Macromolecules 37, 6932-6937 (2004).
4772
47732013/09/09 - Description reviewed by King, S. and Parker, P.
4774
4775**3.4.** ** ** **(Ornstein-Zernicke) Lorentz (Model)**
4776
4777The Ornstein-Zernicke model is defined by:
4778
4779
4780
4781
4782
4783
4784
4785The parameter L is referred to as the screening length.
4786
4787
4788
4789For 2D plot, the wave transfer is defined as .
4790
4791
4792
4793
4794
4795Parameter name
4796
4797Units
4798
4799Default value
4800
4801scale
4802
4803None
4804
48051.0
4806
4807length
4808
4809
4810
481150.0
4812
4813background
4814
4815cm-1
4816
48170.0
4818
4819** **
4820
4821**Figure. 1D plot using the default values (w/200 data point).**
4822
4823**3.5.** ** ** **DAB (Debye-Anderson-Brumberger)_Model**
4824
4825****
4826
4827Calculates the scattering from a randomly distributed, two-phase
4828system based on the Debye-Anderson-Brumberger (DAB) model for such
4829systems. The two-phase system is characterized by a single length
4830scale, the correlation length, which is a measure of the average
4831spacing between regions of phase 1 and phase 2. The model also assumes
4832smooth interfaces between the phases and hence exhibits Porod behavior
4833(I ~ Q-4) at large Q (Q*correlation length >> 1).
4834
4835
4836
4837
4838
4839
4840
4841The parameter L is referred to as the correlation length.
4842
4843For 2D plot, the wave transfer is defined as .
4844
4845
4846
4847Parameter name
4848
4849Units
4850
4851Default value
4852
4853scale
4854
4855None
4856
48571.0
4858
4859length
4860
4861
4862
486350.0
4864
4865background
4866
4867cm-1
4868
48690.0
4870
4871** **
4872
4873**Figure. 1D plot using the default values (w/200 data point).**
4874
4875References:
4876
4877Debye, Anderson, Brumberger, "Scattering by an Inhomogeneous Solid.
4878II. The Correlation Function and its Application", J. Appl. Phys. 28
4879(6), 679 (1957).
4880
4881
4882
4883Debye, Bueche, "Scattering by an Inhomogeneous Solid", J. Appl. Phys.
488420, 518 (1949).
4885
48862013/09/09 - Description reviewed by King, S. and Parker, P.
4887
4888**3.6.** ** ** ** Absolute Power_Law **
4889
4890This model describes a power law with background.
4891
4892
4893
4894
4895
4896Note the minus sign in front of the exponent.
4897
4898
4899
4900Parameter name
4901
4902Units
4903
4904Default value
4905
4906Scale
4907
4908None
4909
49101.0
4911
4912m
4913
4914None
4915
49164
4917
4918Background
4919
4920cm-1
4921
49220.0
4923
4924
4925
4926**Figure. 1D plot using the default values (w/200 data point).**
4927
4928**3.7.** ** ** **Teubner Strey (Model)**
4929
4930This function calculates the scattered intensity of a two-component
4931system using the Teubner-Strey model.
4932
4933****
4934
4935
4936
4937
4938
4939
4940
4941For 2D plot, the wave transfer is defined as .
4942
4943
4944
4945Parameter name
4946
4947Units
4948
4949Default value
4950
4951scale
4952
4953None
4954
49550.1
4956
4957c1
4958
4959None
4960
4961-30.0
4962
4963c2
4964
4965None
4966
49675000.0
4968
4969background
4970
4971cm-1
4972
49730.0
4974
4975
4976
4977**Figure. 1D plot using the default values (w/200 data point).**
4978
4979References:
4980
4981Teubner, M; Strey, R. J. Chem. Phys., 87, 3195 (1987).
4982
4983
4984
4985Schubert, K-V., Strey, R., Kline, S. R. and E. W. Kaler, J. Chem.
4986Phys., 101, 5343 (1994).
4987
4988**3.8.** ** ** ** FractalModel**
4989
4990Calculates the scattering from fractal-like aggregates built from
4991spherical building blocks following the Texiera reference. The value
4992returned is in cm-1.
4993
4994
4995
4996
4997
4998
4999
5000The scale parameter is the volume fraction of the building blocks, R0
5001is the radius of the building block, Df is the fractal dimension, is
5002the correlation length, *solvent* is the scattering length density of
5003the solvent, and *block* is the scattering length density of the
5004building blocks.
5005
5006**The polydispersion in radius is provided.**
5007
5008For 2D plot, the wave transfer is defined as .
5009
5010
5011
5012Parameter name
5013
5014Units
5015
5016Default value
5017
5018scale
5019
5020None
5021
50220.05
5023
5024radius
5025
5026
5027
50285.0
5029
5030fractal_dim
5031
5032None
5033
50342
5035
5036corr_length
5037
5038
5039
5040100.0
5041
5042block_sld
5043
5044-2
5045
50462e-6
5047
5048solvent_sld
5049
5050-2
5051
50526e-6
5053
5054background
5055
5056cm-1
5057
50580.0
5059
5060
5061
5062**Figure. 1D plot using the default values (w/200 data point).**
5063
5064
5065
5066
5067
5068References:
5069
5070J. Teixeira, (1988) J. Appl. Cryst., vol. 21, p781-785
5071
5072****
5073
5074**3.9.** ** ** **MassFractalModel**
5075
5076Calculates the scattering from fractal-like aggregates based on the
5077Mildner reference (below).
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088The R is the radius of the building block, Dm is the mass fractal
5089dimension, is the correlation (or cutt-off) length, *solvent* is the
5090scattering length density of the solvent, and *particle* is the
5091scattering length density of particles.
5092
5093Note: The mass fractal dimension is valid for 1<mass_dim<6.
5094
5095
5096
5097Parameter name
5098
5099Units
5100
5101Default value
5102
5103scale
5104
5105None
5106
51071
5108
5109radius
5110
5111
5112
511310.0
5114
5115mass_dim
5116
5117None
5118
51191.9
5120
5121co_length
5122
5123
5124
5125100.0
5126
5127background
5128
5129
5130
51310.0
5132
5133
5134
5135**Figure. 1D plot**
5136
5137
5138
5139
5140
5141References:
5142
5143D. Mildner, and P. Hall, J. Phys. D.: Appl. Phys., 19, 1535-1545
5144(1986), Equation(9).
5145
51462013/09/09 - Description reviewed by King, S. and Parker, P.
5147
5148
5149
5150
5151
5152**3.10.** ** ** ** SurfaceFractalModel**
5153
5154Calculates the scattering based on the Mildner reference (below).
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165The R is the radius of the building block, Ds is the surface fractal
5166dimension, is the correlation (or cutt-off) length, *solvent* is the
5167scattering length density of the solvent, and *particle* is the
5168scattering length density of particles.
5169
5170Note: The surface fractal dimension is valid for 1<surface_dim<3. Also
5171it is valid in a limited q range (see the reference for details).
5172
5173
5174
5175Parameter name
5176
5177Units
5178
5179Default value
5180
5181scale
5182
5183None
5184
51851
5186
5187radius
5188
5189
5190
519110.0
5192
5193surface_dim
5194
5195None
5196
51972.0
5198
5199co_length
5200
5201
5202
5203500.0
5204
5205background
5206
5207
5208
52090.0
5210
5211
5212
5213**Figure. 1D plot**
5214
5215
5216
5217
5218
5219References:
5220
5221D. Mildner, and P. Hall, J. Phys. D.: Appl. Phys., 19, 1535-1545
5222(1986), Equation(13).
5223
5224
5225
5226
5227
5228**3.11.** ** ** **MassSurfaceFractal**
5229
5230A number of natural and commercial processes form high-surface area
5231materials as a result of the vapour-phase aggregation of primary
5232particles. Examples of such materials include soots, aerosols, and
5233fume or pyrogenic silicas. These are all characterised by cluster mass
5234distributions (sometimes also cluster size distributions) and internal
5235surfaces that are fractal in nature. The scattering from such
5236materials displays two distinct breaks in log-log representation,
5237corresponding to the radius-of-gyration of the primary particles, rg,
5238and the radius-of-gyration of the clusters (aggregates), Rg. Between
5239these boundaries the scattering follows a power law related to the
5240mass fractal dimension, Dm, whilst above the high-Q boundary the
5241scattering follows a power law related to the surface fractal
5242dimension of the primary particles, Ds.
5243
5244The scattered intensity I(Q) is then calculated using a modified
5245Ornstein-Zernicke equation:
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256The Rg is for the cluster, rg is for the primary, Ds is the surface
5257fractal dimension, Dm is the mass fractal dimension, *solvent* is the
5258scattering length density of the solvent, and *p* is the scattering
5259length density of particles.
5260
5261Note: The surface and mass fractal dimensions are valid for
52620<surface_dim<6, 0<mass_dim<6, and (surface_mass+mass_dim)<6.
5263
5264
5265
5266Parameter name
5267
5268Units
5269
5270Default value
5271
5272scale
5273
5274None
5275
52761
5277
5278primary_rg
5279
5280
5281
52824000.0
5283cluster_rg 86.7
5284surface_dim
5285
5286None
5287
52882.3
5289mass_dim None 1.8
5290background
5291
5292
5293
52940.0
5295
5296
5297
5298**Figure. 1D plot**
5299
5300
5301
5302
5303
5304References:
5305
5306P. Schmidt, J Appl. Cryst., 24, 414-435 (1991), Equation(19).
5307
5308Hurd, Schaefer, Martin, Phys. Rev. A, 35, 2361-2364 (1987),
5309Equation(2).
5310
5311
5312
5313
5314
5315**3.12.** ** ** ** FractalCoreShell(Model)**
5316
5317Calculates the scattering from a fractal structure with a primary
5318building block of core-shell spheres.
5319
5320
5321
5322
5323The formfactor P(q) is CoreShellModel with bkg = 0,
5324,
5325
5326while the fractal structure factor S(q);
5327
5328
5329
5330where Df = frac_dim, = cor_length, rc = (core) radius, and scale =
5331volfraction.
5332The fractal structure is as documented in the fractal model. This
5333model could find use for aggregates of coated particles, or aggregates
5334of vesicles.The polydispersity computation of radius and thickness is
5335provided.
5336
5337The returned value is scaled to units of [cm-1sr-1], absolute scale.
5338
5339See each of these individual models for full documentation.
5340
5341For 2D plot, the wave transfer is defined as .
5342
5343
5344
5345Parameter name
5346
5347Units
5348
5349Default value
5350
5351volfraction
5352
53530.05
5354
5355frac_dim
5356
53572
5358
5359thickness
5360
5361
5362
53635.0
5364
5365raidus
5366
536720.0
5368
5369cor_length
5370
5371
5372
5373100.0
5374
5375core_sld
5376
5377-2
5378
53793.5e-6
5380
5381shell_sld
5382
5383-2
5384
53851e-6
5386
5387solvent_sld
5388
5389-2
5390
53916.35e-6
5392
5393background
5394
5395cm-1
5396
53970.0
5398
5399
5400
5401**Figure. 1D plot using the default values (w/500 data points).**
5402
5403
5404
5405
5406
5407References:
5408
5409See the PolyCore and Fractal documentation. ** **
5410
5411**3.13.** ** ** ** GaussLorentzGel(Model)**
5412
5413Calculates the scattering from a gel structure, typically a physical
5414network. It is modeled as a sum of a low-q exponential decay plus a
5415lorentzian at higher q-values. It is generally applicable to gel
5416structures.
5417
5418The returned value is scaled to units of [cm-1sr-1], absolute scale.
5419
5420The scattering intensity I(q) is calculated as (eqn 5 from the
5421reference):
5422
5423
5424
5425
5426
5427Uppercase Zeta is the static correlations in the gel, which can be
5428attributed to the "frozen-in" crosslinks of some gels. Lowercase zeta
5429is the dynamic correlation length, which can be attributed to the
5430fluctuating polymer chain between crosslinks. IG(0) and IL(0) are the
5431scaling factors for each of these structures. Your physical system may
5432be different, so think about the interpretation of these parameters.
5433
5434Note that the peaked structure at higher q values (from Figure 2 of
5435the reference below) is not reproduced by the model. Peaks can be
5436introduced into the model by summing this model with the PeakGauss
5437Model function.
5438
5439For 2D plot, the wave transfer is defined as .
5440
5441
5442
5443Parameter name
5444
5445Units
5446
5447Default value
5448
5449dyn_colength(=Dynamic correlation length)
5450
5451
5452
545320.0
5454
5455scale_g(=Gauss scale factor)
5456
5457100
5458
5459scale_l(=Lorentzian scale factor)
5460
546150
5462
5463stat_colength(=Static correlation Z)
5464
5465
5466
5467100.0
5468
5469background
5470
5471cm-1
5472
54730.0
5474
5475
5476
5477**Figure. 1D plot using the default values (w/500 data points).**
5478
5479
5480
5481
5482
5483REFERENCE:
5484
5485G. Evmenenko, E. Theunissen, K. Mortensen, H. Reynaers, Polymer 42
5486(2001) 2907-2913.
5487
5488**3.14.** ** ** ** BEPolyelectrolyte Model**
5489
5490Calculates the structure factor of a polyelectrolyte solution with the
5491RPA expression derived by Borue and Erukhimovich. The value returned
5492is in cm-1.
5493
5494
5495
5496
5497
5498
5499
5500K is a contrast factor of the polymer, Lb is the Bjerrum length, h is
5501the virial parameter, b is the monomer length, Cs is the concentration
5502of monovalent salt, is the ionization degree, Ca is the polymer molar
5503concentration, and background is the incoherent background.
5504
5505For 2D plot, the wave transfer is defined as .
5506
5507Parameter name
5508
5509Units
5510
5511Default value
5512
5513K
5514
5515Barns = 10-24 cm2
5516
551710
5518
5519Lb
5520
5521
5522
55237.1
5524
5525h
5526
5527-3
5528
552912
5530
5531b
5532
5533
5534
553510
5536
5537Cs
5538
5539Mol/L
5540
55410
5542
5543alpha
5544
5545None
5546
55470.05
5548
5549Ca
5550
5551Mol/L
5552
55530.7
5554
5555background
5556
5557cm-1
5558
55590.0
5560
5561References:
5562
5563Borue, V. Y., Erukhimovich, I. Y. Macromolecules 21, 3240 (1988).
5564
5565Joanny, J.-F., Leibler, L. Journal de Physique 51, 545 (1990).
5566
5567Moussaid, A., Schosseler, F., Munch, J.-P., Candau, S. J. Journal de
5568Physique II France
5569
55703, 573 (1993).
5571
5572Raphal, E., Joanny, J.-F., Europhysics Letters 11, 179 (1990).
5573
5574****
5575
5576**3.15.** ** ** **Guinier (Model)**
5577
5578A Guinier analysis is done by linearizing the data at low q by
5579plotting it as log(I) versus Q2. The Guinier radius Rg can be obtained
5580by fitting the following model:
5581
5582
5583
5584
5585
5586For 2D plot, the wave transfer is defined as .
5587
5588****
5589
5590Parameter name
5591
5592Units
5593
5594Default value
5595
5596scale
5597
5598cm-1
5599
56001.0
5601
5602Rg
5603
5604
5605
56060.1
5607
5608****
5609
5610**3.16.** ** ** **GuinierPorod (Model)**
5611
5612Calculates the scattering for a generalized Guinier/power law object.
5613This is an empirical model that can be used to determine the size and
5614dimensionality of scattering objects.
5615
5616The returned value is P(Q) as written in equation (1), plus the
5617incoherent background term. The result is in the units of [cm-1sr-1],
5618absolute scale.
5619
5620A Guinier-Porod empirical model can be used to fit SAS data from
5621asymmetric objects such as rods or platelets. It also applies to
5622intermediate shapes between spheres and rod or between rods and
5623platelets. The following functional form is used:
5624
5625(1)
5626
5627
5628
5629This is based on the generalized Guinier law for such elongated
5630objects [2]. For 3D globular objects (such as spheres), s = 0 and one
5631recovers the standard Guinier formula. For 2D symmetry (such as for
5632rods) s = 1 and for 1D symmetry (such as for lamellae or platelets) s
5633= 2. A dimensionality parameter 3-s is defined, and is 3 for spherical
5634objects, 2 for rods, and 1 for plates.
5635
5636Enforcing the continuity of the Guinier and Porod functions and their
5637derivatives yields:
5638
5639
5640
5641and
5642
5643
5644
5645
5646
5647Note that the radius of gyration for a sphere of radius R is given by
5648Rg = R sqrt(3/5) ,
5649
5650that for the cross section of an randomly oriented cylinder of radius
5651R is given by Rg = R / sqrt(2).
5652
5653The cross section of a randomly oriented lamella of thickness T is
5654given by Rg = T / sqrt(12).
5655
5656The intensity given by Eq. 1 is the calculated result, and is plotted
5657below for the default parameter values.
5658
5659REFERENCE
5660
5661[1] Guinier, A.; Fournet, G. "Small-Angle Scattering of X-Rays", John
5662Wiley and Sons, New York, (1955).
5663
5664[2] Glatter, O.; Kratky, O., Small-Angle X-Ray Scattering, Academic
5665Press (1982). Check out Chapter 4 on Data Treatment, pages 155-156.
5666
5667For 2D plot, the wave transfer is defined as .
5668
5669****
5670
5671Parameter name
5672
5673Units
5674
5675Default value
5676
5677Scale(=Guinier scale, G)
5678
5679cm-1
5680
56811.0
5682
5683rg
5684
5685
5686
5687100
5688
5689dim(=Dimensional Variable, s)
5690
56911
5692
5693m(=Porod exponent)
5694
56953
5696
5697background
5698
56990.1
5700
5701****
5702
5703** **
5704
5705**Figure. 1D plot using the default values (w/500 data points).**
5706
5707****
5708
5709****
5710
5711**3.17.** ** ** **PorodModel**
5712
5713A Porod analysis is done by linearizing the data at high q by plotting
5714it as log(I) versus log(Q). In the high q region we can fit the
5715following model:
5716
5717
5718
5719
5720
5721C is the scale factor and Sv is the specific surface area of the
5722sample and is the contrast factor.
5723
5724The background term is added for data analysis.
5725
5726For 2D plot, the wave transfer is defined as .
5727
5728****
5729
5730Parameter name
5731
5732Units
5733
5734Default value
5735
5736scale
5737
5738-4
5739
57400.1
5741
5742background
5743
5744cm-1
5745
57460
5747
5748**3.18.** ** ** **PeakGaussModel**
5749
5750Model describes a Gaussian shaped peak including a flat background,
5751
5752
5753
5754
5755
5756
5757
5758with the peak having height of I0 centered at qpk having standard
5759deviation of B. The fwhm is 2.354*B.
5760
5761Parameters I0, B, qpk, and BGD can all be adjusted during fitting.
5762
5763REFERENCE: None
5764
5765For 2D plot, the wave transfer is defined as .
5766
5767****
5768
5769Parameter name
5770
5771Units
5772
5773Default value
5774
5775scale
5776
5777cm-1
5778
5779100
5780
5781q0
5782
5783
5784
57850.05
5786
5787B
5788
57890.005
5790
5791background
5792
57931
5794
5795****
5796
5797****
5798
5799** **
5800
5801**Figure. 1D plot using the default values (w/500 data points).**
5802
5803****
5804
5805**3.19.** ** ** **PeakLorentzModel**
5806
5807Model describes a Lorentzian shaped peak including a flat background,
5808
5809
5810
5811
5812
5813
5814
5815with the peak having height of I0 centered at qpk having a hwhm (half-
5816width-half-maximum) of B.
5817
5818The parameters I0, B, qpk, and BGD can all be adjusted during fitting.
5819
5820REFERENCE: None
5821
5822For 2D plot, the wave transfer is defined as .
5823
5824****
5825
5826Parameter name
5827
5828Units
5829
5830Default value
5831
5832scale
5833
5834cm-1
5835
5836100
5837
5838q0
5839
5840
5841
58420.05
5843
5844B
5845
58460.005
5847
5848background
5849
58501
5851
5852****
5853
5854****
5855
5856** **
5857
5858**Figure. 1D plot using the default values (w/500 data points).**
5859
5860**3.20. Poly_GaussCoil (Model)**
5861
5862Polydisperse Gaussian Coil: Calculate an empirical functional form for
5863scattering from a polydisperse polymer chain ina good solvent. The
5864polymer is polydisperse with a Schulz-Zimm polydispersity of the
5865molecular weight distribution.
5866
5867The returned value is scaled to units of [cm-1sr-1], absolute scale.
5868
5869
5870
5871where the dimensionless chain dimension is:
5872
5873
5874
5875and the polydispersion is
5876
5877.
5878
5879The scattering intensity I(q) is calculated as:
5880
5881The polydispersion in rg is provided.
5882
5883
5884
5885For 2D plot, the wave transfer is defined as .
5886
5887TEST DATASET
5888
5889This example dataset is produced by running the Poly_GaussCoil, using
5890200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the default values
5891below.
5892
5893Parameter name
5894
5895Units
5896
5897Default value
5898
5899Scale
5900
5901None
5902
59031.0
5904
5905rg
5906
5907
5908
590960.0
5910
5911poly_m
5912
5913Mw/Mn
5914
59152
5916
5917background
5918
5919cm-1
5920
59210.001
5922
5923
5924
5925
5926
5927**Figure. 1D plot using the default values (w/200 data point).**
5928
5929
5930
5931Reference:
5932
5933Glatter & Kratky - pg.404.
5934
5935J.S. Higgins, and H.C. Benoit, Polymers and Neutron Scattering, Oxford
5936Science
5937
5938Publications (1996).
5939
5940**3.21. PolymerExclVolume (Model)**
5941
5942Calculates the scattering from polymers with excluded volume effects.
5943
5944The returned value is scaled to units of [cm-1sr-1], absolute scale.
5945
5946The returned value is P(Q) as written in equation (2), plus the
5947incoherent background term. The result is in the units of [cm-1sr-1],
5948absolute scale.
5949
5950A model describing polymer chain conformations with excluded volume
5951was introduced to describe the conformation of polymer chains, and has
5952been used as a template for describing mass fractals. The form factor
5953for that model (Benoit, 1957) was originally presented in the
5954following integral form:
5955
5956(1)
5957
5958Here n is the excluded volume parameter which is related to the Porod
5959exponent m as n = 1/m, a is the polymer chain statistical segment
5960length and n is the degree of polymerization. This integral was later
5961put into an almost analytical form (Hammouda, 1993) as follows:
5962
5963(2)
5964
5965Here, g(x,U) is the incomplete gamma function which is a built-in
5966function in computer libraries.
5967
5968
5969
5970The variable U is given in terms of the scattering variable Q as:
5971
5972
5973
5974The radius of gyration squared has been defined as:
5975
5976
5977
5978Note that this model describing polymer chains with excluded volume
5979applies only in the mass fractal range ( 5/3 <= m <= 3) and does not
5980apply to surface fractals ( 3 < m <= 4). It does not reproduce the
5981rigid rod limit (m = 1) because it assumes chain flexibility from the
5982outset. It may cover a portion of the semiflexible chain range ( 1 < m
5983< 5/3).
5984
5985The low-Q expansion yields the Guinier form and the high-Q expansion
5986yields the Porod form which is given by:
5987
5988
5989
5990Here G(x) = g(x,inf) is the gamma function. The asymptotic limit is
5991dominated by the first term:
5992
5993
5994
5995The special case when n = 0.5 (or m = 1/n = 2) corresponds to Gaussian
5996chains for which the form factor is given by the familiar Debye
5997function.
5998
5999
6000
6001The form factor given by Eq. 2 is the calculated result, and is
6002plotted below for the default parameter values.
6003
6004REFERENCE
6005
6006Benoit, H., Comptes Rendus (1957). 245, 2244-2247.
6007
6008Hammouda, B., SANS from Homogeneous Polymer Mixtures A Unified
6009Overview, Advances in Polym. Sci. (1993), 106, 87-133.
6010
6011For 2D plot, the wave transfer is defined as .
6012
6013TEST DATASET
6014
6015This example dataset is produced, using 200 data points, qmin = 0.001
6016-1, qmax = 0.2 -1 and the default values below.
6017
6018Parameter name
6019
6020Units
6021
6022Default value
6023
6024Scale
6025
6026None
6027
60281.0
6029
6030rg
6031
6032
6033
603460.0
6035
6036m(=Porod exponent)
6037
60383
6039
6040background
6041
6042cm-1
6043
60440.0
6045
6046
6047
6048
6049
6050**Figure. 1D plot using the default values (w/500 data points).**
6051
6052
6053
6054**3.22.** ** ** ** RPA10Model**
6055
6056Calculates the macroscopic scattering intensity (units of cm^-1) for a
6057multicomponent homogeneous mixture of polymers using the Random Phase
6058Approximation. This general formalism contains 10 specific cases:
6059
6060Case 0: C/D Binary mixture of homopolymers
6061
6062Case 1: C-D Diblock copolymer
6063
6064Case 2: B/C/D Ternary mixture of homopolymers
6065
6066Case 3: C/C-D Mixture of a homopolymer B and a diblock copolymer C-D
6067
6068Case 4: B-C-D Triblock copolymer
6069
6070Case 5: A/B/C/D Quaternary mixture of homopolymers
6071
6072Case 6: A/B/C-D Mixture of two homopolymers A/B and a diblock C-D
6073
6074Case 7: A/B-C-D Mixture of a homopolymer A and a triblock B-C-D
6075
6076Case 8: A-B/C-D Mixture of two diblock copolymers A-B and C-D
6077
6078Case 9: A-B-C-D Four-block copolymer
6079
6080Note: the case numbers are different from the IGOR/NIST SANS package.
6081
6082****
6083
6084Only one case can be used at any one time. Plotting a different case
6085will overwrite the original parameter waves.
6086
6087The returned value is scaled to units of [cm-1].
6088
6089Component D is assumed to be the "background" component (all contrasts
6090are calculated with respect to component D).
6091
6092Scattering contrast for a C/D blend= {SLD (component C) - SLD
6093(component D)}2
6094
6095Depending on what case is used, the number of fitting parameters
6096varies. These represent the segment lengths (ba, bb, etc) and the Chi
6097parameters (Kab, Kac, etc). The last one of these is a scaling factor
6098to be held constant equal to unity.
6099
6100The input parameters are the degree of polymerization, the volume
6101fractions for each component the specific volumes and the neutron
6102scattering length densities.
6103
6104This RPA (mean field) formalism applies only when the multicomponent
6105polymer mixture is in the homogeneous mixed-phase region.
6106
6107REFERENCE
6108
6109A.Z. Akcasu, R. Klein and B. Hammouda, Macromolecules 26, 4136 (1993)
6110
6111
6112
6113Fitting parameters for Case0 Model
6114
6115Parameter name
6116
6117Units
6118
6119Default value
6120
6121background
6122
6123cm-1
6124
61250.0
6126
6127scale
6128
61291
6130
6131bc(=Seg. Length bc)
6132
61335
6134
6135bd(=Seg. Length bd)
6136
61375
6138
6139Kcd(Chi Param. Kcd)
6140
6141-0.0004
6142
6143****
6144
6145****
6146
6147Fixed parameters for Case0 Model
6148
6149Parameter name
6150
6151Units
6152
6153Default value
6154
6155Lc(= Scatter. Length_c)
6156
61571e-12
6158
6159Ld(= Scatter. Length_d)
6160
61610
6162
6163Nc(=Deg.Polym.c)
6164
61651000
6166
6167Nd(=Deg.Polym.d)
6168
61691000
6170
6171Phic(=Vol. fraction of c)
6172
61730.25
6174
6175Phid(=Vol. fraction of d)
6176
61770.25
6178
6179vc(=Spec. vol. of c)
6180
6181100
6182
6183vd(=Spec. vol. of d)
6184
6185100
6186
6187****
6188
6189****
6190
6191
6192
6193**Figure. 1D plot using the default values (w/500 data points).**
6194
6195****
6196
6197**3.23.** ** ** **TwoLorentzian(Model)**
6198
6199Calculate an empirical functional form for SANS data characterized by
6200a two Lorentzian functions.
6201
6202The returned value is scaled to units of [cm-1sr-1], absolute scale.
6203
6204The scattering intensity I(q) is calculated by:
6205
6206
6207
6208
6209
6210A = Lorentzian scale #1
6211
6212C = Lorentzian scale #2
6213
6214where scale is the peak height centered at q0, and B refers to the
6215standard deviation of the function.
6216
6217The background term is added for data analysis.
6218
6219For 2D plot, the wave transfer is defined as .
6220
6221**Default input parameter values**
6222
6223Parameter name
6224
6225Units
6226
6227Default value
6228
6229scale_1(=A)
6230
623110
6232
6233scale_2(=C)
6234
62351
6236
62371ength_1 (=Correlation length1)
6238
6239
6240
6241100
6242
62431ength_2(=Correlation length2)
6244
6245
6246
624710
6248
6249exponent_1(=n)
6250
62513
6252
6253exponent_2(=m)
6254
62552
6256
6257Background(=B)
6258
6259cm-1
6260
62610.1
6262
6263
6264
6265
6266
6267
6268
6269**Figure. 1D plot using the default values (w/500 data points).**
6270
6271
6272
6273**REFERENCE: None**
6274
6275**3.24.** ** ** **TwoPowerLaw(Model)**
6276
6277Calculate an empirical functional form for SANS data characterized by
6278two power laws.
6279
6280The returned value is scaled to units of [cm-1sr-1], absolute scale.
6281
6282
6283
6284The scattering intensity I(q) is calculated by:
6285
6286
6287
6288
6289
6290qc is the location of the crossover from one slope to the other. The
6291scaling A, sets the overall intensity of the lower Q power law region.
6292The scaling of the second power law region is scaled to match the
6293first. Be sure to enter the power law exponents as positive values.
6294
6295For 2D plot, the wave transfer is defined as .
6296
6297**Default input parameter values**
6298
6299Parameter name
6300
6301Units
6302
6303Default value
6304
6305coef_A
6306
63071.0
6308
6309qc
6310
6311-1
6312
63130.04
6314
6315power_1(=m1)
6316
63174
6318
6319power_2(=m2)
6320
63214
6322
6323background
6324
6325cm-1
6326
63270.0
6328
6329
6330
6331
6332
6333
6334
6335**Figure. 1D plot using the default values (w/500 data points).**
6336
6337
6338
6339**3.25.** ** ** **UnifiedPower(Law and)Rg(Model)**
6340
6341The returned value is scaled to units of [cm-1sr-1], absolute scale.
6342
6343Note that the level 0 is an extra function that is the inverse
6344function; I (q) = scale/q + background.
6345
6346Otherwise, program incorporates the empirical multiple level unified
6347Exponential/Power-law fit method developed by G. Beaucage. Four
6348functions are included so that One, Two, Three, or Four levels can be
6349used.
6350
6351The empirical expressions are able to reasonably approximate the
6352scattering from many different types of particles, including fractal
6353clusters, random coils (Debye equation), ellipsoidal particles, etc.
6354The empirical fit function is
6355
6356
6357
6358
6359
6360For each level, the four parameters Gi, Rg,i, Bi and Pi must be
6361chosen.
6362
6363For example, to approximate the scattering from random coils (Debye
6364equation), set Rg,i as the Guinier radius, Pi = 2, and Bi = 2 Gi /
6365Rg,i
6366
6367See the listed references for further information on choosing the
6368parameters.
6369
6370
6371
6372For 2D plot, the wave transfer is defined as .
6373
6374**Default input parameter values**
6375
6376Parameter name
6377
6378Units
6379
6380Default value
6381
6382scale
6383
63841.0
6385
6386Rg2
6387
6388
6389
639021
6391
6392power2
6393
63942
6395
6396G2
6397
6398cm-1sr-1
6399
64003
6401
6402B2
6403
6404cm-1sr-1
6405
64060.0006
6407
6408Rg1
6409
6410
6411
641215.8
6413
6414power1
6415
64164
6417
6418G1
6419
6420cm-1sr-1
6421
6422400
6423
6424B1
6425
6426cm-1sr-1
6427
64284.5e-006
6429
6430background
6431
6432cm-1
6433
64340.0
6435
6436
6437
6438
6439
6440
6441
6442**Figure. 1D plot using the default values (w/500 data points).**
6443
6444
6445
6446REFERENCES
6447
6448G. Beaucage (1995). J. Appl. Cryst., vol. 28, p717-728.
6449
6450G. Beaucage (1996). J. Appl. Cryst., vol. 29, p134-146.
6451
6452**3.26.** ** ** ** LineModel**
6453
6454This is a linear function that calculates:
6455
6456
6457
6458
6459
6460where A and B are the coefficients of the first and second order
6461terms.
6462
6463**Note:** For 2D plot, I(q) = I(qx)*I(qy) which is defined differently
6464from other shape independent models.
6465
6466Parameter name
6467
6468Units
6469
6470Default value
6471
6472A
6473
6474cm-1
6475
64761.0
6477
6478B
6479
6480
6481
64821.0
6483
6484
6485
6486**3.27.** ** ** **ReflectivityModel**
6487
6488This model calculates the reflectivity and uses the Parrett algorithm.
6489Up to nine film layers are supported between Bottom(substrate) and
6490Medium(Superstrate where the neutron enters the first top film). Each
6491layers are composed of [ of the interface(from the previous layer or
6492substrate) + flat portion + of the interface(to the next layer or
6493medium)]. Only two simple interfacial functions are selectable, error
6494function and linear function. The each interfacial thickness is
6495equivalent to (- 2.5 sigma to +2.5 sigma for the error function,
6496sigma=roughness).
6497
6498Note: This model was contributed by an interested user.
6499
6500
6501
6502**Figure. Comparison (using the SLD profile below) with NISTweb
6503calculation (circles):
6504http://www.ncnr.nist.gov/resources/reflcalc.html.**
6505
6506
6507
6508**Figure. SLD profile used for the calculation(above).**
6509
6510**3.28.** ** ** **ReflectivityIIModel**
6511
6512Same as the ReflectivityModel except that the it is more customizable.
6513More interfacial functions are supplied. The number of points
6514(npts_inter) for each interface can be choosen. The constant (A below
6515but 'nu' as a parameter name of the model) for exp, erf, or power-law
6516is an input. The SLD at the interface between layers, *rinter_i*, is
6517calculated with a function chosen by a user, where the functions are:
6518
65191) Erf;
6520
6521
6522
65232) Power-Law;
6524
6525
6526
6527
6528
6529
6530
65313) Exp;
6532
6533
6534
6535
6536
6537Note: This model was implemented by an interested user.
6538
6539**3.29.** ** ** **GelFitModel**
6540
6541Unlike a concentrated polymer solution, the fine-scale polymer
6542distribution in a gel involves at least two characteristic length
6543scales, a shorter correlation length (a1) to describe the rapid
6544fluctuations in the position of the polymer chains that ensure
6545thermodynamic equilibrium, and a longer distance (denoted here as a2)
6546needed to account for the static accumulations of polymer pinned down
6547by junction points or clusters of such points. The letter is derived
6548from a simple Guinier function.
6549
6550The scattered intensity I(Q) is then calculated as:
6551
6552
6553
6554Where:
6555
6556
6557
6558
6559
6560
6561
6562Note the first term reduces to the Ornstein-Zernicke equation when
6563D=2; ie, when the Flory exponent is 0.5 (theta conditions). In gels
6564with significant hydrogen bonding D has been reported to be ~2.6 to
65652.8.
6566
6567Note: This model was implemented by an interested user.
6568
6569**Default input parameter values**
6570
6571Parameter name
6572
6573Units
6574
6575Default value
6576
6577Background
6578
6579cm-1
6580
65810.01
6582
6583Guinier scale
6584
6585cm-1
6586
65871.7
6588
6589Lorentzian scale
6590
6591cm-1
6592
65933.5
6594
6595Radius of gyration
6596
6597
6598
6599104
6600
6601Fractal exponent
6602
66032
6604
6605Correlation length
6606
6607
6608
660916
6610
6611
6612
6613
6614
6615
6616
6617**Figure. 1D plot using the default values (w/300 data points,
6618qmin=0.001, and qmax=0.3).**
6619
6620
6621
6622REFERENCES
6623
6624Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C. Han, J. Chem. Phys.
66251992, 97 (9), 6829-6841.
6626
6627Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R. Rennie, Erik
6628Geissler, Macromolecules 1991, 24, 543-548.
6629
6630
6631
6632**3.30.** ** ** ** Star Polymer with Gaussian Statistics **
6633
6634For a star with *f* arms:
6635
6636
6637
6638
6639
6640
6641
6642where is the ensemble average radius of gyration squared of an arm.
6643
6644
6645
6646References:
6647
6648H. Benoit, J. Polymer Science., 11, 596-599 (1953)
6649
6650
6651
6652
6653
6654**4.** ** ** **Customized Models **
6655
6656****
6657
6658Customized model functions can be redefined or added by users (See
6659SansView tutorial for details).
6660
6661**4.1.** **** **testmodel**
6662
6663****
6664
6665This function, as an example of a user defined function, calculates
6666the intensity = A + Bcos(2q) + Csin(2q).
6667
6668**4.2.** **** **testmodel_2 **
6669
6670This function, as an example of a user defined function, calculates
6671the intensity = scale * sin(f)/f, where f = A + Bq + Cq2 + Dq3 + Eq4 +
6672Fq5.
6673
6674**4.3.** ** ** **sum_p1_p2 **
6675
6676This function, as an example of a user defined function, calculates
6677the intensity = scale_factor * (CylinderModel + PolymerExclVolume
6678model). To make your own sum(P1+P2) model, select 'Easy Custom Sum'
6679from the Fitting menu, or modify and compile the file named
6680'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu. It
6681works only for single functional models.
6682
6683**4.4.** **** **sum_Ap1_1_Ap2 **
6684
6685This function, as an example of a user defined function, calculates
6686the intensity = (scale_factor * CylinderModel + (1-scale_factor) *
6687PolymerExclVolume model). To make your own A*p1+(1-A)*p2 model, modify
6688and compile the file named 'sum_Ap1_1_Ap2.py' from 'Edit Custom Model'
6689in the 'Fitting' menu. It works only for single functional models.
6690
6691**4.5.** ** ** **polynomial5 **
6692
6693This function, as an example of a user defined function, calculates
6694the intensity = A + Bq + Cq2 + Dq3 + Eq4 + Fq5. This model can be
6695modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
6696
6697**4.6.** **** **sph_bessel_jn **
6698
6699This function, as an example of a user defined function, calculates
6700the intensity = C*sph_jn(Ax+B)+D where the sph_jn is spherical Bessel
6701function of the order n. This model can be modified and compiled from
6702'Edit Custom Model' in the 'Fitting' menu.
6703
6704**5.** ** ** **Structure Factors**
6705
6706
6707
6708The information in this section is originated from NIST SANS IgorPro
6709package.
6710
6711**5.1.** ** ** **HardSphere Structure **
6712
6713This calculates the interparticle structure factor for monodisperse
6714spherical particles interacting through hard sphere (excluded volume)
6715interactions. The calculation uses the Percus-Yevick closure where the
6716interparticle potential is:
6717
6718
6719
6720
6721
6722where r is the distance from the center of the sphere of a radius R.
6723
6724For 2D plot, the wave transfer is defined as .
6725
6726Parameter name
6727
6728Units
6729
6730Default value
6731
6732effect_radius
6733
6734
6735
673650.0
6737
6738volfraction
6739
67400.2
6741
6742
6743
6744**Figure. 1D plot using the default values (in linear scale).**
6745
6746References:
6747
6748Percus, J. K.; Yevick, J. Phys. Rev. 110, 1. (1958).
6749
6750**5.2.** ** ** **SquareWell Structure **
6751
6752This calculates the interparticle structure factor for a squar well
6753fluid spherical particles The mean spherical approximation (MSA)
6754closure was used for this calculation, and is not the most appropriate
6755closure for an attractive interparticle potential. This solution has
6756been compared to Monte Carlo simulations for a square well fluid,
6757showing this calculation to be limited in applicability to well depths
6758e < 1.5 kT and volume fractions f < 0.08.
6759
6760Positive well depths correspond to an attractive potential well.
6761Negative well depths correspond to a potential "shoulder", which may
6762or may not be physically reasonable.
6763
6764The well width (l) is defined as multiples of the particle diameter
6765(2*R)
6766
6767The interaction potential is:
6768
6769
6770
6771
6772
6773where r is the distance from the center of the sphere of a radius R.
6774
6775For 2D plot, the wave transfer is defined as .
6776
6777Parameter name
6778
6779Units
6780
6781Default value
6782
6783effect_radius
6784
6785
6786
678750.0
6788
6789volfraction
6790
67910.04
6792
6793welldepth
6794
6795kT
6796
67971.5
6798
6799wellwidth
6800
6801diameters
6802
68031.2
6804
6805
6806
6807**Figure. 1D plot using the default values (in linear scale).**
6808
6809References:
6810
6811Sharma, R. V.; Sharma, K. C. Physica, 89A, 213. (1977).
6812
6813
6814
6815**5.3.** ** ** **HayterMSA Structure **
6816
6817This calculates the Structure factor (the Fourier transform of the
6818pair correlation function g(r)) for a system of charged, spheroidal
6819objects in a dielectric medium. When combined with an appropriate form
6820factor (such as sphere, core+shell, ellipsoid etc), this allows for
6821inclusion of the interparticle interference effects due to screened
6822coulomb repulsion between charged particles. This routine only works
6823for charged particles. If the charge is set to zero the routine will
6824self destruct. For non-charged particles use a hard sphere potential.
6825
6826The salt concentration is used to compute the ionic strength of the
6827solution which in turn is used to compute the Debye screening length.
6828At present there is no provision for entering the ionic strength
6829directly nor for use of any multivalent salts. The counterions are
6830also assumed to be monovalent.
6831
6832For 2D plot, the wave transfer is defined as .
6833
6834Parameter name
6835
6836Units
6837
6838Default value
6839
6840effect_radius
6841
6842
6843
684420.8
6845
6846charge
6847
684819
6849
6850volfraction
6851
68520.2
6853
6854temperature
6855
6856K
6857
6858318
6859
6860salt conc
6861
6862M
6863
68640
6865
6866dielectconst
6867
686871.1
6869
6870
6871
6872**Figure. 1D plot using the default values (in linear scale).**
6873
6874References:
6875
6876JP Hansen and JB Hayter, Molecular Physics 46, 651-656 (1982).
6877
6878JB Hayter and J Penfold, Molecular Physics 42, 109-118 (1981).
6879
6880**5.4.** ** ** **StickyHS Structure **
6881
6882This calculates the interparticle structure factor for a hard sphere
6883fluid with a narrow attractive well. A perturbative solution of the
6884Percus-Yevick closure is used. The strength of the attractive well is
6885described in terms of "stickiness" as defined below. The returned
6886value is a dimensionless structure factor, S(q).
6887
6888The perturb (perturbation parameter), epsilon, should be held between
68890.01 and 0.1. It is best to hold the perturbation parameter fixed and
6890let the "stickiness" vary to adjust the interaction strength. The
6891stickiness, tau, is defined in the equation below and is a function of
6892both the perturbation parameter and the interaction strength. Tau and
6893epsilon are defined in terms of the hard sphere diameter (sigma = 2R),
6894the width of the square well, delta (same units as R), and the depth
6895of the well, uo, in units of kT. From the definition, it is clear that
6896smaller tau mean stronger attraction.
6897
6898
6899
6900
6901
6902
6903
6904where the interaction potential is
6905
6906
6907
6908
6909
6910The Percus-Yevick (PY) closure was used for this calculation, and is
6911an adequate closure for an attractive interparticle potential. This
6912solution has been compared to Monte Carlo simulations for a square
6913well fluid, with good agreement.
6914
6915The true particle volume fraction, f, is not equal to h, which appears
6916in most of the reference. The two are related in equation (24) of the
6917reference. The reference also describes the relationship between this
6918perturbation solution and the original sticky hard sphere (or adhesive
6919sphere) model by Baxter.
6920
6921NOTES: The calculation can go haywire for certain combinations of the
6922input parameters, producing unphysical solutions - in this case errors
6923are reported to the command window and the S(q) is set to -1 (it will
6924disappear on a log-log plot). Use tight bounds to keep the parameters
6925to values that you know are physical (test them) and keep nudging them
6926until the optimization does not hit the constraints.
6927
6928For 2D plot, the wave transfer is defined as .
6929
6930Parameter name
6931
6932Units
6933
6934Default value
6935
6936effect_radius
6937
6938
6939
694050
6941
6942perturb
6943
69440.05
6945
6946volfraction
6947
69480.1
6949
6950stickiness
6951
6952K
6953
69540.2
6955
6956
6957
6958**Figure. 1D plot using the default values (in linear scale).**
6959
6960References:
6961
6962Menon, S. V. G., Manohar, C. and K. Srinivas Rao J. Chem. Phys.,
696395(12), 9186-9190 (1991).
6964
6965**References**
6966
6967Feigin, L. A, and D. I. Svergun (1987) "Structure Analysis by Small-
6968Angle X-Ray and Neutron Scattering", Plenum Press, New York.
6969
6970Guinier, A. and G. Fournet (1955) "Small-Angle Scattering of X-Rays",
6971John Wiley and Sons, New York.
6972
6973Kline, S. R. (2006) *J Appl. Cryst.* **39**(6), 895.
6974
6975Hansen, S., (1990) * J. Appl. Cryst. *23, 344-346.
6976
6977Henderson, S.J. (1996) *Biophys. J. *70, 1618-1627
6978
6979Stckel, P., May, R., Strell, I., Cejka, Z., Hoppe, W., Heumann, H.,
6980Zillig, W. and Crespi, H. (1980) *Eur. J. Biochem. *112, 411-417.
6981
6982McAlister, B.C. and Grady, B.P., (1998) J. Appl. Cryst. 31, 594-599.
6983
6984Porod, G. (1982) in Small Angle X-ray Scattering, editors Glatter, O.
6985and Kratky, O., Academic Press.
6986
6987*Also, see the references at the end of the each model function
6988descriptions.
6989
6990
6991.. _Polarization/Magnetic Scattering: polar_mag_help.html
6992
6993
Note: See TracBrowser for help on using the repository browser.