source: sasview/src/sans/models/media/model_functions.rst @ 34dbaf4

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 34dbaf4 was 2005bb5, checked in by smk78, 11 years ago

Created by SMK

  • Property mode set to 100644
File size: 245.5 KB
RevLine 
[2005bb5]1.. model_functions.rst
2
3.. This is a port of the original SasView model_functions.html to ReSTructured text
4.. S King, Apr 2014
5.. with thanks to A Jackson & P Kienzle for advice!
6
7
8.. Set up some substitutions to make life easier...
9
10.. |alpha| unicode:: U+03B1
11.. |beta| unicode:: U+03B2
12.. |gamma| unicode:: U+03B3
13.. |delta| unicode:: U+03B4
14.. |epsilon| unicode:: U+03B5
15.. |zeta| unicode:: U+03B6
16.. |eta| unicode:: U+03B7
17.. |theta| unicode:: U+03B8
18.. |iota| unicode:: U+03B9
19.. |kappa| unicode:: U+03BA
20.. |lambda| unicode:: U+03BB
21.. |mu| unicode:: U+03BC
22.. |nu| unicode:: U+03BD
23.. |xi| unicode:: U+03BE
24.. |omicron| unicode:: U+03BF
25.. |pi| unicode:: U+03C0
26.. |rho| unicode:: U+03C1
27.. |sigma| unicode:: U+03C2
28.. |tau| unicode:: U+03C4
29.. |upsilon| unicode:: U+03C5
30.. |phi| unicode:: U+03C6
31.. |chi| unicode:: U+03C7
32.. |psi| unicode:: U+03C8
33.. |omega| unicode:: U+03C9
34
35.. |Ang| unicode:: U+212B
36.. |Ang^-1| replace:: |Ang|\ :sup:`-1`
37.. |Ang^2| replace:: |Ang|\ :sup:`2`
38.. |Ang^-2| replace:: |Ang|\ :sup:`-2`
39.. |Ang^3| replace:: |Ang|\ :sup:`3`
40.. |cm^-1| replace:: cm\ :sup:`-1`
41.. |cm^2| replace:: cm\ :sup:`2`
42.. |cm^-2| replace:: cm\ :sup:`-2`
43.. |cm^3| replace:: cm\ :sup:`3`
44.. |cm^-3| replace:: cm\ :sup:`-3`
45
46.. |P0| replace:: P\ :sub:`0`\
47
48
49
50.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
51
52
53
54.. Actual document starts here...
55
56SasView Model Functions
57=======================
58
59Contents
60--------
611. Introduction_
62
632. Model_ Functions
64
65 2.1 Shape-based_ Functions
66 2.2 Shape-independent_ Functions
67 2.3 Structure-factor_ Functions
68 2.4 Customised_ Functions
69
703. References_
71
72
73
74.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
75
76
77
78.. _Introduction:
79
801. Introduction
81---------------
82
83Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
84Research and thus some content and figures in this document are originated from or shared with the NIST Igor analysis
85package.
86
87This software provides form factors for various particle shapes. After giving a mathematical definition of each model,
88we show the list of parameters available to the user. Validation plots for each model are also presented.
89
90Instructions on how to use SasView itself are available separately.
91
92To easily compare to the scattering intensity measured in experiments, we normalize the form factors by the volume of
93the particle
94
95.. image:: img/image001.PNG
96
97with
98
99.. image:: img/image002.PNG
100
101where |P0|\ *(q)* is the un-normalized form factor, |rho|\ *(r)* is the scattering length density at a given
102point in space and the integration is done over the volume *V* of the scatterer.
103
104For systems without inter-particle interference, the form factors we provide can be related to the scattering intensity
105by the particle volume fraction
106
107.. image:: img/image003.PNG
108
109Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In
110that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SANS
111detector will have an azimuthal symmetry around *q*\ =0 .
112
113Our so-called 2D scattering intensity functions provide *P(q,* |phi| *)* for an oriented system as a function of a
114q-vector in the plane of the detector. We define the angle |phi| as the angle between the q vector and the horizontal
115(x) axis of the plane of the detector.
116
117For information about polarised and magnetic scattering, click here_.
118
119.. _here: polar_mag_help.html
120
121
122
123.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
124
125
126
127.. _Model:
128
1292. Model functions
130------------------
131
132.. _Shape-based:
133
1342.1 Shape-based Functions
135-------------------------
136
137Sphere-based
138------------
139
140- SphereModel_ (including magnetic 2D version)
141- BinaryHSModel_
142- FuzzySphereModel
143- RaspBerryModel
144- CoreShellModel (including magnetic 2D version)
145- CoreMultiShellModel (including magnetic 2D version)
146- Core2ndMomentModel
147- MultiShellModel
148- OnionExpShellModel
149- VesicleModel
150- SphericalSLDModel
151- LinearPearlsModel
152- PearlNecklaceModel
153
154Cylinder-based
155--------------
156
157- CylinderModel (including magnetic 2D version)
158- HollowCylinderModel
159- CappedCylinderModel
160- CoreShellCylinderModel
161- EllipticalCylinderModel
162- FlexibleCylinderModel
163- FlexCylEllipXModel
164- CoreShellBicelleModel
165- BarBellModel
166- StackedDisksModel
167- PringleModel
168
169Ellipsoid-based
170---------------
171
172- EllipsoidModel
173- CoreShellEllipsoidModel
174- TriaxialEllipsoidModel
175
176Lamellae
177--------
178
179- LamellarModel
180- LamellarFFHGModel
181- LamellarPSModel
182- LamellarPSHGModel
183
184Paracrystals
185------------
186
187- LamellarPCrystalModel
188- SCCrystalModel
189- FCCrystalModel
190- BCCrystalModel
191
192Parallelpipeds
193--------------
194
195- ParallelepipedModel (including magnetic 2D version)
196- CSParallelepipedModel
197
198.. _Shape-independent:
199
2002.2 Shape-Independent Functions
201-------------------------------
202
203- AbsolutePower_Law
204- BEPolyelectrolyte
205- BroadPeakModel
206- CorrLength
207- DABModel
208- Debye
209- FractalModel
210- FractalCoreShell
211- GaussLorentzGel
212- Guinier
213- GuinierPorod
214- Lorentz
215- MassFractalModel
216- MassSurfaceFractal
217- PeakGaussModel
218- PeakLorentzModel
219- Poly_GaussCoil
220- PolyExclVolume
221- PorodModel
222- RPA10Model
223- StarPolymer
224- SurfaceFractalModel
225- Teubner Strey
226- TwoLorentzian
227- TwoPowerLaw
228- UnifiedPowerRg
229- LineModel
230- ReflectivityModel
231- ReflectivityIIModel
232- GelFitModel
233
234.. _Structure-factor:
235
2362.3 Structure Factor Functions
237------------------------------
238
239- HardSphereStructure
240- SquareWellStructure
241- HayterMSAStructure
242- StickyHSStructure
243
244.. _Customised:
245
2462.4 Customized Functions
247------------------------
248
249- testmodel
250- testmodel_2
251- sum_p1_p2
252- sum_Ap1_1_Ap2
253- polynomial5
254- sph_bessel_jn
255
256
257
258.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
259
260
261
262.. _References:
263
2643. References
265-------------
266*Small-Angle Scattering of X-Rays*
267A. Guinier and G. Fournet
268John Wiley & Sons, New York (1955)
269
270P. Stckel, R. May, I. Strell, Z. Cejka, W. Hoppe, H. Heumann, W. Zillig and H. Crespi
271*Eur. J. Biochem.*, 112, (1980), 411-417
272
273G. Porod
274in *Small Angle X-ray Scattering*
275(editors) O. Glatter and O. Kratky
276Academic Press (1982)
277
278*Structure Analysis by Small-Angle X-Ray and Neutron Scattering*
279L.A. Feigin and D. I. Svergun
280Plenum Press, New York (1987)
281
282S. Hansen
283*J. Appl. Cryst.* 23, (1990), 344-346
284
285S.J. Henderson
286*Biophys. J.* 70, (1996), 1618-1627
287
288B.C. McAlister and B.P. Grady, B.P
289*J. Appl. Cryst.* 31, (1998), 594-599
290
291S.R. Kline
292*J Appl. Cryst.* 39(6), (2006), 895
293
294**Also see the references at the end of the each model function descriptions.**
295
296
297
298.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
299
300
301
302Model Definitions
303-----------------
304
305.. _SphereModel:
306
307**2.1.1. SphereModel**
308
309This model provides the form factor, *P(q)*, for a monodisperse spherical particle with uniform scattering length
310density. The form factor is normalized by the particle volume as described below.
311
312For information about polarised and magnetic scattering, click here_.
313
314.. _here: polar_mag_help.html
315
316*2.1.1.1. Definition*
317
318The 1D scattering intensity is calculated in the following way (Guinier, 1955)
319
320.. image:: img/image004.PNG
321
322where *scale* is a volume fraction, *V* is the volume of the scatterer, *r* is the radius of the sphere, *bkg* is
323the background level and *sldXXX* is the scattering length density (SLD) of the scatterer or the solvent.
324
325Note that if your data is in absolute scale, the *scale* should represent the volume fraction (which is unitless) if
326you have a good fit. If not, it should represent the volume fraction \* a factor (by which your data might need to be
327rescaled).
328
329The 2D scattering intensity is the same as above, regardless of the orientation of the q vector.
330
331The returned value is scaled to units of |cm^-1| and the parameters of the sphere model are the following:
332
333==============  ========  =============
334Parameter name  Units     Default value
335==============  ========  =============
336scale           None      1
337radius          |Ang|     60
338sldSph          |Ang^-2|  2.0e-6
339sldSolv         |Ang^-2|  1.0e-6
340background      |cm^-1|   0
341==============  ========  =============
342
343Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
344Research (Kline, 2006).
345
346*2.1.1.2. Validation of the SphereModel*
347
348Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the
349NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software.
350
351.. image:: img/image005.JPG
352
353Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the NIST SANS analysis software.
354The parameters were set to: Scale=1.0, Radius=60 |Ang|, Contrast=1e-6 |Ang^-2|, and Background=0.01 |cm^-1|.
355
356*2013/09/09 and 2014/01/06 - Description reviewed by S. King and P. Parker.*
357
358
359
360.. _BinaryHSModel:
361
362**2.1.2. BinaryHSModel**
363
364*2.1.2.1. Definition*
365
366This model (binary hard sphere model) provides the scattering intensity, for binary mixture of spheres including hard
367sphere interaction between those particles. Using Percus-Yevick closure, the calculation is an exact multi-component
368solution
369
370.. image:: img/image006.PNG
371
372where *Sij* are the partial structure factors and *fi* are the scattering amplitudes of the particles. The subscript 1
373is for the smaller particle and 2 is for the larger. The number fraction of the larger particle, (*x* = n2/(n1+n2),
374where *n* = the number density) is internally calculated based on
375
376.. image:: img/image007.PNG
377
378The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as
379
380.. image:: img/image008.PNG
381
382The parameters of the binary hard sphere are the following (in the names, *l* (or *ls*\ ) stands for larger spheres
383while *s* (or *ss*\ ) for the smaller spheres).
384
385==============  ========  =============
386Parameter name  Units     Default value
387==============  ========  =============
388background      |cm^-1|   0.001
389l_radius        |Ang|     100.0
390ss_sld          |Ang^-2|  0.0
391ls_sld          |Ang^-2|  3e-6
392solvent_sld     |Ang^-2|  6e-6
393s_radius        |Ang|     25.0
394vol_frac_ls               0.1
395vol_frac_ss               0.2
396==============  ========  =============
397
398.. image:: img/image009.JPG
399
400*Figure. 1D plot using the default values above (w/200 data point).*
401
402Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron
403Research (Kline, 2006).
404
405See the reference for details.
406
407REFERENCE
408N. W. Ashcroft and D. C. Langreth, Physical Review, v. 156 (1967) 685-692
409
410[Errata found in Phys. Rev. 166 (1968) 934.]
411
412
413
414.. _FuzzySphereModel:
415
416**2.1.3. FuzzySphereModel**
417
418**This model is to calculate the scattering from spherical particles
419with a "fuzzy" interface.**
420
421*2.1.3.1. Definition*
422
423The 1D scattering intensity is calculated in the following way
424(Guinier, 1955):
425
426The returned value is scaled to units of [cm-1 sr-1], absolute scale.
427
428The scattering intensity I(q) is calculated as:
429
430
431
432where the amplitude A(q) is given as the typical sphere scattering
433convoluted with a Gaussian to get a gradual drop-off in the scattering
434length density:
435
436
437
438Here A2(q) is the form factor, P(q). The scale is equivalent to the
439volume fraction of spheres, each of volume, V. Contrast ( * ) is the
440difference of scattering length densities of the sphere and the
441surrounding solvent.
442
443The poly-dispersion in radius and in fuzziness is provided.
444
445(direct from the reference)
446
447The "fuzziness" of the interface is defined by the parameter
448(sigma)fuzzy. The particle radius R represents the radius of the
449particle where the scattering length density profile decreased to 1/2
450of the core density. The (sigma)fuzzy is the width of the smeared
451particle surface: i.e., the standard deviation from the average height
452of the fuzzy interface. The inner regions of the microgel that display
453a higher density are described by the radial box profile extending to
454a radius of approximately Rbox ~ R - 2(sigma). the profile approaches
455zero as Rsans ~ R + 2(sigma).
456
457For 2D data: The 2D scattering intensity is calculated in the same way
458as 1D, where the *q* vector is defined as .
459
460REFERENCE
461
462M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20
463(2004) 7283-7292.
464
465*2.1.3.2. Validation of the fuzzy sphere model*
466
467This example dataset is produced by running the FuzzySphereModel,
468using 200 data points, qmin = 0.001 -1, qmax = 0.7 A-1 and the default
469values:
470
471Parameter name
472
473Units
474
475Default value
476
477scale
478
479None
480
4811.0
482
483radius
484
485
486
48760
488
489fuzziness
490
491
492
49310
494
495sldSolv
496
497-2
498
4993e-6
500
501sldSph
502
503-2
504
5051e-6
506
507background
508
509cm-1
510
5110.001
512
513
514
515*Figure. 1D plot using the default values (w/200 data point).*
516
517
518
519.. _RaspBerryModel:
520
521**2.1.4. RaspBerryModel**
522
523Calculates the form factor, P(q), for a "Raspberry-like" structure
524where there are smaller spheres at the surface of a larger sphere,
525such as the structure of a Pickering emulsion.
526
527*2.1.4.1. Definition*
528
529The structure is:
530
531
532
533Ro = the radius of thelarge sphere
534Rp = the radius of the smaller sphere on the surface
535delta = the fractional penetration depth
536surface coverage = fractional coverage of the large sphere surface
537(0.9 max)
538
539
540The large and small spheres have their own SLD, as well as the
541solvent. The surface coverage term is a fractional coverage (maximum
542of approximately 0.9 for hexagonally packed spheres on a surface).
543Since not all of the small spheres are necessarily attached to the
544surface, the excess free (small) spheres scattering is also included
545in the calculation. The function calculated follows equations (8)-(12)
546of the reference below, and the equations are not reproduced here.
547
548The returned value is scaled to units of [cm-1]. No interparticle
549scattering is included in this model.
550
551For 2D data: The 2D scattering intensity is calculated in the same way
552as 1D, where the *q* vector is defined as .
553
554REFERENCE
555Kjersta Larson-Smith, Andrew Jackson, and Danilo C Pozzo, "Small angle
556scattering model for Pickering emulsions and raspberry particles."
557Journal of Colloid and Interface Science (2010) vol. 343 (1) pp.
55836-41.
559
560*2.1.4.2. Validation of the RaspBerry Model*
561
562This example dataset is produced by running the RaspBerryModel, using
5632000 data points, qmin = 0.0001 -1, qmax = 0.2 A-1 and the default
564values, where Ssph/Lsph stands for Smaller/Large sphere
565andsurfrac_Ssph for the surface fraction of the smaller spheres.
566
567Parameter name
568
569Units
570
571Default value
572delta_Ssph 0 radius_Lsph 5000 radius_Ssph 100 sld_Lsph -2 -4e-07
573sld_Ssph
574
575-2
576
5773.5e-6
578
579sld_solv
580
581-2
582
5836.3e-6
584
585surfrac_Ssph
586
587
588
5890.4
590
591volf_Lsph
592
5930.05
594
595volf_Lsph
596
597
598
5990.005
600
601background
602
603cm-1
604
6050
606
607
608
609*Figure. 1D plot using the values of /2000 data points.*
610
611
612
613.. _CoreShellModel:
614
615**2.1.5. CoreShellModel**
616
617This model provides the form factor, P( *q*), for a spherical particle
618with a core-shell structure. The form factor is normalized by the
619particle volume.
620
621For information about polarised and magnetic scattering, click here_.
622
623*2.1.5.1. Definition*
624
625The 1D scattering intensity is calculated in the following way
626(Guinier, 1955):
627
628
629
630
631
632where *scale* is a scale factor, *Vs* is the volume of the outer
633shell, *Vc* is the volume of the core, *rs* is the radius of the
634shell, *rc* is the radius of the core, *c* is the scattering length
635density of the core, *s* is the scattering length density of the
636shell, solv is the scattering length density of the solvent, and *bkg*
637is the background level.
638
639The 2D scattering intensity is the same as P(q) above, regardless of
640the orientation of the q vector.
641
642For P*S: The outer most radius (= radius + thickness) is used as the
643effective radius toward S(Q) when P(Q)*S(Q) is applied.
644
645The returned value is scaled to units of [cm-1] and the parameters of
646the core-shell sphere model are the following:
647
648Here, radius = the radius of the core and thickness = the thickness of
649the shell.
650
651Parameter name
652
653Units
654
655Default value
656
657scale
658
659None
660
6611.0
662
663(core) radius
664
665
666
66760
668
669thickness
670
671
672
67310
674
675core_sld
676
677-2
678
6791e-6
680
681shell_sld
682
683-2
684
6852e-6
686
687solvent_sld
688
689-2
690
6913e-6
692
693background
694
695cm-1
696
6970.001
698
699Our model uses the form factor calculations implemented in a c-library
700provided by the NIST Center for Neutron Research (Kline, 2006).
701
702
703
704REFERENCE
705
706Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John
707Wiley and Sons, New York, (1955).
708
709*2.1.5.2. Validation of the core-shell sphere model*
710
711Validation of our code was done by comparing the output of the 1D
712model to the output of the software provided by the NIST (Kline,
7132006). Figure 1 shows a comparison of the output of our model and the
714output of the NIST software.
715
716
717
718Figure 7: Comparison of the DANSE scattering intensity for a core-
719shell sphere with the output of the NIST SANS analysis software. The
720parameters were set to: Scale=1.0, Radius=60 , Contrast=1e-6 -2, and
721Background=0.001 cm -1.
722
723
724
725.. _CoreMultiShellModel:
726
727**2.1.6. CoreMultiShellModel**
728
729This model provides the scattering from spherical core with from 1 up
730to 4 shell structures. Ithas a core of a specified radius, with four
731shells. The SLDs of the core and each shell are individually
732specified.
733
734For information about polarised and magnetic scattering, click here_.
735
736*1.1. Definition*
737
738The returned value is scaled to units of [cm-1sr-1], absolute scale.
739
740This model is a trivial extension of the CoreShell function to a
741larger number of shells. See the CoreShell function for a diagram and
742documentation.
743
744Be careful that the SLDs and scale can be highly correlated. Hold as
745many of these fixed as possible.
746
747The 2D scattering intensity is the same as P(q) of 1D, regardless of
748the orientation of the q vector.
749
750For P*S: The outer most radius (= radius + 4 thicknesses) is used as
751the effective radius toward S(Q) if P(Q)*S(Q) is applied.
752
753The returned value is scaled to units of [cm-1] and the parameters of
754the CoreFourshell sphere model are the following:
755
756Here, rad_core = the radius of the core, thick_shelli = the thickness
757of the shell i and sld_shelli = the SLD of the shell i.
758
759And the sld_core and the sld_solv are the SLD of the core and the
760solvent, respectively.
761
762Parameter name
763
764Units
765
766Default value
767
768scale
769
770None
771
7721.0
773
774rad_core
775
776
777
77860
779
780sld_core
781
782-2
783
7846.4e-6
785
786sld_shell1
787
788-2
789
7901e-6
791
792sld_shell2
793
794-2
795
7962e-6
797
798sld_shell3
799
800-2
801
8023e-6
803
804sld_shell4
805
806-2
807
8084e-6
809
810sld_solv
811
812-2
813
8146.4e-6
815
816thick_shell1
817
818
819
82010
821
822thick_shell2
823
824
825
82610
827
828thick_shell3
829
830
831
83210
833
834thick_shell4
835
836
837
83810
839
840background
841
842cm-1
843
8440.001
845
846Our model uses the form factor calculations implemented in a c-library
847provided by the NIST Center for Neutron Research (Kline, 2006).
848
849
850
851REFERENCE
852
853See the CoreShell documentation.
854
855TEST DATASET
856
857This example dataset is produced by running the CoreMultiShellModel
858using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above
859default values.
860
861
862
863*Figure: 1D plot using the default values (w/200 data point).*
864
865The scattering length density profile for the default sld values (w/ 4
866shells).
867
868
869
870*Figure: SLD profile against the radius of the sphere for default
871SLDs.*
872
873
874
875.. _Core2ndMomentModel:
876
877**2.1.7. Core2ndMomentModel**
878
879This model describes the scattering from a layer of surfactant or
880polymer adsorbed on spherical particles under the conditions that (i)
881theparticles (cores) are contrast-matched to the dispersion medium,
882(ii) S(Q)~1 (ie, the particle volume fraction is dilute), (iii) the
883particle radius is >> layer thickness (ie, the interface is locally
884flat), and (iv) scattering from excess unadsorbed adsorbate in the
885bulk medium is absent or has been corrected for.
886
887Unlike a core-shell model, this model does not assume any form for the
888density distribution of the adsorbed species normal to the interface
889(cf, a core-shell model which assumes the density distribution to be a
890homogeneous step-function). For comparison, if the thickness of a
891(core-shell like) step function distribution is t, the second moment,
892sigma = sqrt((t^2)/12). Thesigma is the second moment about the mean
893of the density distribution (ie, the distance of the centre-of-mass of
894the distribution from the interface).
895
896*1.1. Definition*
897
898The I0 is calculated in the following way (King, 2002):
899
900
901
902
903
904where *scale* is a scale factor, *poly* is the sld of the polymer (or
905surfactant) layer,solv is the sld of the solvent/medium and cores,
906phi_cores is the volume fraction of the core paraticles, and Gamma and
907delta arethe adsorbed amount and the bulk density of the polymers
908respectively. The sigma is the second moment of the thickness
909distribution.
910
911
912
913Note that all parameters except the 'sigma' are correlated for fitting
914so that fittingthose with more than one parameters will be generally
915failed. And note that unlike other shape models, no volume
916normalization was applied to this model.
917
918The returned value is scaled to units of [cm-1] and the parameters are
919the following:
920
921Parameter name
922
923Units
924
925Default value
926
927scale
928
929None
930
9311.0
932
933density_poly
934
935g/cm2
936
9370.7
938
939radius_core
940
941
942
943500
944
945ads_amount
946
947mg/m2
948
9491.9
950second_moment 23.0 volf_cores None 0.14
951sld_poly
952
953-2
954
9551.5e-6
956
957sld_solv
958
959-2
960
9616.3e-6
962
963background
964
965cm-1
966
9670.0
968
969
970
971REFERENCE
972
973S. King, P. Griffiths, J. Hone, and T. Cosgrove, "SANS from Adsorbed
974Polymer Lyaers", Macromol. Symp. 190, 33-42 (2002).
975
976
977
978.. _MultiShellModel:
979
980**2.1.8. MultiShellModel**
981
982This model provides the form factor, P( *q*), for a multi-lamellar
983vesicle with N shells where the core is filled with solvent and the
984shells are interleaved with layers of solvent. For N = 1, this return
985to the vesicle model (above).
986
987
988
989The 2D scattering intensity is the same as 1D, regardless of the
990orientation of the *q* vector which is defined as .
991
992For P*S: The outer most radius (= core_radius + n_pairs * s_thickness
993+ (n_pairs -1) * w_thickness) is used as the effective radius toward
994S(Q) when P(Q)*S(Q) is applied.
995
996The returned value is scaled to units of [cm-1] and the parameters of
997the multi-shell model are the following:
998
999In the parameters, the s_thickness is the shell thickness while the
1000w_thickness is the solvent thickness, and the n_pair is the number of
1001shells.
1002
1003Parameter name
1004
1005Units
1006
1007Default value
1008
1009scale
1010
1011None
1012
10131.0
1014
1015core_radius
1016
1017
1018
101960.0
1020
1021n_pairs
1022
1023None
1024
10252.0
1026
1027core_sld
1028
1029-2
1030
10316.3e-6
1032
1033shell_sld
1034
1035-2
1036
10370.0
1038
1039background
1040
1041cm-1
1042
10430.0
1044
1045s_thickness
1046
1047
1048
104910
1050
1051w_thickness
1052
1053
1054
105510
1056
1057
1058
1059*Figure. 1D plot using the default values (w/200 data point).*
1060
1061Our model uses the form factor calculations implemented in a c-library
1062provided by the NIST Center for Neutron Research (Kline, 2006).
1063
1064REFERENCE
1065
1066Cabane, B., Small Angle Scattering Methods, Surfactant Solutions: New
1067Methods of Investigation, Ch.2, Surfactant Science Series Vol. 22, Ed.
1068R. Zana, M. Dekker, New York, 1987.
1069
1070
1071
1072.. _OnionExpShellModel:
1073
1074**2.1.9. OnionExpShellModel**
1075
1076This model provides the form factor, *P*( *q*), for a multi-shell
1077sphere where the scattering length density (SLD) of the each shell is
1078described by an exponential (linear, or flat-top) function. The form
1079factor is normalized by the volume of the sphere where the SLD is not
1080identical to the SLD of the solvent. We currently provide up to 9
1081shells with this model.
1082
1083The 1D scattering intensity is calculated in the following way:
1084
1085
1086
1087
1088
1089where, for a spherically symmetric particle with a particle density
1090*r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small-
1091Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987],
1092
1093
1094
1095so that
1096
1097
1098
1099
1100
1101
1102
1103
1104Here we assumed that the SLDs of the core and solvent are constant
1105against *r*. Now lets consider the SLD of a shell, *rshelli*,
1106defineded by
1107
1108
1109
1110An example of a possible SLD profile is shown below where
1111sld_in_shelli ( *rin* ) and thick_shelli ( *Dtshelli* ) stand for the
1112SLD of the inner side of the ith shell and the thickness of the ith
1113shell in the equation above, respectively.
1114
1115For \|A\|>0,
1116
1117
1118
1119For A *~ *0 (eg., A = - 0.0001), this function converges to that of
1120the linear SLD profile (ie, *rshelli*( *r*) = *A \*( *r* -
1121*rshelli-1*) / *Dtshelli*) + *B \*), so this case it is equivalent
1122to
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132For A = 0, the exponential function has no dependence on the radius
1133(so that sld_out_shell# ( *rout*) is ignored this case) and becomes
1134flat. We set the constant to *rin* for convenience, and thus the form
1135factor contributed by the shells is
1136
1137
1138
1139
1140
1141In the equation,
1142
1143
1144
1145Finally, the form factor can be calculated by
1146
1147
1148
1149where
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161The 2D scattering intensity is the same as *P*( *q*) above, regardless
1162of the orientation of the *q* vector which is defined as .
1163
1164For P*S: The outer most radius is used as the effective radius toward
1165S(Q) when P(Q)*S(Q) is applied.
1166
1167The returned value is scaled to units of [cm-1] and the parameters of
1168this model are the following:
1169
1170In the parameters, the rad_core represents the core radius (R1) and
1171the thick_shell1 (R2 R1) is the thickness of the shell1, etc.
1172
1173Note: Only No. of shells = 1 is given below.
1174
1175Parameter name
1176
1177Units
1178
1179Default value
1180
1181A_shell1
1182
1183None
1184
11851
1186
1187scale
1188
1189None
1190
11911.0
1192
1193rad_core
1194
1195
1196
1197200
1198
1199thick_shell1
1200
1201
1202
120350
1204
1205sld_core
1206
1207-2
1208
12091.0e-06
1210
1211sld_in_shell1
1212
1213-2
1214
12151.7e-06
1216
1217sld_out_shell1
1218
1219-2
1220
12212.0e-06
1222
1223sld_solv
1224
1225-2
1226
12276.4e-06
1228
1229background
1230
1231cm-1
1232
12330.0
1234
1235
1236
1237*Figure. 1D plot using the default values (w/400 point).*
1238
1239
1240
1241*Figure. SLD profile from the default values.*
1242
1243REFERENCE
1244
1245L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray
1246and Neutron Scattering, Plenum Press, New York, 1987
1247
1248
1249
1250.. _VesicleModel:
1251
1252**2.1.10. VesicleModel**
1253
1254This model provides the form factor, P( *q*), for an unilamellar
1255vesicle. The form factor is normalized by the volume of the shell.
1256
1257The 1D scattering intensity is calculated in the following way
1258(Guinier, 1955):
1259
1260
1261
1262
1263
1264where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total
1265volume, *R1* is the radius of the core, *r2* is the outer radius of the shell, *1* is the scattering length density of
1266the core and the solvent, *2* is the scattering length density of the shell, and *bkg* is the background level. And
1267*J1* = (sin *x *- *x*cos *x*)/ *x*2. The functional form is identical to a "typical" core-shell structure, except that
1268the scattering is normalized by the volume that is contributing to the scattering, namely the volume of the shell alone.
1269Also, the vesicle is best defined in terms of a core radius (= R1) and a shell thickness, t.
1270
1271
1272
1273The 2D scattering intensity is the same as *P*( *q*) above, regardless
1274of the orientation of the *q* vector which is defined as .
1275
1276For P*S: The outer most radius (= radius + thickness) is used as the
1277effective radius toward S(Q) when P(Q)*S(Q) is applied.
1278
1279The returned value is scaled to units of [cm-1] and the parameters of
1280the vesicle model are the following:
1281
1282In the parameters, the radius represents the core radius (R1) and the
1283thickness (R2 R1) is the shell thickness.
1284
1285Parameter name
1286
1287Units
1288
1289Default value
1290
1291scale
1292
1293None
1294
12951.0
1296
1297radius
1298
1299
1300
1301100
1302
1303thickness
1304
1305
1306
130730
1308
1309core_sld
1310
1311-2
1312
13136.3e-6
1314
1315shell_sld
1316
1317-2
1318
13190
1320
1321background
1322
1323cm-1
1324
13250.0
1326
1327
1328
1329*Figure. 1D plot using the default values (w/200 data point).*
1330
1331Our model uses the form factor calculations implemented in a c-library
1332provided by the NIST Center for Neutron Research (Kline, 2006).
1333
1334REFERENCE
1335
1336Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John
1337Wiley and Sons, New York, (1955).
1338
1339
1340
1341.. _SphericalSLDModel:
1342
1343**2.1.11. SphericalSLDModel**
1344
1345Similarly to the OnionExpShellModel, this model provides the form
1346factor, *P*( *q*), for a multi-shell sphere, where the interface
1347between the each neighboring shells can be described by one of the
1348functions including error, power-law, and exponential functions. This
1349model is to calculate the scattering intensity by building a
1350continuous custom SLD profile against the radius of the particle. The
1351SLD profile is composed of a flat core, a flat solvent, a number (up
1352to 9 shells) of flat shells, and the interfacial layers between the
1353adjacent flat shells (or core, and solvent) (See below). Unlike
1354OnionExpShellModel (using an analytical integration), the interfacial
1355layers are sub-divided and numerically integrated assuming each sub-
1356layers are described by a line function. The number of the sub-layer
1357can be given by users by setting the integer values of npts_inter# in
1358GUI. The form factor is normalized by the total volume of the sphere.
1359
1360The 1D scattering intensity is calculated in the following way:
1361
1362
1363
1364
1365
1366where, for a spherically symmetric particle with a particle density
1367*r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small-
1368Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987],
1369
1370
1371
1372so that
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386Here we assumed that the SLDs of the core and solvent are constant
1387against *r*. The SLD at the interface between shells, *rinter_i*, is
1388calculated with a function chosen by an user, where the functions are:
1389
13901) Exp;
1391
1392
1393
13942) Power-Law;
1395
1396
1397
1398
1399
14003) Erf;
1401
1402
1403
1404
1405
1406
1407
1408Then the functions are normalized so that it varies between 0 and 1
1409and they are constrained such that the SLD is continuous at the
1410boundaries of the interface as well as each sub-layers and thus the B
1411and C are determined.
1412
1413Once the *rinter_i* is found at the boundary of the sub-layer of the
1414interface, we can find its contribution to the form factor P(q);
1415
1416
1417
1418
1419
1420
1421
1422where we assume that rho_inter_i (r) can be approximately linear
1423within a sub-layer j.
1424
1425In the equation,
1426
1427
1428
1429Finally, the form factor can be calculated by
1430
1431
1432
1433where
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445The 2D scattering intensity is the same as *P*( *q*) above, regardless
1446of the orientation of the *q* vector which is defined as .
1447
1448For P*S: The outer most radius is used as the effective radius toward
1449S(Q) when P(Q)*S(Q) is applied.
1450
1451The returned value is scaled to units of [cm-1] and the parameters of
1452this model are the following:
1453
1454In the parameters, the rad_core0 represents the core radius (R1).
1455
1456Note: Only No. of shells = 1 is given below.
1457
1458Parameter name
1459
1460Units
1461
1462Default value
1463
1464background
1465
1466cm-1
1467
14680.0
1469
1470npts_inter
1471
147235
1473
1474scale
1475
14761
1477
1478sld_solv
1479
1480-2
1481
14821e-006
1483
1484func_inter1
1485
1486Erf
1487
1488nu_inter
1489
14902.5
1491
1492thick_inter1
1493
1494
1495
149650
1497
1498sld_flat1
1499
1500-2
1501
15024e-006
1503
1504thick_flat1
1505
1506
1507
1508100
1509
1510func_inter0
1511
1512Erf
1513
1514nu_inter0
1515
15162.5
1517
1518rad_core0
1519
1520
1521
152250
1523
1524sld_core0
1525
1526-2
1527
15282.07e-06
1529
1530thick_core0
1531
1532
1533
153450
1535
1536
1537
1538*Figure. 1D plot using the default values (w/400 point).*
1539
1540
1541
1542*Figure. SLD profile from the default values.*
1543
1544REFERENCE
1545
1546L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray
1547and Neutron Scattering, Plenum Press, New York, 1987
1548
1549
1550
1551.. _LinearPearlsModel:
1552
1553**2.1.12. LinearPearlsModel**
1554
1555This model provides the form factor for pearls linearly joined by
1556short strings: N pearls (homogeneous spheres), the radius R and the
1557string segment length (or edge separation) l (= A- 2R)). The A is the
1558center to center pearl separation distance. The thickness of each
1559string is assumed to be negligable.
1560
1561
1562
1563
1564
1565*1.1. Definition*
1566
1567
1568
1569The output of the scattering intensity function for the linearpearls
1570model is given by (Dobrynin, 1996):
1571
1572
1573
1574where the mass mp is (sld(of a pearl) sld(of solvent)) * (volume of
1575the N pearls), V is the total volume.
1576
1577The 2D scattering intensity is the same as P(q) above, regardless of
1578the orientation of the q vector.
1579
1580The returned value is scaled to units of [cm-1] and the parameters are
1581the following:
1582
1583Parameter name
1584
1585Units
1586
1587Default value
1588
1589scale
1590
1591None
1592
15931.0
1594
1595radius
1596
1597
1598
159980.0
1600
1601edge_separation
1602
1603
1604
1605350.0
1606
1607num_pearls
1608
1609(integer)
1610
16113
1612
1613sld_pearl
1614
1615-2
1616
16171e-6
1618
1619sld_solv
1620
1621-2
1622
16236.3e-6
1624
1625background
1626
1627cm-1
1628
16290.0
1630
1631
1632
1633
1634
1635REFERENCE
1636
1637A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, Macromol. 29,
16382974-2979, 1996.
1639
1640
1641
1642.. _PearlNecklaceModel:
1643
1644**2.1.13. PearlNecklaceModel**
1645
1646This model provides the form factor for a pearl necklace composed of
1647two elements: N pearls (homogeneous spheres) freely jointed by M rods
1648(like strings) (with a total mass Mw = M *mr + N * ms, the radius R
1649and the string segment length (or edge separation) l (= A- 2R)). The A
1650is the center to center pearl separation distance.
1651
1652
1653
1654
1655
1656*1.1. Definition*
1657
1658The output of the scattering intensity function for the pearlnecklace
1659model is given by (Schweins, 2004):
1660
1661
1662
1663where
1664
1665,
1666
1667,
1668
1669,
1670
1671,
1672
1673,
1674
1675and
1676
1677.
1678
1679
1680
1681where the mass mi is (sld(of i) sld(of solvent)) * (volume of the N
1682pearls/rods), V is the total volume of the necklace.
1683
1684The 2D scattering intensity is the same as P(q) above, regardless of
1685the orientation of the q vector.
1686
1687The returned value is scaled to units of [cm-1] and the parameters are
1688the following:
1689
1690Parameter name
1691
1692Units
1693
1694Default value
1695
1696scale
1697
1698None
1699
17001.0
1701
1702radius
1703
1704
1705
170680.0
1707
1708edge_separation
1709
1710
1711
1712350.0
1713
1714num_pearls
1715
1716(integer)
1717
17183
1719
1720sld_pearl
1721
1722-2
1723
17241e-6
1725
1726sld_solv
1727
1728-2
1729
17306.3e-6
1731
1732sld_string
1733
1734-2
1735
17361e-6
1737
1738thick_string
1739
1740(=rod diameter)
1741
1742
1743
17442.5
1745
1746background
1747
1748cm-1
1749
17500.0
1751
1752
1753
1754
1755
1756REFERENCE
1757
1758R. Schweins and K. Huber, Particle Scattering Factor of Pearl Necklace
1759Chains, Macromol. Symp., 211, 25-42, 2004.
1760
1761
1762
1763.. _CylinderModel:
1764
1765**2.1.14. CylinderModel**
1766
1767This model provides the form factor for a right circular cylinder with
1768uniform scattering length density. The form factor is normalized by
1769the particle volume.
1770
1771For information about polarised and magnetic scattering, click here_.
1772
1773*1.1. Definition*
1774
1775The output of the 2D scattering intensity function for oriented
1776cylinders is given by (Guinier, 1955):
1777
1778
1779
1780
1781
1782where is the angle between the axis of the cylinder and the q-vector,
1783V is the volume of the cylinder, L is the length of the cylinder, r is
1784the radius of the cylinder, and * (contrast) is the scattering length
1785density difference between the scatterer and the solvent. J1 is the
1786first order Bessel function.
1787
1788To provide easy access to the orientation of the cylinder, we define
1789the axis of the cylinder using two angles theta and phi. Those angles
1790are defined on Figure 2.
1791
1792
1793
1794Figure 2. Definition of the angles for oriented cylinders.
1795
1796
1797
1798Figure. Examples of the angles for oriented pp against the detector
1799plane.
1800
1801For P*S: The 2nd virial coefficient of the cylinder is calculate based
1802on the radius and length values, and used as the effective radius
1803toward S(Q) when P(Q)*S(Q) is applied.
1804
1805The returned value is scaled to units of [cm-1] and the parameters of
1806the cylinder model are the following:
1807
1808Parameter name
1809
1810Units
1811
1812Default value
1813
1814scale
1815
1816None
1817
18181.0
1819
1820radius
1821
1822
1823
182420.0
1825
1826length
1827
1828
1829
1830400.0
1831
1832contrast
1833
1834-2
1835
18363.0e-6
1837
1838background
1839
1840cm-1
1841
18420.0
1843
1844cyl_theta
1845
1846degree
1847
184860
1849
1850cyl_phi
1851
1852degree
1853
185460
1855
1856The output of the 1D scattering intensity function for randomly
1857oriented cylinders is then given by:
1858
1859
1860
1861The *cyl_theta* and *cyl_phi* parameter are not used for the 1D
1862output. Our implementation of the scattering kernel and the 1D
1863scattering intensity use the c-library from NIST.
1864
1865*2.1. Validation of the cylinder model*
1866
1867Validation of our code was done by comparing the output of the 1D
1868model to the output of the software provided by the NIST (Kline,
18692006). Figure 3 shows a comparison of the 1D output of our model and
1870the output of the NIST software.
1871
1872In general, averaging over a distribution of orientations is done by
1873evaluating the following:
1874
1875
1876
1877where *p(,* *)* is the probability distribution for the orientation
1878and *P0(q,* *)* is the scattering intensity for the fully oriented
1879system. Since we have no other software to compare the implementation
1880of the intensity for fully oriented cylinders, we can compare the
1881result of averaging our 2D output using a uniform distribution *p(,*
1882*)* = 1.0. Figure 4 shows the result of such a cross-check.
1883
1884
1885
1886
1887
1888Figure 3: Comparison of the DANSE scattering intensity for a cylinder
1889with the output of the NIST SANS analysis software. The parameters
1890were set to: Scale=1.0, Radius=20 , Length=400 , Contrast=3e-6 -2, and
1891Background=0.01 cm -1.
1892
1893
1894
1895
1896
1897
1898
1899Figure 4: Comparison of the intensity for uniformly distributed
1900cylinders calculated from our 2D model and the intensity from the NIST
1901SANS analysis software. The parameters used were: Scale=1.0, Radius=20
1902, Length=400 , Contrast=3e-6 -2, and Background=0.0 cm -1.
1903
1904
1905
1906.. _HollowCylinderModel:
1907
1908**2.1.15. HollowCylinderModel**
1909
1910This model provides the form factor, P( *q*), for a monodisperse
1911hollow right angle circular cylinder (tube) where the form factor is
1912normalized by the volume of the tube:
1913
1914P(q) = scale*<f^2>/Vshell+background where the averaging < > id
1915applied only for the 1D calculation. The inside and outside of the
1916hollow cylinder have the same SLD.
1917
1918The 1D scattering intensity is calculated in the following way
1919(Guinier, 1955):
1920
1921
1922
1923
1924
1925where *scale* is a scale factor, *J1* is the 1st order Bessel
1926function, *J1* (x)= (sin *x *- *x*cos *x*)/ *x*2.
1927
1928
1929
1930To provide easy access to the orientation of the core-shell cylinder,
1931we define the axis of the cylinder using two angles and . Similarly to
1932the case of the cylinder, those angles are defined on Figure 2 in
1933Cylinder Model.
1934
1935For P*S: The 2nd virial coefficient of the solid cylinder is calculate
1936based on the (radius) and 2(length) values, and used as the effective
1937radius toward S(Q) when P(Q)*S(Q) is applied.
1938
1939In the parameters, the contrast represents SLD (shell) - SLD (solvent)
1940and the radius = Rhell while core_radius = Rcore.
1941
1942
1943
1944Parameter name
1945
1946Units
1947
1948Default value
1949
1950scale
1951
1952None
1953
19541.0
1955
1956radius
1957
1958
1959
196030
1961
1962length
1963
1964
1965
1966400
1967
1968core_radius
1969
1970
1971
197220
1973
1974sldCyl
1975
1976-2
1977
19786.3e-6
1979
1980sldSolv
1981
1982-2
1983
19845e-06
1985
1986background
1987
1988cm-1
1989
19900.01
1991
1992
1993
1994*Figure. 1D plot using the default values (w/1000 data point).*
1995
1996Our model uses the form factor calculations implemented in a c-library
1997provided by the NIST Center for Neutron Research (Kline, 2006).
1998
1999
2000
2001Figure. Definition of the angles for the oriented HollowCylinderModel.
2002
2003
2004
2005Figure. Examples of the angles for oriented pp against the detector
2006plane.
2007
2008REFERENCE
2009
2010Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle
2011X-Ray and Neutron Scattering", Plenum Press, New York, (1987).
2012
2013
2014
2015.. _CappedCylinderModel:
2016
2017**2.1.16 CappedCylinderModel**
2018
2019Calculates the scattering from a cylinder with spherical section end-
2020caps(This model simply becomes the ConvexLensModel when the length of
2021the cylinder L = 0. That is, a sphereocylinder with end caps that have
2022a radius larger than that of the cylinder and the center of the end
2023cap radius lies within the cylinder. See the diagram for the details
2024of the geometry and restrictions on parameter values.
2025
2026
2027
2028*1.1. Definition*
2029
2030The returned value is scaled to units of [cm-1sr-1], absolute scale.
2031
2032The Capped Cylinder geometry is defined as:
2033
2034
2035
2036r is the radius of the cylinder. All other parameters are as defined
2037in the diagram. Since the end cap radius R >= r and by definition for
2038this geometry h < 0, h is then defined by r and R as:
2039
2040h = -1*sqrt(R^2 - r^2).
2041
2042The scattering intensity I(q) is calculated as:
2043
2044
2045
2046where the amplitude A(q) is given as:
2047
2048
2049
2050The < > brackets denote an average of the structure over all
2051orientations. <A^2(q)> is then the form factor, P(q). The scale factor
2052is equivalent to the volume fraction of cylinders, each of volume, V.
2053Contrast is the difference of scattering length densities of the
2054cylinder and the surrounding solvent.
2055
2056The volume of the Capped Cylinder is:
2057
2058(with h as a positive value here)
2059
2060
2061
2062and its radius of gyration:
2063
2064
2065
2066The necessary conditions of R >= r is not enforced in the model. It is
2067up to you to restrict this during analysis.
2068
2069REFERENCES
2070
2071H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.
2072
2073H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda
2074and errata)
2075
2076TEST DATASET
2077
2078This example dataset is produced by running the Macro
2079CappedCylinder(), using 200 data points, qmin = 0.001 -1, qmax = 0.7
2080-1 and the above default values.
2081
2082Parameter name
2083
2084Units
2085
2086Default value
2087
2088scale
2089
2090None
2091
20921.0
2093
2094len_cyl
2095
2096
2097
2098400.0
2099
2100rad_cap
2101
2102
2103
210440.0
2105
2106rad_cyl
2107
2108
2109
211020.0
2111
2112sld_capcyl
2113
2114-2
2115
21161.0e-006
2117
2118sld_solv
2119
2120-2
2121
21226.3e-006
2123
2124background
2125
21260
2127
2128
2129
2130*Figure. 1D plot using the default values (w/256 data point).*
2131
2132For 2D data: The 2D scattering intensity is calculated similar to the
21332D cylinder model. At the theta = 45 deg and phi =0 deg with default
2134values for other parameters,
2135
2136
2137
2138*Figure. 2D plot (w/(256X265) data points).*
2139
2140
2141
2142Figure. Definition of the angles for oriented 2D cylinders.
2143
2144
2145
2146Figure. Examples of the angles for oriented pp against the detector
2147plane.
2148
2149
2150
2151.. _CoreShellCylinderModel:
2152
2153**2.1.17. CoreShellCylinderModel***
2154
2155This model provides the form factor for a circular cylinder with a
2156core-shell scattering length density profile. The form factor is
2157normalized by the particle volume.
2158
2159*1.1. Definition*
2160
2161The output of the 2D scattering intensity function for oriented core-
2162shell cylinders is given by (Kline, 2006):
2163
2164
2165
2166
2167
2168
2169
2170where is the angle between the axis of the cylinder and the q-vector,
2171*Vs* is the volume of the outer shell (i.e. the total volume,
2172including the shell), *Vc* is the volume of the core, *L* is the
2173length of the core, *r* is the radius of the core, *t* is the
2174thickness of the shell, *c* is the scattering length density of the
2175core, *s* is the scattering length density of the shell, solv is the
2176scattering length density of the solvent, and *bkg* is the background
2177level. The outer radius of the shell is given by *r+t* and the total
2178length of the outer shell is given by *L+2t*. J1 is the first order
2179Bessel function.
2180
2181
2182
2183To provide easy access to the orientation of the core-shell cylinder,
2184we define the axis of the cylinder using two angles and . Similarly to
2185the case of the cylinder, those angles are defined on Figure 2 in
2186Cylinder Model.
2187
2188For P*S: The 2nd virial coefficient of the solid cylinder is calculate
2189based on the (radius+thickness) and 2(length +thickness) values, and
2190used as the effective radius toward S(Q) when P(Q)*S(Q) is applied.
2191
2192The returned value is scaled to units of [cm-1] and the parameters of
2193the core-shell cylinder model are the following:
2194
2195Parameter name
2196
2197Units
2198
2199Default value
2200
2201scale
2202
2203None
2204
22051.0
2206
2207radius
2208
2209
2210
221120.0
2212
2213thickness
2214
2215
2216
221710.0
2218
2219length
2220
2221
2222
2223400.0
2224
2225core_sld
2226
2227-2
2228
22291e-6
2230
2231shell_sld
2232
2233-2
2234
22354e-6
2236
2237solvent_sld
2238
2239-2
2240
22411e-6
2242
2243background
2244
2245cm-1
2246
22470.0
2248
2249axis_theta
2250
2251degree
2252
225390
2254
2255axis_phi
2256
2257degree
2258
22590.0
2260
2261The output of the 1D scattering intensity function for randomly
2262oriented cylinders is then given by the equation above.
2263
2264The *axis_theta* and axis *_phi* parameters are not used for the 1D
2265output. Our implementation of the scattering kernel and the 1D
2266scattering intensity use the c-library from NIST.
2267
2268*2.1. Validation of the core-shell cylinder model*
2269
2270Validation of our code was done by comparing the output of the 1D
2271model to the output of the software provided by the NIST (Kline,
22722006). Figure 8 shows a comparison of the 1D output of our model and
2273the output of the NIST software.
2274
2275Averaging over a distribution of orientation is done by evaluating the
2276equation above. Since we have no other software to compare the
2277implementation of the intensity for fully oriented core-shell
2278cylinders, we can compare the result of averaging our 2D output using
2279a uniform distribution *p(,* *)* = 1.0. Figure 9 shows the result of
2280such a cross-check.
2281
2282
2283
2284
2285
2286Figure 8: Comparison of the DANSE scattering intensity for a core-
2287shell cylinder with the output of the NIST SANS analysis software. The
2288parameters were set to: Scale=1.0, Radius=20 , Thickness=10 ,
2289Length=400 , Core_sld=1e-6 -2, Shell_sld=4e-6 -2, Solvent_sld=1e-6 -2,
2290and Background=0.01 cm -1.
2291
2292
2293
2294
2295
2296
2297
2298Figure 9: Comparison of the intensity for uniformly distributed core-
2299shell cylinders calculated from our 2D model and the intensity from
2300the NIST SANS analysis software. The parameters used were: Scale=1.0,
2301Radius=20 , Thickness=10 , Length=400 , Core_sld=1e-6 -2,
2302Shell_sld=4e-6 -2, Solvent_sld=1e-6 -2, and Background=0.0 cm -1.
2303
2304
2305
2306Figure. Definition of the angles for oriented core-shell cylinders.
2307
2308
2309
2310Figure. Examples of the angles for oriented pp against the detector
2311plane.
2312
23132013/11/26 - Description reviewed by Heenan, R.
2314
2315
2316
2317.. _EllipticalCylinderModel:
2318
2319**2.1.18 EllipticalCylinderModel**
2320
2321This function calculates the scattering from an oriented elliptical
2322cylinder.
2323
2324*For 2D (orientated system):*
2325
2326The angles theta and phi define the orientation of the axis of the
2327cylinder. The angle psi is defined as the orientation of the major
2328axis of the ellipse with respect to the vector Q. A gaussian
2329poydispersity can be added to any of the orientation angles, and also
2330for the minor radius and the ratio of the ellipse radii.
2331
2332
2333
2334*Figure. a= r_minor and * *n= r_ratio (i.e., r_major/r_minor).*
2335
2336The function calculated is:
2337
2338
2339
2340with the functions:
2341
2342
2343
2344
2345
2346
2347
2348and the angle psi is defined as the orientation of the major axis of
2349the ellipse with respect to the vector Q.
2350
2351*For 1D (no preferred orientation):*
2352
2353The form factor is averaged over all possible orientation before
2354normalized by the particle volume: P(q) = scale*<f^2>/V .
2355
2356The returned value is scaled to units of [cm-1].
2357
2358To provide easy access to the orientation of the elliptical, we define
2359the axis of the cylinder using two angles , andY. Similarly to the
2360case of the cylinder, those angles, and , are defined on Figure 2 of
2361CylinderModel. The angle Y is the rotational angle around its own
2362long_c axis against the q plane. For example, Y = 0 when the r_minor
2363axis is parallel to the x-axis of the detector.
2364
2365All angle parameters are valid and given only for 2D calculation
2366(Oriented system).
2367
2368
2369
2370*Figure. Definition of angels for 2D*.
2371
2372
2373
2374Figure. Examples of the angles for oriented elliptical cylinders
2375
2376against the detector plane.
2377
2378*For P*S*: The 2nd virial coefficient of the solid cylinder is
2379calculate based on the averaged radius (=sqrt(r_minor^2*r_ratio)) and
2380length values, and used as the effective radius toward S(Q) when
2381P(Q)*S(Q) is applied.
2382
2383Parameter name
2384
2385Units
2386
2387Default value
2388
2389scale
2390
2391None
2392
23931.0
2394
2395r_minor
2396
2397
2398
239920.0
2400
2401r_ratio
2402
2403
2404
24051.5
2406
2407length
2408
2409
2410
2411400.0
2412
2413sldCyl
2414
2415-2
2416
24174e-6
2418
2419sldSolv
2420
2421-2
2422
24231e-006
2424
2425background
2426
24270
2428
2429
2430
2431*Figure. 1D plot using the default values (w/1000 data point).*
2432
2433*Validation of the elliptical cylinder 2D model*
2434
2435Validation of our code was done by comparing the output of the 1D
2436calculation to the angular average of the output of 2 D calculation
2437over all possible angles. The Figure below shows the comparison where
2438the solid dot refers to averaged 2D while the line represents the
2439result of 1D calculation (for 2D averaging, 76, 180, 76 points are
2440taken for the angles of theta, phi, and psi respectively).
2441
2442
2443
2444*Figure. Comparison between 1D and averaged 2D.*
2445
2446
2447
2448In the 2D average, more binning in the angle phi is necessary to get
2449the proper result. The following figure shows the results of the
2450averaging by varying the number of bin over angles.
2451
2452
2453
2454*Figure. The intensities averaged from 2D over different number *
2455
2456*of points of binning of angles.*
2457
2458REFERENCE
2459
2460L. A. Feigin and D. I. Svergun Structure Analysis by Small-Angle X-Ray
2461and Neutron Scattering, Plenum, New York, (1987).
2462
2463
2464
2465.. _FlexibleCylinderModel:
2466
2467**2.1.19. FlexibleCylinderModel**
2468
2469This model provides the form factor, P( *q*), for a flexible cylinder
2470where the form factor is normalized by the volume of the cylinder:
2471Inter-cylinder interactions are NOT included. P(q) =
2472scale*<f^2>/V+background where the averaging < > is applied over all
2473orientation for 1D. The 2D scattering intensity is the same as 1D,
2474regardless of the orientation of the *q* vector which is defined as .
2475
2476
2477
2478The chain of contour length, L, (the total length) can be described a
2479chain of some number of locally stiff segments of length lp. The
2480persistence length,lp, is the length along the cylinder over which the
2481flexible cylinder can be considered a rigid rod. The Kuhn length (b =
24822*lp) is also used to describe the stiffness of a chain. The returned
2483value is in units of [cm-1], on absolute scale. In the parameters, the
2484sldCyl and sldSolv represent SLD (chain/cylinder) and SLD (solvent)
2485respectively.
2486
2487
2488
2489
2490
2491Parameter name
2492
2493Units
2494
2495Default value
2496
2497scale
2498
2499None
2500
25011.0
2502
2503radius
2504
2505
2506
250720
2508
2509length
2510
2511
2512
25131000
2514
2515sldCyl
2516
2517-2
2518
25191e-06
2520
2521sldSolv
2522
2523-2
2524
25256.3e-06
2526
2527background
2528
2529cm-1
2530
25310.01
2532
2533kuhn_length
2534
2535
2536
2537100
2538
2539
2540
2541*Figure. 1D plot using the default values (w/1000 data point).*
2542
2543Our model uses the form factor calculations implemented in a c-library
2544provided by the NIST Center for Neutron Research (Kline, 2006):
2545
2546From the reference, "Method 3 With Excluded Volume" is used. The model
2547is a parametrization of simulations of a discrete representation of
2548the worm-like chain model of Kratky and Porod applied in the
2549pseudocontinuous limit. See equations (13,26-27) in the original
2550reference for the details.
2551
2552REFERENCE
2553
2554Pedersen, J. S. and P. Schurtenberger (1996). Scattering functions of
2555semiflexible polymers with and without excluded volume effects.
2556Macromolecules 29: 7602-7612.
2557
2558Correction of the formula can be found in:
2559
2560Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating
2561Intermicellar Interactions in the Fitting of SANS Data from Cationic
2562Wormlike Micelles" Langmuir, August 2006.
2563
2564
2565
2566.. _FlexCylEllipXModel:
2567
2568**2.1.20 FlexCylEllipXModel**
2569
2570*Flexible Cylinder with Elliptical Cross-Section: *Calculates the
2571form factor for a flexible cylinder with an elliptical cross section
2572and a uniform scattering length density. The non-negligible diameter
2573of the cylinder is included by accounting for excluded volume
2574interactions within the walk of a single cylinder. The form factor is
2575normalized by the particle volume such that P(q) = scale*<f^2>/Vol +
2576bkg, where < > is an average over all possible orientations of the
2577flexible cylinder.
2578
2579*1.1. Definition*
2580
2581The function calculated is from the reference given below. From that
2582paper, "Method 3 With Excluded Volume" is used. The model is a
2583parameterization of simulations of a discrete representation of the
2584worm-like chain model of Kratky and Porod applied in the pseudo-
2585continuous limit. See equations (13, 26-27) in the original reference
2586for the details.
2587
2588NOTE: there are several typos in the original reference that have been
2589corrected by WRC. Details of the corrections are in the reference
2590below.
2591
2592- Equation (13): the term (1-w(QR)) should swap position with w(QR)
2593
2594- Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and solved analytically. The results were converted to code.
2595
2596- Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of max(a3*b/sqrt(RgSquare),3)
2597
2598- The scattering function is negative for a range of parameter values and q-values that are experimentally accessible. A correction function has been added to give the proper behavior.
2599
2600
2601
2602The chain of contour length, L, (the total length) can be described a
2603chain of some number of locally stiff segments of length lp. The
2604persistence length, lp, is the length along the cylinder over which
2605the flexible cylinder can be considered a rigid rod. The Kuhn length
2606(b) used in the model is also used to describe the stiffness of a
2607chain, and is simply b = 2*lp.
2608
2609The cross section of the cylinder is elliptical, with minor radius a.
2610The major radius is larger, so of course, the axis ratio (parameter 4)
2611must be greater than one. Simple constraints should be applied during
2612curve fitting to maintain this inequality.
2613
2614The returned value is in units of [cm-1], on absolute scale.
2615
2616The sldCyl = SLD (chain), sldSolv = SLD (solvent). The scale, and the
2617contrast are both multiplicative factors in the model and are
2618perfectly correlated. One or both of these parameters must be held
2619fixed during model fitting.
2620
2621If the scale is set equal to the particle volume fraction, f, the
2622returned value is the scattered intensity per unit volume, I(q) =
2623f*P(q). However, no inter-particle interference effects are included
2624in this calculation.
2625
2626For 2D data: The 2D scattering intensity is calculated in the same way
2627as 1D, where the *q* vector is defined as .
2628
2629REFERENCE
2630
2631Pedersen, J. S. and P. Schurtenberger (1996). Scattering functions of
2632semiflexible polymers with and without excluded volume effects.
2633Macromolecules 29: 7602-7612.
2634
2635Corrections are in:
2636
2637Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating
2638Intermicellar Interactions in the Fitting of SANS Data from Cationic
2639Wormlike Micelles" Langmuir, August 2006.
2640
2641
2642
2643TEST DATASET
2644
2645This example dataset is produced by running the Macro
2646FlexCylEllipXModel, using 200 data points, qmin = 0.001 -1, qmax = 0.7
2647-1 and the default values below.
2648
2649Parameter name
2650
2651Units
2652
2653Default value
2654
2655axis_ratio
2656
26571.5
2658
2659background
2660
2661cm-1
2662
26630.0001
2664
2665Kuhn_length
2666
2667
2668
2669100
2670
2671(Contour) length
2672
2673
2674
26751e+3
2676
2677radius
2678
2679
2680
268120.0
2682
2683scale
2684
26851.0
2686
2687sldCyl
2688
2689-2
2690
26911e-6
2692
2693sldSolv
2694
2695-2
2696
26976.3e-6
2698
2699
2700
2701*Figure. 1D plot using the default values (w/200 data points).*
2702
2703
2704
2705.. _CoreShellBicelleModel:
2706
2707**2.1.21 CoreShellBicelleModel**
2708
2709This model provides the form factor for a circular cylinder with a
2710core-shell scattering length density profile. The form factor is
2711normalized by the particle volume. This model is a more general case
2712of core-shell cylinder model (seeabove and reference below) in that
2713the parameters of the shell are separated into a face-shell and a rim-
2714shell so that users can set different values of the thicknesses and
2715slds.
2716
2717
2718
2719The returned value is scaled to units of [cm-1] and the parameters of
2720the core-shell cylinder model are the following:
2721
2722Parameter name
2723
2724Units
2725
2726Default value
2727
2728scale
2729
2730None
2731
27321.0
2733
2734radius
2735
2736
2737
273820.0
2739
2740rim_thick
2741
2742
2743
274410.0
2745face_thick 10.0
2746length
2747
2748
2749
2750400.0
2751
2752core_sld
2753
2754-2
2755
27561e-6
2757
2758rim_sld
2759
2760-2
2761
27624e-6
2763face_sld -2 4e-6
2764solvent_sld
2765
2766-2
2767
27681e-6
2769
2770background
2771
2772cm-1
2773
27740.0
2775
2776axis_theta
2777
2778degree
2779
278090
2781
2782axis_phi
2783
2784degree
2785
27860.0
2787
2788The output of the 1D scattering intensity function for randomly
2789oriented cylinders is then given by the equation above.
2790
2791The *axis_theta* and axis *_phi* parameters are not used for the 1D
2792output. Our implementation of the scattering kernel and the 1D
2793scattering intensity use the c-library from NIST.
2794
2795
2796
2797
2798
2799*Figure. 1D plot using the default values (w/200 data point).*
2800
2801
2802
2803Figure. Definition of the angles for the oriented Core-Shell Cylinder
2804Bicelle Model.
2805
2806
2807
2808Figure. Examples of the angles for oriented pp against the detector
2809plane.
2810
2811REFERENCE
2812Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle
2813X-Ray and Neutron Scattering", Plenum Press, New York, (1987).
2814
2815
2816
2817.. _BarBellModel:
2818
2819**2.1.22. BarBellModel**
2820
2821Calculates the scattering from a barbell-shaped cylinder (This model
2822simply becomes the DumBellModel when the length of the cylinder, L, is
2823set to zero). That is, a sphereocylinder with spherical end caps that
2824have a radius larger than that of the cylinder and the center of the
2825end cap radius lies outside of the cylinder All dimensions of the
2826barbell are considered to be monodisperse. See the diagram for the
2827details of the geometry and restrictions on parameter values.
2828
2829*1.1. Definition*
2830
2831The returned value is scaled to units of [cm-1sr-1], absolute scale.
2832
2833The barbell geometry is defined as:
2834
2835
2836
2837r is the radius of the cylinder. All other parameters are as defined
2838in the diagram. Since the end cap radius R >= r and by definition for
2839this geometry h > 0, h is then defined by r and R as:
2840
2841h = sqrt(R^2 - r^2).
2842
2843The scattering intensity I(q) is calculated as:
2844
2845
2846
2847where the amplitude A(q) is given as:
2848
2849
2850
2851
2852
2853
2854
2855The < > brackets denote an average of the structure over all
2856orientations. <A^2(q)> is then the form factor, P(q). The scale factor
2857is equivalent to the volume fraction of cylinders, each of volume, V.
2858Contrast is the difference of scattering length densities of the
2859cylinder and the surrounding solvent.
2860
2861The volume of the barbell is:
2862
2863
2864
2865and its radius of gyration:
2866
2867
2868
2869The necessary conditions of R >= r is not enforced in the model. It is
2870up to you to restrict this during analysis.
2871
2872REFERENCES
2873
2874H. Kaya, J. Appl. Cryst. (2004) 37, 223-230.
2875
2876H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda
2877and errata)
2878
2879TEST DATASET
2880
2881This example dataset is produced by running the Macro PlotBarbell(),
2882using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above
2883default values.
2884
2885Parameter name
2886
2887Units
2888
2889Default value
2890
2891scale
2892
2893None
2894
28951.0
2896
2897len_bar
2898
2899
2900
2901400.0
2902
2903rad_bar
2904
2905
2906
290720.0
2908
2909rad_bell
2910
2911
2912
291340.0
2914
2915sld_barbell
2916
2917-2
2918
29191.0e-006
2920
2921sld_solv
2922
2923-2
2924
29256.3e-006
2926
2927background
2928
29290
2930
2931
2932
2933*Figure. 1D plot using the default values (w/256 data point).*
2934
2935For 2D data: The 2D scattering intensity is calculated similar to the
29362D cylinder model. At the theta = 45 deg and phi =0 deg with default
2937values for other parameters,
2938
2939
2940
2941*Figure. 2D plot (w/(256X265) data points).*
2942
2943
2944
2945
2946
2947Figure. Examples of the angles for oriented pp against the detector
2948plane.
2949
2950Figure. Definition of the angles for oriented 2D barbells.
2951
2952
2953
2954.. _StackedDisksModel:
2955
2956**2.1.23. StackedDisksModel**
2957
2958This model provides the form factor, P( *q*), for stacked discs
2959(tactoids) with a core/layer structure where the form factor is
2960normalized by the volume of the cylinder. Assuming the next neighbor
2961distance (d-spacing) in a stack of parallel discs obeys a Gaussian
2962distribution, a structure factor S(q) proposed by Kratky and Porod in
29631949 is used in this function. Note that the resolution smearing
2964calculation uses 76 Gauss quadrature points to properly smear the
2965model since the function is HIGHLY oscillatory, especially around the
2966q-values that correspond to the repeat distance of the layers.
2967
2968The 2D scattering intensity is the same as 1D, regardless of the
2969orientation of the *q* vector which is defined as .
2970
2971
2972
2973
2974
2975
2976
2977The returned value is in units of [cm-1 sr-1], on absolute scale.
2978
2979The scattering intensity I(q) is:
2980
2981
2982
2983where the contrast,
2984
2985
2986
2987N is the number of discs per unit volume, ais the angle between the
2988axis of the disc and q, and Vt and Vc are the total volume and the
2989core volume of a single disc, respectively.
2990
2991
2992
2993
2994
2995
2996
2997where d = thickness of the layer (layer_thick), 2h= core thickness
2998(core_thick), and R = radius of the disc (radius).
2999
3000
3001
3002where n = the total number of the disc stacked (n_stacking), D=the
3003next neighbor center to cent distance (d-spacing), and sD= the
3004Gaussian standard deviation of the d-spacing (sigma_d).
3005
3006To provide easy access to the orientation of the stackeddisks, we
3007define the axis of the cylinder using two angles and . Similarly to
3008the case of the cylinder, those angles are defined on Figure 2 of
3009CylinderModel.
3010
3011For P*S: The 2nd virial coefficient of the solid cylinder is calculate
3012based on the (radius) and length = n_stacking*(core_thick
3013+2*layer_thick) values, and used as the effective radius toward S(Q)
3014when P(Q)*S(Q) is applied.
3015
3016Parameter name
3017
3018Units
3019
3020Default value
3021
3022background
3023
3024cm-1
3025
30260.001
3027
3028core_sld
3029
3030-2
3031
30324e-006
3033
3034core_thick
3035
3036
3037
303810
3039
3040layer_sld
3041
3042-2
3043
30440
3045
3046layer_thick
3047
3048
3049
305015
3051
3052n_stacking
3053
30541
3055
3056radius
3057
3058
3059
30603e+003
3061
3062scale
3063
30640.01
3065
3066sigma_d
3067
30680
3069
3070solvent_sld
3071
3072-2
3073
30745e-006
3075
3076
3077
3078*Figure. 1D plot using the default values (w/1000 data point).*
3079
3080
3081
3082Figure. Examples of the angles for oriented stackeddisks against the
3083detector plane.
3084
3085
3086
3087Figure. Examples of the angles for oriented pp against the detector
3088plane.
3089
3090Our model uses the form factor calculations implemented in a c-library
3091provided by the NIST Center for Neutron Research (Kline, 2006):
3092
3093REFERENCE
3094
3095Guinier, A. and Fournet, G., "Small-Angle Scattering of X-Rays", John
3096Wiley and Sons, New York, 1955.
3097
3098Kratky, O. and Porod, G., J. Colloid Science, 4, 35, 1949.
3099
3100Higgins, J.S. and Benoit, H.C., "Polymers and Neutron Scattering",
3101Clarendon, Oxford, 1994.
3102
3103
3104
3105.. _PringleModel:
3106
3107**2.1.24. PringleModel**
3108
3109This model provides the form factor, P( *q*), for a 'pringle' or
3110'saddle-shaped' object (a hyperbolic paraboloid).
3111
3112
3113
3114The returned value is in units of [cm-1], on absolute scale.
3115
3116The form factor calculated is:
3117
3118
3119
3120where
3121
3122
3123
3124
3125
3126The parameters of the model and a plot comparing the pringle model
3127with the equivalent cylinder are shown below.
3128
3129Parameter name
3130
3131Units
3132
3133Default value
3134
3135background
3136
3137cm-1
3138
31390.0
3140
3141alpha
3142
3143
3144
31450.001
3146
3147beta
3148
3149
3150
31510.02
3152
3153radius
3154
315560
3156
3157scale
3158
3159
3160
31611
3162
3163sld_pringle
3164
3165-2
3166
31671e-006
3168
3169sld_solvent
3170
3171-2
3172
31736.3e-006
3174
3175thickness
3176
3177
3178
317910
3180
3181
3182
3183*Figure. 1D plot using the default values (w/150 data point).*
3184
3185REFERENCE
3186
3187S. Alexandru Rautu, Private Communication.
3188
3189
3190
3191.. _EllipsoidModel:
3192
3193**2.1.25. EllipsoidModel**
3194
3195This model provides the form factor for an ellipsoid (ellipsoid of
3196revolution) with uniform scattering length density. The form factor is
3197normalized by the particle volume.
3198
3199*1.1. Definition*
3200
3201The output of the 2D scattering intensity function for oriented
3202ellipsoids is given by (Feigin, 1987):
3203
3204
3205
3206
3207
3208
3209
3210where is the angle between the axis of the ellipsoid and the q-vector,
3211V is the volume of the ellipsoid, Ra is the radius along the rotation
3212axis of the ellipsoid, Rb is the radius perpendicular to the rotation
3213axis of the ellipsoid and * (contrast) is the scattering length
3214density difference between the scatterer and the solvent.
3215
3216To provide easy access to the orientation of the ellipsoid, we define
3217the rotation axis of the ellipsoid using two angles and . Similarly to
3218the case of the cylinder, those angles are defined on Figure 2. For
3219the ellipsoid, is the angle between the rotation axis and the z-axis.
3220
3221For P*S: The 2nd virial coefficient of the solid ellipsoid is
3222calculate based on the radius_a and radius_b values, and used as the
3223effective radius toward S(Q) when P(Q)*S(Q) is applied.
3224
3225The returned value is scaled to units of [cm-1] and the parameters of
3226the ellipsoid model are the following:
3227
3228Parameter name
3229
3230Units
3231
3232Default value
3233
3234scale
3235
3236None
3237
32381.0
3239
3240radius_a (polar)
3241
3242
3243
324420.0
3245
3246radius_b (equatorial)
3247
3248
3249
3250400.0
3251
3252sldEll
3253
3254-2
3255
32564.0e-6
3257
3258sldSolv
3259
3260-2
3261
32621.0e-6
3263
3264background
3265
3266cm-1
3267
32680.0
3269
3270axis_theta
3271
3272degree
3273
327490
3275
3276axis_phi
3277
3278degree
3279
32800.0
3281
3282
3283
3284The output of the 1D scattering intensity function for randomly
3285oriented ellipsoids is then given by the equation above.
3286
3287The *axis_theta* and axis *_phi* parameters are not used for the 1D
3288output. Our implementation of the scattering kernel and the 1D
3289scattering intensity use the c-library from NIST.
3290
3291
3292
3293Figure. The angles for oriented ellipsoid
3294
3295*2.1. Validation of the ellipsoid model*
3296
3297Validation of our code was done by comparing the output of the 1D
3298model to the output of the software provided by the NIST (Kline,
32992006). Figure 5 shows a comparison of the 1D output of our model and
3300the output of the NIST software.
3301
3302Averaging over a distribution of orientation is done by evaluating the
3303equation above. Since we have no other software to compare the
3304implementation of the intensity for fully oriented ellipsoids, we can
3305compare the result of averaging our 2D output using a uniform
3306distribution *p(,* *)* = 1.0. Figure 6 shows the result of such a
3307cross-check.
3308
3309
3310
3311The discrepancy above q=0.3 -1 is due to the way the form factors are
3312calculated in the c-library provided by NIST. A numerical integration
3313has to be performed to obtain P(q) for randomly oriented particles.
3314The NIST software performs that integration with a 76-point Gaussian
3315quadrature rule, which will become imprecise at high q where the
3316amplitude varies quickly as a function of q. The DANSE result shown
3317has been obtained by summing over 501 equidistant points in . Our
3318result was found to be stable over the range of q shown for a number
3319of points higher than 500.
3320
3321* *
3322
3323Figure 5: Comparison of the DANSE scattering intensity for an
3324ellipsoid with the output of the NIST SANS analysis software. The
3325parameters were set to: Scale=1.0, Radius_a=20 , Radius_b=400 ,
3326
3327Contrast=3e-6 -2, and Background=0.01 cm -1.
3328
3329
3330
3331
3332
3333Figure 6: Comparison of the intensity for uniformly distributed
3334ellipsoids calculated from our 2D model and the intensity from the
3335NIST SANS analysis software. The parameters used were: Scale=1.0,
3336Radius_a=20 , Radius_b=400 , Contrast=3e-6 -2, and Background=0.0 cm
3337-1.
3338
3339
3340
3341.. _CoreShellEllipsoidModel:
3342
3343**2.1.26. CoreShellEllipsoidModel**
3344
3345This model provides the form factor, P( *q*), for a core shell
3346ellipsoid (below) where the form factor is normalized by the volume of
3347the cylinder. P(q) = scale*<f^2>/V+background where the volume V=
33484pi/3*rmaj*rmin2 and the averaging < > is applied over all orientation
3349for 1D.
3350
3351
3352
3353The returned value is in units of [cm-1], on absolute scale.
3354
3355The form factor calculated is:
3356
3357
3358
3359
3360
3361
3362
3363To provide easy access to the orientation of the coreshell ellipsoid,
3364we define the axis of the solid ellipsoid using two angles , .
3365Similarly to the case of the cylinder, those angles, and , are defined
3366on Figure 2 of CylinderModel.
3367
3368The contrast is defined as SLD(core) SLD(shell) or SLD(shell solvent).
3369In the parameters, equat_core = equatorial core radius, polar_core =
3370polar core radius, equat_shell = rmin (or equatorial outer radius),
3371and polar_shell = = rmaj (or polar outer radius).
3372
3373For P*S: The 2nd virial coefficient of the solid ellipsoid is
3374calculate based on the radius_a (= polar_shell) and radius_b (=
3375equat_shell) values, and used as the effective radius toward S(Q) when
3376P(Q)*S(Q) is applied.
3377
3378
3379
3380Parameter name
3381
3382Units
3383
3384Default value
3385
3386background
3387
3388cm-1
3389
33900.001
3391
3392equat_core
3393
3394
3395
3396200
3397
3398equat_shell
3399
3400
3401
3402250
3403
3404sld_solvent
3405
3406-2
3407
34086e-006
3409
3410ploar_shell
3411
3412
3413
341430
3415
3416ploar_core
3417
3418
3419
342020
3421
3422scale
3423
34241
3425
3426sld_core
3427
3428-2
3429
34302e-006
3431
3432sld_shell
3433
3434-2
3435
34361e-006
3437
3438
3439
3440*Figure. 1D plot using the default values (w/1000 data point).*
3441
3442
3443
3444
3445
3446Figure. The angles for oriented coreshellellipsoid .
3447
3448Our model uses the form factor calculations implemented in a c-library
3449provided by the NIST Center for Neutron Research (Kline, 2006):
3450
3451REFERENCE
3452
3453Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461.
3454
3455Berr, S. J. Phys. Chem., 1987, 91, 4760.
3456
3457
3458
3459.. _TriaxialEllipsoidalModel:
3460
3461**2.1.27. TriaxialEllipsoidModel***
3462
3463This model provides the form factor, P( *q*), for an ellipsoid (below)
3464where all three axes are of different lengths, i.e., Ra =< Rb =< Rc
3465(Note that users should maintains this inequality for the all
3466calculations). P(q) = scale*<f^2>/V+background where the volume V=
34674pi/3*Ra*Rb*Rc, and the averaging < > is applied over all orientation
3468for 1D.
3469
3470
3471
3472
3473
3474The returned value is in units of [cm-1], on absolute scale.
3475
3476The form factor calculated is:
3477
3478
3479
3480To provide easy access to the orientation of the triaxial ellipsoid,
3481we define the axis of the cylinder using the angles , andY. Similarly
3482to the case of the cylinder, those angles, and , are defined on Figure
34832 of CylinderModel. The angle Y is the rotational angle around its own
3484semi_axisC axis against the q plane. For example, Y = 0 when the
3485semi_axisA axis is parallel to the x-axis of the detector.
3486
3487The radius of gyration for this system is Rg2 = (Ra2*Rb2*Rc2)/5. The
3488contrast is defined as SLD(ellipsoid) SLD(solvent). In the parameters,
3489semi_axisA = Ra (or minor equatorial radius), semi_axisB = Rb (or
3490major equatorial radius), and semi_axisC = Rc (or polar radius of the
3491ellipsoid).
3492
3493For P*S: The 2nd virial coefficient of the solid ellipsoid is
3494calculate based on the radius_a (=semi_axisC) and radius_b
3495(=sqrt(semi_axisA* semi_axisB)) values, and used as the effective
3496radius toward S(Q) when P(Q)*S(Q) is applied.
3497
3498
3499
3500
3501
3502Parameter name
3503
3504Units
3505
3506Default value
3507
3508background
3509
3510cm-1
3511
35120.0
3513
3514semi_axisA
3515
3516
3517
351835
3519
3520semi_axisB
3521
3522
3523
3524100
3525
3526semi_axisC
3527
3528
3529
3530400
3531
3532scale
3533
35341
3535
3536sldEll
3537
3538-2
3539
35401.0e-006
3541
3542sldSolv
3543
3544-2
3545
35466.3e-006
3547
3548
3549
3550*Figure. 1D plot using the default values (w/1000 data point).*
3551
3552*Validation of the triaxialellipsoid 2D model*
3553
3554Validation of our code was done by comparing the output of the 1D
3555calculation to the angular average of the output of 2 D calculation
3556over all possible angles. The Figure below shows the comparison where
3557the solid dot refers to averaged 2D while the line represents the
3558result of 1D calculation (for 2D averaging, 76, 180, 76 points are
3559taken for the angles of theta, phi, and psi respectively).
3560
3561
3562
3563*Figure. Comparison between 1D and averaged 2D.*
3564
3565
3566
3567Figure. The angles for oriented ellipsoid.
3568
3569Our model uses the form factor calculations implemented in a c-library
3570provided by the NIST Center for Neutron Research (Kline, 2006):
3571
3572REFERENCE
3573
3574L. A. Feigin and D. I. Svergun Structure Analysis by Small-Angle X-Ray
3575and Neutron Scattering, Plenum, New York, 1987.
3576
3577
3578
3579.. _LamellarModel:
3580
3581**2.1.28. LamellarModel**
3582
3583This model provides the scattering intensity, I( *q*), for a lyotropic
3584lamellar phase where a uniform SLD and random distribution in solution
3585are assumed. The ploydispersion in the bilayer thickness can be
3586applied from the GUI.
3587
3588The scattering intensity I(q) is:
3589
3590
3591
3592The form factor is,
3593
3594
3595
3596where d = bilayer thickness.
3597
3598The 2D scattering intensity is calculated in the same way as 1D, where
3599the *q* vector is defined as .
3600
3601
3602
3603The returned value is in units of [cm-1], on absolute scale. In the
3604parameters, sld_bi = SLD of the bilayer, sld_sol = SLD of the solvent,
3605and bi_thick = the thickness of the bilayer.
3606
3607
3608
3609Parameter name
3610
3611Units
3612
3613Default value
3614
3615background
3616
3617cm-1
3618
36190.0
3620
3621sld_bi
3622
3623-2
3624
36251e-006
3626
3627bi_thick
3628
3629
3630
363150
3632
3633sld_sol
3634
3635-2
3636
36376e-006
3638
3639scale
3640
36411
3642
3643
3644
3645*Figure. 1D plot using the default values (w/1000 data point).*
3646
3647Our model uses the form factor calculations implemented in a c-library
3648provided by the NIST Center for Neutron Research (Kline, 2006):
3649
3650REFERENCE
3651
3652Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
3653
3654also in J. Phys. Chem. B, 105, (2001) 11081-11088.
3655
3656
3657
3658.. _LamellarFFHGModel:
3659
3660**2.1.29. LamellarFFHGModel**
3661
3662This model provides the scattering intensity, I( *q*), for a lyotropic
3663lamellar phase where a random distribution in solution are assumed.
3664The SLD of the head region is taken to be different from the SLD of
3665the tail region.
3666
3667The scattering intensity I(q) is:
3668
3669
3670
3671The form factor is,
3672
3673
3674
3675where dT = tail length (or t_length), dH = heasd thickness (or
3676h_thickness) , DrH = SLD (headgroup) - SLD(solvent), and DrT = SLD
3677(tail) - SLD(headgroup).
3678
3679The 2D scattering intensity is calculated in the same way as 1D, where
3680the *q* vector is defined as .
3681
3682
3683
3684The returned value is in units of [cm-1], on absolute scale. In the
3685parameters, sld_tail = SLD of the tail group, and sld_head = SLD of
3686the head group.
3687
3688
3689
3690Parameter name
3691
3692Units
3693
3694Default value
3695
3696background
3697
3698cm-1
3699
37000.0
3701
3702sld_head
3703
3704-2
3705
37063e-006
3707
3708scale
3709
37101
3711
3712sld_solvent
3713
3714-2
3715
37166e-006
3717
3718h_thickness
3719
3720
3721
372210
3723
3724t_length
3725
3726
3727
372815
3729
3730sld_tail
3731
3732-2
3733
37340
3735
3736
3737
3738*Figure. 1D plot using the default values (w/1000 data point).*
3739
3740Our model uses the form factor calculations implemented in a c-library
3741provided by the NIST Center for Neutron Research (Kline, 2006):
3742
3743REFERENCE
3744
3745Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
3746
3747also in J. Phys. Chem. B, 105, (2001) 11081-11088.
3748
3749
3750
3751.. _LamellarPSModel:
3752
3753**2.1.30. LamellarPSModel**
3754
3755This model provides the scattering intensity ( *form factor* \*
3756*structure factor*), I( *q*), for a lyotropic lamellar phase where a
3757random distribution in solution are assumed.
3758
3759The scattering intensity I(q) is:
3760
3761
3762
3763The form factor is
3764
3765
3766
3767and the structure is
3768
3769
3770
3771where
3772
3773
3774
3775
3776
3777
3778
3779Here d= (repeat) spacing, d = bilayer thickness, the contrast Dr = SLD
3780(headgroup) - SLD(solvent), K=smectic bending elasticity,
3781B=compression modulus, and N = number of lamellar plates (n_plates).
3782
3783Note: When the Caille parameter is greater than approximately 0.8 to
37841.0, the assumptions of the model are incorrect. And due to the
3785complication of the model function, users are responsible to make sure
3786that all the assumptions are handled accurately: see the original
3787reference (below) for more details.
3788
3789The 2D scattering intensity is calculated in the same way as 1D, where
3790the *q* vector is defined as .
3791
3792The returned value is in units of [cm-1], on absolute scale.
3793
3794
3795
3796Parameter name
3797
3798Units
3799
3800Default value
3801
3802background
3803
3804cm-1
3805
38060.0
3807
3808contrast
3809
3810-2
3811
38125e-006
3813
3814scale
3815
38161
3817
3818delta
3819
3820
3821
382230
3823
3824n_plates
3825
382620
3827
3828spacing
3829
3830
3831
3832400
3833
3834caille
3835
3836-2
3837
38380.1
3839
3840
3841
3842*Figure. 1D plot using the default values (w/6000 data point).*
3843
3844Our model uses the form factor calculations implemented in a c-library
3845provided by the NIST Center for Neutron Research (Kline, 2006):
3846
3847REFERENCE
3848
3849Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
3850
3851also in J. Phys. Chem. B, 105, (2001) 11081-11088.
3852
3853
3854
3855.. _LamellarPSHGModel:
3856
3857**2.1.31. LamellarPSHGModel**
3858
3859This model provides the scattering intensity ( *form factor* \*
3860*structure factor*), I( *q*), for a lyotropic lamellar phase where a
3861random distribution in solution are assumed. The SLD of the head
3862region is taken to be different from the SLD of the tail region.
3863
3864The scattering intensity I(q) is:
3865
3866
3867
3868The form factor is,
3869
3870
3871
3872The structure factor is
3873
3874
3875
3876where
3877
3878
3879
3880
3881
3882
3883
3884where dT = tail length (or t_length), dH = heasd thickness (or
3885h_thickness) , DrH = SLD (headgroup) - SLD(solvent), and DrT = SLD
3886(tail) - SLD(headgroup). Here d= (repeat) spacing, K=smectic bending
3887elasticity, B=compression modulus, and N = number of lamellar plates
3888(n_plates).
3889
3890Note: When the Caille parameter is greater than approximately 0.8 to
38911.0, the assumptions of the model are incorrect. And due to the
3892complication of the model function, users are responsible to make sure
3893that all the assumptions are handled accurately: see the original
3894reference (below) for more details.
3895
3896The 2D scattering intensity is calculated in the same way as 1D, where
3897the *q* vector is defined as .
3898
3899
3900
3901The returned value is in units of [cm-1], on absolute scale. In the
3902parameters, sld_tail = SLD of the tail group, sld_head = SLD of the
3903head group, and sld_solvent = SLD of the solvent.
3904
3905
3906
3907Parameter name
3908
3909Units
3910
3911Default value
3912
3913background
3914
3915cm-1
3916
39170.001
3918
3919sld_head
3920
3921-2
3922
39232e-006
3924
3925scale
3926
39271
3928
3929sld_solvent
3930
3931-2
3932
39336e-006
3934
3935deltaH
3936
3937
3938
39392
3940
3941deltaT
3942
3943
3944
394510
3946
3947sld_tail
3948
3949-2
3950
39510
3952
3953n_plates
3954
395530
3956
3957spacing
3958
3959
3960
396140
3962
3963caille
3964
3965-2
3966
39670.001
3968
3969
3970
3971*Figure. 1D plot using the default values (w/6000 data point).*
3972
3973Our model uses the form factor calculations implemented in a c-library
3974provided by the NIST Center for Neutron Research (Kline, 2006):
3975
3976REFERENCE
3977
3978Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502.
3979
3980also in J. Phys. Chem. B, 105, (2001) 11081-11088.
3981
3982
3983
3984.. _LamellarPCrystalModel:
3985
3986**2.1.32. LamellarPCrystalModel**
3987
3988Lamella ParaCrystal Model: Calculates the scattering from a stack of
3989repeating lamellar structures. The stacks of lamellae (infinite in
3990lateral dimension) are treated as a paracrystal to account for the
3991repeating spacing. The repeat distance is further characterized by a
3992Gaussian polydispersity. This model can be used for large
3993multilamellar vesicles.
3994
3995The scattering intensity I(q) is calculated as:
3996
3997
3998
3999The form factor of the bilayer is approximated as the cross section of
4000an infinite, planar bilayer of thickness t.
4001
4002
4003
4004Here, the scale factor is used instead of the mass per area of the
4005bilayer (G). The scale factor is the volume fraction of the material
4006in the bilayer, not the total excluded volume of the paracrystal.
4007ZN(q) describes the interference effects for aggregates consisting of
4008more than one bilayer. The equations used are (3-5) from the Bergstrom
4009reference below.
4010
4011Non-integer numbers of stacks are calculated as a linear combination
4012of the lower and higher values:
4013
4014
4015
4016The 2D scattering intensity is the same as 1D, regardless of the
4017orientation of the *q* vector which is defined as .
4018
4019The parameters of the model are the following (Nlayers= no. of layers,
4020pd_spacing= polydispersity of spacing):
4021
4022Parameter name
4023
4024Units
4025
4026Default value
4027
4028background
4029
4030cm-1
4031
40320
4033
4034scale
4035
40361
4037
4038Nlayers
4039
404020
4041
4042pd_spacing
4043
40440.2
4045
4046sld_layer
4047
4048-2
4049
40501e-6
4051
4052sld_solvent
4053
4054-2
4055
40566.34e-6
4057
4058spacing
4059
4060
4061
4062250
4063
4064thickness
4065
4066
4067
406833
4069
4070
4071
4072*Figure. 1D plot using the default values above (w/20000 data
4073point).*
4074
4075Our model uses the form factor calculations implemented in a c-library
4076provided by the NIST Center for Neutron Research (Kline, 2006).
4077
4078See the reference for details.
4079
4080REFERENCE
4081
4082M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, J.
4083Phys. Chem. B, 103 (1999) 9888-9897.
4084
4085
4086
4087.. _SCCrystalModel:
4088
4089**2.1.33. SCCrystalModel**
4090
4091Calculates the scattering from a simple cubic lattice with
4092paracrystalline distortion. Thermal vibrations are considered to be
4093negligible, and the size of the paracrystal is infinitely large.
4094Paracrystalline distortion is assumed to be isotropic and
4095characterized by a Gaussian distribution.
4096
4097The returned value is scaled to units of [cm-1sr-1], absolute scale.
4098
4099The scattering intensity I(q) is calculated as:
4100
4101
4102
4103where scale is the volume fraction of spheres, Vp is the volume of the
4104primary particle, V(lattice) is a volume correction for the crystal
4105structure, P(q) is the form factor of the sphere (normalized) and Z(q)
4106is the paracrystalline structure factor for a simple cubic structure.
4107Equation (16) of the 1987 reference is used to calculate Z(q), using
4108equations (13)-(15) from the 1987 paper for Z1, Z2, and Z3.
4109
4110The lattice correction (the occupied volume of the lattice) for a
4111simple cubic structure of particles of radius R and nearest neighbor
4112separation D is:
4113
4114
4115
4116The distortion factor (one standard deviation) of the paracrystal is
4117included in the calculation of Z(q):
4118
4119
4120
4121where g is a fractional distortion based on the nearest neighbor
4122distance.
4123
4124The simple cubic lattice is:
4125
4126
4127
4128For a crystal, diffraction peaks appear at reduced q-values givn by:
4129
4130
4131
4132where for a simple cubic lattice any h, k, l are allowed and none are
4133forbidden. Thus the peak positions correspond to (just the first 5):
4134
4135
4136
4137NOTE: The calculation of Z(q) is a double numerical integral that must
4138be carried out with a high density of points to properly capture the
4139sharp peaks of the paracrystalline scattering. So be warned that the
4140calculation is SLOW. Go get some coffee. Fitting of any experimental
4141data must be resolution smeared for any meaningful fit. This makes a
4142triple integral. Very, very slow. Go get lunch.
4143
4144REFERENCES
4145
4146Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765.
4147(Original Paper)
4148
4149Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856.
4150(Corrections to FCC and BCC lattice structure calculation)
4151
4152
4153
4154Parameter name
4155
4156Units
4157
4158Default value
4159
4160background
4161
4162cm-1
4163
41640
4165
4166dnn
4167
4168
4169
4170220
4171
4172scale
4173
41741
4175
4176sldSolv
4177
4178-2
4179
41806.3e-006
4181
4182radius
4183
4184
4185
418640
4187
4188sld_Sph
4189
4190-2
4191
41923e-006
4193
4194d_factor
4195
41960.06
4197
4198TEST DATASET
4199
4200This example dataset is produced using 200 data points, qmin = 0.01
4201-1, qmax = 0.1 -1 and the above default values.
4202
4203
4204
4205*Figure. 1D plot in the linear scale using the default values (w/200
4206data point).*
4207
4208The 2D (Anisotropic model) is based on the reference (above) which
4209I(q) is approximated for 1d scattering. Thus the scattering pattern
4210for 2D may not be accurate. Note that we are not responsible for any
4211incorrectness of the 2D model computation.
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223* *
4224
4225*Figure. 2D plot using the default values (w/200X200 pixels).*
4226
4227
4228
4229.. _FCCrystalModel:
4230
4231**2.1.34. FCCrystalModel**
4232
4233Calculates the scattering from a face-centered cubic lattice with
4234paracrystalline distortion. Thermal vibrations are considered to be
4235negligible, and the size of the paracrystal is infinitely large.
4236Paracrystalline distortion is assumed to be isotropic and
4237characterized by a Gaussian distribution.
4238
4239The returned value is scaled to units of [cm-1sr-1], absolute scale.
4240
4241The scattering intensity I(q) is calculated as:
4242
4243
4244
4245where scale is the volume fraction of spheres, Vp is the volume of the
4246primary particle, V(lattice) is a volume correction for the crystal
4247structure, P(q) is the form factor of the sphere (normalized) and Z(q)
4248is the paracrystalline structure factor for a face-centered cubic
4249structure. Equation (1) of the 1990 reference is used to calculate
4250Z(q), using equations (23)-(25) from the 1987 paper for Z1, Z2, and
4251Z3.
4252
4253The lattice correction (the occupied volume of the lattice) for a
4254face-centered cubic structure of particles of radius R and nearest
4255neighbor separation D is:
4256
4257
4258
4259The distortion factor (one standard deviation) of the paracrystal is
4260included in the calculation of Z(q):
4261
4262
4263
4264where g is a fractional distortion based on the nearest neighbor
4265distance.
4266
4267The face-centered cubic lattice is:
4268
4269
4270
4271For a crystal, diffraction peaks appear at reduced q-values givn by:
4272
4273
4274
4275where for a face-centered cubic lattice h, k, l all odd or all even
4276are allowed and reflections where h, k, l are mixed odd/even are
4277forbidden. Thus the peak positions correspond to (just the first 5):
4278
4279
4280
4281NOTE: The calculation of Z(q) is a double numerical integral that must
4282be carried out with a high density of points to properly capture the
4283sharp peaks of the paracrystalline scattering. So be warned that the
4284calculation is SLOW. Go get some coffee. Fitting of any experimental
4285data must be resolution smeared for any meaningful fit. This makes a
4286triple integral. Very, very slow. Go get lunch.
4287
4288REFERENCES
4289
4290Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765.
4291(Original Paper)
4292
4293Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856.
4294(Corrections to FCC and BCC lattice structure calculation)
4295
4296
4297
4298
4299
4300Parameter name
4301
4302Units
4303
4304Default value
4305
4306background
4307
4308cm-1
4309
43100
4311
4312dnn
4313
4314
4315
4316220
4317
4318scale
4319
43201
4321
4322sldSolv
4323
4324-2
4325
43266.3e-006
4327
4328radius
4329
4330
4331
433240
4333
4334sld_Sph
4335
4336-2
4337
43383e-006
4339
4340d_factor
4341
43420.06
4343
4344TEST DATASET
4345
4346This example dataset is produced using 200 data points, qmin = 0.01
4347-1, qmax = 0.1 -1 and the above default values.
4348
4349
4350
4351*Figure. 1D plot in the linear scale using the default values (w/200
4352data point).*
4353
4354The 2D (Anisotropic model) is based on the reference (above) in which
4355I(q) is approximated for 1d scattering. Thus the scattering pattern
4356for 2D may not be accurate. Note that we are not responsible for any
4357incorrectness of the 2D model computation.
4358
4359
4360*Figure. 2D plot using the default values (w/200X200 pixels).*
4361
4362
4363
4364.. _BCCrystalModel:
4365
4366**2.1.35. BCCrystalModel**
4367
4368Calculates the scattering from a body-centered cubic lattice with
4369paracrystalline distortion. Thermal vibrations are considered to be
4370negligible, and the size of the paracrystal is infinitely large.
4371Paracrystalline distortion is assumed to be isotropic and
4372characterized by a Gaussian distribution.The returned value is scaled
4373to units of [cm-1sr-1], absolute scale.
4374
4375The scattering intensity I(q) is calculated as:
4376
4377
4378
4379where scale is the volume fraction of spheres, Vp is the volume of the
4380primary particle, V(lattice) is a volume correction for the crystal
4381structure, P(q) is the form factor of the sphere (normalized) and Z(q)
4382is the paracrystalline structure factor for a body-centered cubic
4383structure. Equation (1) of the 1990 reference is used to calculate
4384Z(q), using equations (29)-(31) from the 1987 paper for Z1, Z2, and
4385Z3.
4386
4387The lattice correction (the occupied volume of the lattice) for a
4388body-centered cubic structure of particles of radius R and nearest
4389neighbor separation D is:
4390
4391
4392
4393The distortion factor (one standard deviation) of the paracrystal is
4394included in the calculation of Z(q):
4395
4396
4397
4398where g is a fractional distortion based on the nearest neighbor
4399distance.
4400
4401The body-centered cubic lattice is:
4402
4403
4404
4405For a crystal, diffraction peaks appear at reduced q-values givn by:
4406
4407
4408
4409where for a body-centered cubic lattice, only reflections where
4410(h+k+l) = even are allowed and reflections where (h+k+l) = odd are
4411forbidden. Thus the peak positions correspond to (just the first 5):
4412
4413
4414
4415NOTE: The calculation of Z(q) is a double numerical integral that must
4416be carried out with a high density of points to properly capture the
4417sharp peaks of the paracrystalline scattering. So be warned that the
4418calculation is SLOW. Go get some coffee. Fitting of any experimental
4419data must be resolution smeared for any meaningful fit. This makes a
4420triple integral. Very, very slow. Go get lunch.
4421
4422REFERENCES
4423
4424Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765.
4425(Original Paper)
4426
4427Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856.
4428(Corrections to FCC and BCC lattice structure calculation)
4429
4430
4431
4432
4433
4434Parameter name
4435
4436Units
4437
4438Default value
4439
4440background
4441
4442cm-1
4443
44440
4445
4446dnn
4447
4448
4449
4450220
4451
4452scale
4453
44541
4455
4456sldSolv
4457
4458-2
4459
44606.3e-006
4461
4462radius
4463
4464
4465
446640
4467
4468sld_Sph
4469
4470-2
4471
44723e-006
4473
4474d_factor
4475
44760.06
4477
4478TEST DATASET
4479
4480This example dataset is produced using 200 data points, qmin = 0.001
4481-1, qmax = 0.1 -1 and the above default values.
4482
4483
4484
4485*Figure. 1D plot in the linear scale using the default values (w/200
4486data point).*
4487
4488The 2D (Anisotropic model) is based on the reference (1987) in which
4489I(q) is approximated for 1d scattering. Thus the scattering pattern
4490for 2D may not be accurate. Note that we are not responsible for any
4491incorrectness of the 2D model computation.
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505*Figure. 2D plot using the default values (w/200X200 pixels).*
4506
4507
4508
4509.. _ParallelepipedModel:
4510
4511**2.1.36. ParallelepipedModel**
4512
4513This model provides the form factor, P( *q*), for a rectangular
4514cylinder (below) where the form factor is normalized by the volume of
4515the cylinder. P(q) = scale*<f^2>/V+background where the volume V= ABC
4516and the averaging < > is applied over all orientation for 1D.
4517
4518For information about polarised and magnetic scattering, click here_.
4519
4520
4521
4522
4523
4524The side of the solid must be satisfied the condition of A<B
4525
4526By this definition, assuming
4527
4528a = A/B<1; b=B/B=1; c=C/B>1, the form factor,
4529
4530
4531
4532The contrast is defined as
4533
4534
4535
4536The scattering intensity per unit volume is returned in the unit of
4537[cm-1]; I(q) = fP(q).
4538
4539For P*S: The 2nd virial coefficient of the solid cylinder is calculate
4540based on the averaged effective radius (= sqrt(short_a*short_b/pi))
4541and length( = long_c) values, and used as the effective radius toward
4542S(Q) when P(Q)*S(Q) is applied.
4543
4544To provide easy access to the orientation of the parallelepiped, we
4545define the axis of the cylinder using two angles , andY. Similarly to
4546the case of the cylinder, those angles, and , are defined on Figure 2
4547of CylinderModel. The angle Y is the rotational angle around its own
4548long_c axis against the q plane. For example, Y = 0 when the short_b
4549axis is parallel to the x-axis of the detector.
4550
4551
4552
4553*Figure. Definition of angles for 2D*.
4554
4555
4556
4557Figure. Examples of the angles for oriented pp against the detector
4558plane.
4559
4560Parameter name
4561
4562Units
4563
4564Default value
4565
4566background
4567
4568cm-1
4569
45700.0
4571
4572contrast
4573
4574-2
4575
45765e-006
4577
4578long_c
4579
4580
4581
4582400
4583
4584short_a
4585
4586-2
4587
458835
4589
4590short_b
4591
4592
4593
459475
4595
4596scale
4597
45981
4599
4600
4601
4602*Figure. 1D plot using the default values (w/1000 data point).*
4603
4604*Validation of the parallelepiped 2D model*
4605
4606Validation of our code was done by comparing the output of the 1D
4607calculation to the angular average of the output of 2 D calculation
4608over all possible angles. The Figure below shows the comparison where
4609the solid dot refers to averaged 2D while the line represents the
4610result of 1D calculation (for the averaging, 76, 180, 76 points are
4611taken over the angles of theta, phi, and psi respectively).
4612
4613
4614
4615*Figure. Comparison between 1D and averaged 2D.*
4616
4617Our model uses the form factor calculations implemented in a c-library
4618provided by the NIST Center for Neutron Research (Kline, 2006):
4619
4620REFERENCE
4621
4622Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211.
4623
4624Equations (1), (13-14). (in German)
4625
4626
4627
4628.. _CSParallelepipedModel:
4629
4630**2.1.37. CSParallelepipedModel**
4631
4632Calculates the form factor for a rectangular solid with a core-shell
4633structure. The thickness and the scattering length density of the
4634shell or "rim" can be different on all three (pairs) of faces. The
4635form factor is normalized by the particle volume such that P(q) =
4636scale*<f^2>/Vol + bkg, where < > is an average over all possible
4637orientations of the rectangular solid. An instrument resolution
4638smeared version is also provided.
4639
4640The function calculated is the form factor of the rectangular solid
4641below. The core of the solid is defined by the dimensions ABC such
4642that A < B < C.
4643
4644
4645
4646There are rectangular "slabs" of thickness tA that add to the A
4647dimension (on the BC faces). There are similar slabs on the AC (=tB)
4648and AB (=tC) faces. The projection in the AB plane is then:
4649
4650
4651
4652The volume of the solid is:
4653
4654
4655
4656meaning that there are "gaps" at the corners of the solid.
4657
4658The intensity calculated follows the parallelepiped model, with the
4659core-shell intensity being calculated as the square of the sum of the
4660amplitudes of the core and shell, in the same manner as a core-shell
4661sphere.
4662
4663For the calculation of the form factor to be valid, the sides of the
4664solid MUST be chosen such that A < B < C. If this inequality in not
4665satisfied, the model will not report an error, and the calculation
4666will not be correct.
4667
4668FITTING NOTES:
4669
4670If the scale is set equal to the particle volume fraction, f, the
4671returned value is the scattered intensity per unit volume, I(q) =
4672f*P(q). However, no interparticle interference effects are included in
4673this calculation.
4674
4675There are many parameters in this model. Hold as many fixed as
4676possible with known values, or you will certainly end up at a solution
4677that is unphysical.
4678
4679Constraints must be applied during fitting to ensure that the
4680inequality A < B < C is not violated. The calculation will not report
4681an error, but the results will not be correct.
4682
4683The returned value is in units of [cm-1], on absolute scale.
4684
4685For P*S: The 2nd virial coefficient of this CSPP is calculate based on
4686the averaged effective radius (=
4687sqrt((short_a+2*rim_a)*(short_b+2*rim_b)/pi)) and length( =
4688long_c+2*rim_c) values, and used as the effective radius toward S(Q)
4689when P(Q)*S(Q) is applied.
4690
4691To provide easy access to the orientation of the CSparallelepiped, we
4692define the axis of the cylinder using two angles , andY. Similarly to
4693the case of the cylinder, those angles, and , are defined on Figure 2
4694of CylinderModel. The angle Y is the rotational angle around its own
4695long_c axis against the q plane. For example, Y = 0 when the short_b
4696axis is parallel to the x-axis of the detector.
4697
4698
4699
4700*Figure. Definition of angles for 2D*.
4701
4702
4703
4704Figure. Examples of the angles for oriented cspp against the detector
4705plane.
4706
4707TEST DATASET
4708
4709This example dataset is produced by running the Macro
4710Plot_CSParallelepiped(), using 100 data points, qmin = 0.001 -1, qmax
4711= 0.7 -1 and the below default values.
4712
4713Parameter name
4714
4715Units
4716
4717Default value
4718
4719background
4720
4721cm-1
4722
47230.06
4724
4725sld_pcore
4726
4727-2
4728
47291e-006
4730
4731sld_rimA
4732
4733-2
4734
47352e-006
4736
4737sld_rimB
4738
4739-2
4740
47414e-006
4742
4743sld_rimC
4744
4745-2
4746
47472e-006
4748
4749sld_solv
4750
4751-2
4752
47536e-006
4754
4755rimA
4756
4757
4758
475910
4760
4761rimB
4762
4763
4764
476510
4766
4767rimC
4768
4769
4770
477110
4772
4773longC
4774
4775
4776
4777400
4778
4779shortA
4780
4781
4782
478335
4784
4785midB
4786
4787
4788
478975
4790
4791scale
4792
47931
4794
4795
4796
4797*Figure. 1D plot using the default values (w/256 data points).*
4798
4799
4800
4801
4802
4803*Figure. 2D plot using the default values (w/(256X265) data
4804points).*
4805
4806Our model uses the form factor calculations implemented in a c-library
4807provided by the NIST Center for Neutron Research (Kline, 2006):
4808
4809REFERENCE
4810
4811see: Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211.
4812
4813Equations (1), (13-14). (yes, it's in German)
4814
4815
4816
48172.2 Shape-independent Functions
4818-------------------------------
4819
4820The following are models used for shape-independent SANS analysis.
4821
4822**2.2.1. Debye**
4823
4824The Debye model is a form factor for a linear polymer chain. In
4825addition to the radius of gyration, Rg, a scale factor "scale", and a
4826constant background term are included in the calculation.
4827
4828
4829
4830
4831
4832
4833
4834For 2D plot, the wave transfer is defined as .
4835
4836
4837
4838Parameter name
4839
4840Units
4841
4842Default value
4843
4844scale
4845
4846None
4847
48481.0
4849
4850rg
4851
4852
4853
485450.0
4855
4856background
4857
4858cm-1
4859
48600.0
4861
4862
4863
4864*Figure. 1D plot using the default values (w/200 data point).*
4865
4866
4867
4868Reference: Roe, R.-J., "Methods of X-Ray and Neutron Scattering in
4869Polymer Science", Oxford University Press, New York (2000).
4870
4871*3.2. BroadPeak Model*
4872
4873Calculate an empirical functional form for SANS data characterized by
4874a broad scattering peak. Many SANS spectra are characterized by a
4875broad peak even though they are from amorphous soft materials. The
4876d-spacing corresponding to the broad peak is a characteristic distance
4877between the scattering inhomogeneities (such as in lamellar,
4878cylindrical, or spherical morphologies or for bicontinuous
4879structures).
4880
4881The returned value is scaled to units of [cm-1sr-1], absolute scale.
4882
4883The scattering intensity I(q) is calculated by:
4884
4885
4886
4887Here the peak position is related to the d-spacing as Q0 = 2pi/d0.
4888Soft systems that show a SANS peak include copolymers,
4889polyelectrolytes, multiphase systems, layered structures, etc.
4890
4891
4892
4893
4894
4895For 2D plot, the wave transfer is defined as .
4896
4897
4898
4899Parameter name
4900
4901Units
4902
4903Default value
4904
4905scale_l (= C)
4906
490710
4908
4909scale_p (=A)
4910
49111e-05
4912
4913length_l (=x)
4914
4915
4916
491750
4918
4919q_peak (= Q0)
4920
4921-1
4922
49230.1
4924
4925exponent_p (=n)
4926
49272
4928
4929exponent_l (=m)
4930
49313
4932
4933Background (=B)
4934
4935cm-1
4936
49370.1
4938
4939
4940
4941*Figure. 1D plot using the default values (w/200 data point).*
4942
4943
4944
4945Reference: None.
4946
49472013/09/09 - Description reviewed by King, S. and Parker, P.
4948
4949*3.3. CorrLength (CorrelationLengthModel)*
4950
4951Calculate an empirical functional form for SANS data characterized by
4952a low-Q signal and a high-Q signal
4953
4954The returned value is scaled to units of [cm-1sr-1], absolute scale.
4955
4956The scattering intensity I(q) is calculated by:
4957
4958
4959
4960The first term describes Porod scattering from clusters (exponent = n)
4961and the second term is a Lorentzian function describing scattering
4962from polymer chains (exponent = m). This second term characterizes the
4963polymer/solvent interactions and therefore the thermodynamics. The two
4964multiplicative factors A and C, the incoherent background B and the
4965two exponents n and m are used as fitting parameters. The final
4966parameter (xi) is a correlation length for the polymer chains. Note
4967that when m = 2, this functional form becomes the familiar Lorentzian
4968function.
4969
4970
4971
4972For 2D plot, the wave transfer is defined as .
4973
4974
4975
4976Parameter name
4977
4978Units
4979
4980Default value
4981
4982scale_l (= C)
4983
498410
4985
4986scale_p (=A)
4987
49881e-06
4989
4990length_l (=x)
4991
4992
4993
499450
4995
4996exponent_p (=n)
4997
49982
4999
5000exponent_l (=m)
5001
50023
5003
5004Background (=B)
5005
5006cm-1
5007
50080.1
5009
5010
5011
5012*Figure. 1D plot using the default values (w/500 data points).*
5013
5014
5015
5016REFERENCE
5017
5018B. Hammouda, D.L. Ho and S.R. Kline, Insight into Clustering in
5019Poly(ethylene oxide) Solutions, Macromolecules 37, 6932-6937 (2004).
5020
50212013/09/09 - Description reviewed by King, S. and Parker, P.
5022
5023*3.4. (Ornstein-Zernicke) Lorentz (Model)*
5024
5025The Ornstein-Zernicke model is defined by:
5026
5027
5028
5029
5030
5031
5032
5033The parameter L is referred to as the screening length.
5034
5035
5036
5037For 2D plot, the wave transfer is defined as .
5038
5039
5040
5041
5042
5043Parameter name
5044
5045Units
5046
5047Default value
5048
5049scale
5050
5051None
5052
50531.0
5054
5055length
5056
5057
5058
505950.0
5060
5061background
5062
5063cm-1
5064
50650.0
5066
5067* *
5068
5069*Figure. 1D plot using the default values (w/200 data point).*
5070
5071*3.5. DAB (Debye-Anderson-Brumberger)_Model*
5072
5073
5074
5075Calculates the scattering from a randomly distributed, two-phase
5076system based on the Debye-Anderson-Brumberger (DAB) model for such
5077systems. The two-phase system is characterized by a single length
5078scale, the correlation length, which is a measure of the average
5079spacing between regions of phase 1 and phase 2. The model also assumes
5080smooth interfaces between the phases and hence exhibits Porod behavior
5081(I ~ Q-4) at large Q (Q*correlation length >> 1).
5082
5083
5084
5085
5086
5087
5088
5089The parameter L is referred to as the correlation length.
5090
5091For 2D plot, the wave transfer is defined as .
5092
5093
5094
5095Parameter name
5096
5097Units
5098
5099Default value
5100
5101scale
5102
5103None
5104
51051.0
5106
5107length
5108
5109
5110
511150.0
5112
5113background
5114
5115cm-1
5116
51170.0
5118
5119* *
5120
5121*Figure. 1D plot using the default values (w/200 data point).*
5122
5123References:
5124
5125Debye, Anderson, Brumberger, "Scattering by an Inhomogeneous Solid.
5126II. The Correlation Function and its Application", J. Appl. Phys. 28
5127(6), 679 (1957).
5128
5129
5130
5131Debye, Bueche, "Scattering by an Inhomogeneous Solid", J. Appl. Phys.
513220, 518 (1949).
5133
51342013/09/09 - Description reviewed by King, S. and Parker, P.
5135
5136*3.6.  Absolute Power_Law *
5137
5138This model describes a power law with background.
5139
5140
5141
5142
5143
5144Note the minus sign in front of the exponent.
5145
5146
5147
5148Parameter name
5149
5150Units
5151
5152Default value
5153
5154Scale
5155
5156None
5157
51581.0
5159
5160m
5161
5162None
5163
51644
5165
5166Background
5167
5168cm-1
5169
51700.0
5171
5172
5173
5174*Figure. 1D plot using the default values (w/200 data point).*
5175
5176*3.7. Teubner Strey (Model)*
5177
5178This function calculates the scattered intensity of a two-component
5179system using the Teubner-Strey model.
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189For 2D plot, the wave transfer is defined as .
5190
5191
5192
5193Parameter name
5194
5195Units
5196
5197Default value
5198
5199scale
5200
5201None
5202
52030.1
5204
5205c1
5206
5207None
5208
5209-30.0
5210
5211c2
5212
5213None
5214
52155000.0
5216
5217background
5218
5219cm-1
5220
52210.0
5222
5223
5224
5225*Figure. 1D plot using the default values (w/200 data point).*
5226
5227References:
5228
5229Teubner, M; Strey, R. J. Chem. Phys., 87, 3195 (1987).
5230
5231
5232
5233Schubert, K-V., Strey, R., Kline, S. R. and E. W. Kaler, J. Chem.
5234Phys., 101, 5343 (1994).
5235
5236*3.8.  FractalModel*
5237
5238Calculates the scattering from fractal-like aggregates built from
5239spherical building blocks following the Texiera reference. The value
5240returned is in cm-1.
5241
5242
5243
5244
5245
5246
5247
5248The scale parameter is the volume fraction of the building blocks, R0
5249is the radius of the building block, Df is the fractal dimension, is
5250the correlation length, *solvent* is the scattering length density of
5251the solvent, and *block* is the scattering length density of the
5252building blocks.
5253
5254*The polydispersion in radius is provided.*
5255
5256For 2D plot, the wave transfer is defined as .
5257
5258
5259
5260Parameter name
5261
5262Units
5263
5264Default value
5265
5266scale
5267
5268None
5269
52700.05
5271
5272radius
5273
5274
5275
52765.0
5277
5278fractal_dim
5279
5280None
5281
52822
5283
5284corr_length
5285
5286
5287
5288100.0
5289
5290block_sld
5291
5292-2
5293
52942e-6
5295
5296solvent_sld
5297
5298-2
5299
53006e-6
5301
5302background
5303
5304cm-1
5305
53060.0
5307
5308
5309
5310*Figure. 1D plot using the default values (w/200 data point).*
5311
5312
5313
5314
5315
5316References:
5317
5318J. Teixeira, (1988) J. Appl. Cryst., vol. 21, p781-785
5319
5320
5321
5322*3.9. MassFractalModel*
5323
5324Calculates the scattering from fractal-like aggregates based on the
5325Mildner reference (below).
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336The R is the radius of the building block, Dm is the mass fractal
5337dimension, is the correlation (or cutt-off) length, *solvent* is the
5338scattering length density of the solvent, and *particle* is the
5339scattering length density of particles.
5340
5341Note: The mass fractal dimension is valid for 1<mass_dim<6.
5342
5343
5344
5345Parameter name
5346
5347Units
5348
5349Default value
5350
5351scale
5352
5353None
5354
53551
5356
5357radius
5358
5359
5360
536110.0
5362
5363mass_dim
5364
5365None
5366
53671.9
5368
5369co_length
5370
5371
5372
5373100.0
5374
5375background
5376
5377
5378
53790.0
5380
5381
5382
5383*Figure. 1D plot*
5384
5385
5386
5387
5388
5389References:
5390
5391D. Mildner, and P. Hall, J. Phys. D.: Appl. Phys., 19, 1535-1545
5392(1986), Equation(9).
5393
53942013/09/09 - Description reviewed by King, S. and Parker, P.
5395
5396
5397
5398
5399
5400*3.10.  SurfaceFractalModel*
5401
5402Calculates the scattering based on the Mildner reference (below).
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413The R is the radius of the building block, Ds is the surface fractal
5414dimension, is the correlation (or cutt-off) length, *solvent* is the
5415scattering length density of the solvent, and *particle* is the
5416scattering length density of particles.
5417
5418Note: The surface fractal dimension is valid for 1<surface_dim<3. Also
5419it is valid in a limited q range (see the reference for details).
5420
5421
5422
5423Parameter name
5424
5425Units
5426
5427Default value
5428
5429scale
5430
5431None
5432
54331
5434
5435radius
5436
5437
5438
543910.0
5440
5441surface_dim
5442
5443None
5444
54452.0
5446
5447co_length
5448
5449
5450
5451500.0
5452
5453background
5454
5455
5456
54570.0
5458
5459
5460
5461*Figure. 1D plot*
5462
5463
5464
5465
5466
5467References:
5468
5469D. Mildner, and P. Hall, J. Phys. D.: Appl. Phys., 19, 1535-1545
5470(1986), Equation(13).
5471
5472
5473
5474
5475
5476*3.11. MassSurfaceFractal*
5477
5478A number of natural and commercial processes form high-surface area
5479materials as a result of the vapour-phase aggregation of primary
5480particles. Examples of such materials include soots, aerosols, and
5481fume or pyrogenic silicas. These are all characterised by cluster mass
5482distributions (sometimes also cluster size distributions) and internal
5483surfaces that are fractal in nature. The scattering from such
5484materials displays two distinct breaks in log-log representation,
5485corresponding to the radius-of-gyration of the primary particles, rg,
5486and the radius-of-gyration of the clusters (aggregates), Rg. Between
5487these boundaries the scattering follows a power law related to the
5488mass fractal dimension, Dm, whilst above the high-Q boundary the
5489scattering follows a power law related to the surface fractal
5490dimension of the primary particles, Ds.
5491
5492The scattered intensity I(Q) is then calculated using a modified
5493Ornstein-Zernicke equation:
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504The Rg is for the cluster, rg is for the primary, Ds is the surface
5505fractal dimension, Dm is the mass fractal dimension, *solvent* is the
5506scattering length density of the solvent, and *p* is the scattering
5507length density of particles.
5508
5509Note: The surface and mass fractal dimensions are valid for
55100<surface_dim<6, 0<mass_dim<6, and (surface_mass+mass_dim)<6.
5511
5512
5513
5514Parameter name
5515
5516Units
5517
5518Default value
5519
5520scale
5521
5522None
5523
55241
5525
5526primary_rg
5527
5528
5529
55304000.0
5531cluster_rg 86.7
5532surface_dim
5533
5534None
5535
55362.3
5537mass_dim None 1.8
5538background
5539
5540
5541
55420.0
5543
5544
5545
5546*Figure. 1D plot*
5547
5548
5549
5550
5551
5552References:
5553
5554P. Schmidt, J Appl. Cryst., 24, 414-435 (1991), Equation(19).
5555
5556Hurd, Schaefer, Martin, Phys. Rev. A, 35, 2361-2364 (1987),
5557Equation(2).
5558
5559
5560
5561
5562
5563*3.12.  FractalCoreShell(Model)*
5564
5565Calculates the scattering from a fractal structure with a primary
5566building block of core-shell spheres.
5567
5568
5569
5570
5571The formfactor P(q) is CoreShellModel with bkg = 0,
5572,
5573
5574while the fractal structure factor S(q);
5575
5576
5577
5578where Df = frac_dim, = cor_length, rc = (core) radius, and scale =
5579volfraction.
5580The fractal structure is as documented in the fractal model. This
5581model could find use for aggregates of coated particles, or aggregates
5582of vesicles.The polydispersity computation of radius and thickness is
5583provided.
5584
5585The returned value is scaled to units of [cm-1sr-1], absolute scale.
5586
5587See each of these individual models for full documentation.
5588
5589For 2D plot, the wave transfer is defined as .
5590
5591
5592
5593Parameter name
5594
5595Units
5596
5597Default value
5598
5599volfraction
5600
56010.05
5602
5603frac_dim
5604
56052
5606
5607thickness
5608
5609
5610
56115.0
5612
5613raidus
5614
561520.0
5616
5617cor_length
5618
5619
5620
5621100.0
5622
5623core_sld
5624
5625-2
5626
56273.5e-6
5628
5629shell_sld
5630
5631-2
5632
56331e-6
5634
5635solvent_sld
5636
5637-2
5638
56396.35e-6
5640
5641background
5642
5643cm-1
5644
56450.0
5646
5647
5648
5649*Figure. 1D plot using the default values (w/500 data points).*
5650
5651
5652
5653
5654
5655References:
5656
5657See the PolyCore and Fractal documentation. * *
5658
5659*3.13.  GaussLorentzGel(Model)*
5660
5661Calculates the scattering from a gel structure, typically a physical
5662network. It is modeled as a sum of a low-q exponential decay plus a
5663lorentzian at higher q-values. It is generally applicable to gel
5664structures.
5665
5666The returned value is scaled to units of [cm-1sr-1], absolute scale.
5667
5668The scattering intensity I(q) is calculated as (eqn 5 from the
5669reference):
5670
5671
5672
5673
5674
5675Uppercase Zeta is the static correlations in the gel, which can be
5676attributed to the "frozen-in" crosslinks of some gels. Lowercase zeta
5677is the dynamic correlation length, which can be attributed to the
5678fluctuating polymer chain between crosslinks. IG(0) and IL(0) are the
5679scaling factors for each of these structures. Your physical system may
5680be different, so think about the interpretation of these parameters.
5681
5682Note that the peaked structure at higher q values (from Figure 2 of
5683the reference below) is not reproduced by the model. Peaks can be
5684introduced into the model by summing this model with the PeakGauss
5685Model function.
5686
5687For 2D plot, the wave transfer is defined as .
5688
5689
5690
5691Parameter name
5692
5693Units
5694
5695Default value
5696
5697dyn_colength(=Dynamic correlation length)
5698
5699
5700
570120.0
5702
5703scale_g(=Gauss scale factor)
5704
5705100
5706
5707scale_l(=Lorentzian scale factor)
5708
570950
5710
5711stat_colength(=Static correlation Z)
5712
5713
5714
5715100.0
5716
5717background
5718
5719cm-1
5720
57210.0
5722
5723
5724
5725*Figure. 1D plot using the default values (w/500 data points).*
5726
5727
5728
5729
5730
5731REFERENCE:
5732
5733G. Evmenenko, E. Theunissen, K. Mortensen, H. Reynaers, Polymer 42
5734(2001) 2907-2913.
5735
5736*3.14.  BEPolyelectrolyte Model*
5737
5738Calculates the structure factor of a polyelectrolyte solution with the
5739RPA expression derived by Borue and Erukhimovich. The value returned
5740is in cm-1.
5741
5742
5743
5744
5745
5746
5747
5748K is a contrast factor of the polymer, Lb is the Bjerrum length, h is
5749the virial parameter, b is the monomer length, Cs is the concentration
5750of monovalent salt, is the ionization degree, Ca is the polymer molar
5751concentration, and background is the incoherent background.
5752
5753For 2D plot, the wave transfer is defined as .
5754
5755Parameter name
5756
5757Units
5758
5759Default value
5760
5761K
5762
5763Barns = 10-24 cm2
5764
576510
5766
5767Lb
5768
5769
5770
57717.1
5772
5773h
5774
5775-3
5776
577712
5778
5779b
5780
5781
5782
578310
5784
5785Cs
5786
5787Mol/L
5788
57890
5790
5791alpha
5792
5793None
5794
57950.05
5796
5797Ca
5798
5799Mol/L
5800
58010.7
5802
5803background
5804
5805cm-1
5806
58070.0
5808
5809References:
5810
5811Borue, V. Y., Erukhimovich, I. Y. Macromolecules 21, 3240 (1988).
5812
5813Joanny, J.-F., Leibler, L. Journal de Physique 51, 545 (1990).
5814
5815Moussaid, A., Schosseler, F., Munch, J.-P., Candau, S. J. Journal de
5816Physique II France
5817
58183, 573 (1993).
5819
5820Raphal, E., Joanny, J.-F., Europhysics Letters 11, 179 (1990).
5821
5822
5823
5824*3.15. Guinier (Model)*
5825
5826A Guinier analysis is done by linearizing the data at low q by
5827plotting it as log(I) versus Q2. The Guinier radius Rg can be obtained
5828by fitting the following model:
5829
5830
5831
5832
5833
5834For 2D plot, the wave transfer is defined as .
5835
5836
5837
5838Parameter name
5839
5840Units
5841
5842Default value
5843
5844scale
5845
5846cm-1
5847
58481.0
5849
5850Rg
5851
5852
5853
58540.1
5855
5856
5857
5858*3.16. GuinierPorod (Model)*
5859
5860Calculates the scattering for a generalized Guinier/power law object.
5861This is an empirical model that can be used to determine the size and
5862dimensionality of scattering objects.
5863
5864The returned value is P(Q) as written in equation (1), plus the
5865incoherent background term. The result is in the units of [cm-1sr-1],
5866absolute scale.
5867
5868A Guinier-Porod empirical model can be used to fit SAS data from
5869asymmetric objects such as rods or platelets. It also applies to
5870intermediate shapes between spheres and rod or between rods and
5871platelets. The following functional form is used:
5872
5873(1)
5874
5875
5876
5877This is based on the generalized Guinier law for such elongated
5878objects [2]. For 3D globular objects (such as spheres), s = 0 and one
5879recovers the standard Guinier formula. For 2D symmetry (such as for
5880rods) s = 1 and for 1D symmetry (such as for lamellae or platelets) s
5881= 2. A dimensionality parameter 3-s is defined, and is 3 for spherical
5882objects, 2 for rods, and 1 for plates.
5883
5884Enforcing the continuity of the Guinier and Porod functions and their
5885derivatives yields:
5886
5887
5888
5889and
5890
5891
5892
5893
5894
5895Note that the radius of gyration for a sphere of radius R is given by
5896Rg = R sqrt(3/5) ,
5897
5898that for the cross section of an randomly oriented cylinder of radius
5899R is given by Rg = R / sqrt(2).
5900
5901The cross section of a randomly oriented lamella of thickness T is
5902given by Rg = T / sqrt(12).
5903
5904The intensity given by Eq. 1 is the calculated result, and is plotted
5905below for the default parameter values.
5906
5907REFERENCE
5908
5909[1] Guinier, A.; Fournet, G. "Small-Angle Scattering of X-Rays", John
5910Wiley and Sons, New York, (1955).
5911
5912[2] Glatter, O.; Kratky, O., Small-Angle X-Ray Scattering, Academic
5913Press (1982). Check out Chapter 4 on Data Treatment, pages 155-156.
5914
5915For 2D plot, the wave transfer is defined as .
5916
5917
5918
5919Parameter name
5920
5921Units
5922
5923Default value
5924
5925Scale(=Guinier scale, G)
5926
5927cm-1
5928
59291.0
5930
5931rg
5932
5933
5934
5935100
5936
5937dim(=Dimensional Variable, s)
5938
59391
5940
5941m(=Porod exponent)
5942
59433
5944
5945background
5946
59470.1
5948
5949
5950
5951* *
5952
5953*Figure. 1D plot using the default values (w/500 data points).*
5954
5955
5956
5957
5958
5959*3.17. PorodModel*
5960
5961A Porod analysis is done by linearizing the data at high q by plotting
5962it as log(I) versus log(Q). In the high q region we can fit the
5963following model:
5964
5965
5966
5967
5968
5969C is the scale factor and Sv is the specific surface area of the
5970sample and is the contrast factor.
5971
5972The background term is added for data analysis.
5973
5974For 2D plot, the wave transfer is defined as .
5975
5976
5977
5978Parameter name
5979
5980Units
5981
5982Default value
5983
5984scale
5985
5986-4
5987
59880.1
5989
5990background
5991
5992cm-1
5993
59940
5995
5996*3.18. PeakGaussModel*
5997
5998Model describes a Gaussian shaped peak including a flat background,
5999
6000
6001
6002
6003
6004
6005
6006with the peak having height of I0 centered at qpk having standard
6007deviation of B. The fwhm is 2.354*B.
6008
6009Parameters I0, B, qpk, and BGD can all be adjusted during fitting.
6010
6011REFERENCE: None
6012
6013For 2D plot, the wave transfer is defined as .
6014
6015
6016
6017Parameter name
6018
6019Units
6020
6021Default value
6022
6023scale
6024
6025cm-1
6026
6027100
6028
6029q0
6030
6031
6032
60330.05
6034
6035B
6036
60370.005
6038
6039background
6040
60411
6042
6043
6044
6045
6046
6047* *
6048
6049*Figure. 1D plot using the default values (w/500 data points).*
6050
6051
6052
6053*3.19. PeakLorentzModel*
6054
6055Model describes a Lorentzian shaped peak including a flat background,
6056
6057
6058
6059
6060
6061
6062
6063with the peak having height of I0 centered at qpk having a hwhm (half-
6064width-half-maximum) of B.
6065
6066The parameters I0, B, qpk, and BGD can all be adjusted during fitting.
6067
6068REFERENCE: None
6069
6070For 2D plot, the wave transfer is defined as .
6071
6072
6073
6074Parameter name
6075
6076Units
6077
6078Default value
6079
6080scale
6081
6082cm-1
6083
6084100
6085
6086q0
6087
6088
6089
60900.05
6091
6092B
6093
60940.005
6095
6096background
6097
60981
6099
6100
6101
6102
6103
6104
6105*Figure. 1D plot using the default values (w/500 data points).*
6106
6107*3.20. Poly_GaussCoil (Model)*
6108
6109Polydisperse Gaussian Coil: Calculate an empirical functional form for
6110scattering from a polydisperse polymer chain ina good solvent. The
6111polymer is polydisperse with a Schulz-Zimm polydispersity of the
6112molecular weight distribution.
6113
6114The returned value is scaled to units of [cm-1sr-1], absolute scale.
6115
6116
6117
6118where the dimensionless chain dimension is:
6119
6120
6121
6122and the polydispersion is
6123
6124.
6125
6126The scattering intensity I(q) is calculated as:
6127
6128The polydispersion in rg is provided.
6129
6130
6131
6132For 2D plot, the wave transfer is defined as .
6133
6134TEST DATASET
6135
6136This example dataset is produced by running the Poly_GaussCoil, using
6137200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the default values
6138below.
6139
6140Parameter name
6141
6142Units
6143
6144Default value
6145
6146Scale
6147
6148None
6149
61501.0
6151
6152rg
6153
6154
6155
615660.0
6157
6158poly_m
6159
6160Mw/Mn
6161
61622
6163
6164background
6165
6166cm-1
6167
61680.001
6169
6170
6171
6172
6173
6174*Figure. 1D plot using the default values (w/200 data point).*
6175
6176
6177
6178Reference:
6179
6180Glatter & Kratky - pg.404.
6181
6182J.S. Higgins, and H.C. Benoit, Polymers and Neutron Scattering, Oxford
6183Science
6184
6185Publications (1996).
6186
6187*3.21. PolymerExclVolume (Model)*
6188
6189Calculates the scattering from polymers with excluded volume effects.
6190
6191The returned value is scaled to units of [cm-1sr-1], absolute scale.
6192
6193The returned value is P(Q) as written in equation (2), plus the
6194incoherent background term. The result is in the units of [cm-1sr-1],
6195absolute scale.
6196
6197A model describing polymer chain conformations with excluded volume
6198was introduced to describe the conformation of polymer chains, and has
6199been used as a template for describing mass fractals. The form factor
6200for that model (Benoit, 1957) was originally presented in the
6201following integral form:
6202
6203(1)
6204
6205Here n is the excluded volume parameter which is related to the Porod
6206exponent m as n = 1/m, a is the polymer chain statistical segment
6207length and n is the degree of polymerization. This integral was later
6208put into an almost analytical form (Hammouda, 1993) as follows:
6209
6210(2)
6211
6212Here, g(x,U) is the incomplete gamma function which is a built-in
6213function in computer libraries.
6214
6215
6216
6217The variable U is given in terms of the scattering variable Q as:
6218
6219
6220
6221The radius of gyration squared has been defined as:
6222
6223
6224
6225Note that this model describing polymer chains with excluded volume
6226applies only in the mass fractal range ( 5/3 <= m <= 3) and does not
6227apply to surface fractals ( 3 < m <= 4). It does not reproduce the
6228rigid rod limit (m = 1) because it assumes chain flexibility from the
6229outset. It may cover a portion of the semiflexible chain range ( 1 < m
6230< 5/3).
6231
6232The low-Q expansion yields the Guinier form and the high-Q expansion
6233yields the Porod form which is given by:
6234
6235
6236
6237Here G(x) = g(x,inf) is the gamma function. The asymptotic limit is
6238dominated by the first term:
6239
6240
6241
6242The special case when n = 0.5 (or m = 1/n = 2) corresponds to Gaussian
6243chains for which the form factor is given by the familiar Debye
6244function.
6245
6246
6247
6248The form factor given by Eq. 2 is the calculated result, and is
6249plotted below for the default parameter values.
6250
6251REFERENCE
6252
6253Benoit, H., Comptes Rendus (1957). 245, 2244-2247.
6254
6255Hammouda, B., SANS from Homogeneous Polymer Mixtures A Unified
6256Overview, Advances in Polym. Sci. (1993), 106, 87-133.
6257
6258For 2D plot, the wave transfer is defined as .
6259
6260TEST DATASET
6261
6262This example dataset is produced, using 200 data points, qmin = 0.001
6263-1, qmax = 0.2 -1 and the default values below.
6264
6265Parameter name
6266
6267Units
6268
6269Default value
6270
6271Scale
6272
6273None
6274
62751.0
6276
6277rg
6278
6279
6280
628160.0
6282
6283m(=Porod exponent)
6284
62853
6286
6287background
6288
6289cm-1
6290
62910.0
6292
6293
6294
6295
6296
6297*Figure. 1D plot using the default values (w/500 data points).*
6298
6299
6300
6301*3.22.  RPA10Model*
6302
6303Calculates the macroscopic scattering intensity (units of cm^-1) for a
6304multicomponent homogeneous mixture of polymers using the Random Phase
6305Approximation. This general formalism contains 10 specific cases:
6306
6307Case 0: C/D Binary mixture of homopolymers
6308
6309Case 1: C-D Diblock copolymer
6310
6311Case 2: B/C/D Ternary mixture of homopolymers
6312
6313Case 3: C/C-D Mixture of a homopolymer B and a diblock copolymer C-D
6314
6315Case 4: B-C-D Triblock copolymer
6316
6317Case 5: A/B/C/D Quaternary mixture of homopolymers
6318
6319Case 6: A/B/C-D Mixture of two homopolymers A/B and a diblock C-D
6320
6321Case 7: A/B-C-D Mixture of a homopolymer A and a triblock B-C-D
6322
6323Case 8: A-B/C-D Mixture of two diblock copolymers A-B and C-D
6324
6325Case 9: A-B-C-D Four-block copolymer
6326
6327Note: the case numbers are different from the IGOR/NIST SANS package.
6328
6329
6330
6331Only one case can be used at any one time. Plotting a different case
6332will overwrite the original parameter waves.
6333
6334The returned value is scaled to units of [cm-1].
6335
6336Component D is assumed to be the "background" component (all contrasts
6337are calculated with respect to component D).
6338
6339Scattering contrast for a C/D blend= {SLD (component C) - SLD
6340(component D)}2
6341
6342Depending on what case is used, the number of fitting parameters
6343varies. These represent the segment lengths (ba, bb, etc) and the Chi
6344parameters (Kab, Kac, etc). The last one of these is a scaling factor
6345to be held constant equal to unity.
6346
6347The input parameters are the degree of polymerization, the volume
6348fractions for each component the specific volumes and the neutron
6349scattering length densities.
6350
6351This RPA (mean field) formalism applies only when the multicomponent
6352polymer mixture is in the homogeneous mixed-phase region.
6353
6354REFERENCE
6355
6356A.Z. Akcasu, R. Klein and B. Hammouda, Macromolecules 26, 4136 (1993)
6357
6358
6359
6360Fitting parameters for Case0 Model
6361
6362Parameter name
6363
6364Units
6365
6366Default value
6367
6368background
6369
6370cm-1
6371
63720.0
6373
6374scale
6375
63761
6377
6378bc(=Seg. Length bc)
6379
63805
6381
6382bd(=Seg. Length bd)
6383
63845
6385
6386Kcd(Chi Param. Kcd)
6387
6388-0.0004
6389
6390
6391
6392
6393
6394Fixed parameters for Case0 Model
6395
6396Parameter name
6397
6398Units
6399
6400Default value
6401
6402Lc(= Scatter. Length_c)
6403
64041e-12
6405
6406Ld(= Scatter. Length_d)
6407
64080
6409
6410Nc(=Deg.Polym.c)
6411
64121000
6413
6414Nd(=Deg.Polym.d)
6415
64161000
6417
6418Phic(=Vol. fraction of c)
6419
64200.25
6421
6422Phid(=Vol. fraction of d)
6423
64240.25
6425
6426vc(=Spec. vol. of c)
6427
6428100
6429
6430vd(=Spec. vol. of d)
6431
6432100
6433
6434
6435
6436
6437
6438
6439
6440*Figure. 1D plot using the default values (w/500 data points).*
6441
6442
6443
6444*3.23. TwoLorentzian(Model)*
6445
6446Calculate an empirical functional form for SANS data characterized by
6447a two Lorentzian functions.
6448
6449The returned value is scaled to units of [cm-1sr-1], absolute scale.
6450
6451The scattering intensity I(q) is calculated by:
6452
6453
6454
6455
6456
6457A = Lorentzian scale #1
6458
6459C = Lorentzian scale #2
6460
6461where scale is the peak height centered at q0, and B refers to the
6462standard deviation of the function.
6463
6464The background term is added for data analysis.
6465
6466For 2D plot, the wave transfer is defined as .
6467
6468*Default input parameter values*
6469
6470Parameter name
6471
6472Units
6473
6474Default value
6475
6476scale_1(=A)
6477
647810
6479
6480scale_2(=C)
6481
64821
6483
64841ength_1 (=Correlation length1)
6485
6486
6487
6488100
6489
64901ength_2(=Correlation length2)
6491
6492
6493
649410
6495
6496exponent_1(=n)
6497
64983
6499
6500exponent_2(=m)
6501
65022
6503
6504Background(=B)
6505
6506cm-1
6507
65080.1
6509
6510
6511
6512
6513
6514
6515
6516*Figure. 1D plot using the default values (w/500 data points).*
6517
6518
6519
6520*REFERENCE: None*
6521
6522*3.24. TwoPowerLaw(Model)*
6523
6524Calculate an empirical functional form for SANS data characterized by
6525two power laws.
6526
6527The returned value is scaled to units of [cm-1sr-1], absolute scale.
6528
6529
6530
6531The scattering intensity I(q) is calculated by:
6532
6533
6534
6535
6536
6537qc is the location of the crossover from one slope to the other. The
6538scaling A, sets the overall intensity of the lower Q power law region.
6539The scaling of the second power law region is scaled to match the
6540first. Be sure to enter the power law exponents as positive values.
6541
6542For 2D plot, the wave transfer is defined as .
6543
6544*Default input parameter values*
6545
6546Parameter name
6547
6548Units
6549
6550Default value
6551
6552coef_A
6553
65541.0
6555
6556qc
6557
6558-1
6559
65600.04
6561
6562power_1(=m1)
6563
65644
6565
6566power_2(=m2)
6567
65684
6569
6570background
6571
6572cm-1
6573
65740.0
6575
6576
6577
6578
6579
6580
6581
6582*Figure. 1D plot using the default values (w/500 data points).*
6583
6584
6585
6586*3.25. UnifiedPower(Law and)Rg(Model)*
6587
6588The returned value is scaled to units of [cm-1sr-1], absolute scale.
6589
6590Note that the level 0 is an extra function that is the inverse
6591function; I (q) = scale/q + background.
6592
6593Otherwise, program incorporates the empirical multiple level unified
6594Exponential/Power-law fit method developed by G. Beaucage. Four
6595functions are included so that One, Two, Three, or Four levels can be
6596used.
6597
6598The empirical expressions are able to reasonably approximate the
6599scattering from many different types of particles, including fractal
6600clusters, random coils (Debye equation), ellipsoidal particles, etc.
6601The empirical fit function is
6602
6603
6604
6605
6606
6607For each level, the four parameters Gi, Rg,i, Bi and Pi must be
6608chosen.
6609
6610For example, to approximate the scattering from random coils (Debye
6611equation), set Rg,i as the Guinier radius, Pi = 2, and Bi = 2 Gi /
6612Rg,i
6613
6614See the listed references for further information on choosing the
6615parameters.
6616
6617
6618
6619For 2D plot, the wave transfer is defined as .
6620
6621*Default input parameter values*
6622
6623Parameter name
6624
6625Units
6626
6627Default value
6628
6629scale
6630
66311.0
6632
6633Rg2
6634
6635
6636
663721
6638
6639power2
6640
66412
6642
6643G2
6644
6645cm-1sr-1
6646
66473
6648
6649B2
6650
6651cm-1sr-1
6652
66530.0006
6654
6655Rg1
6656
6657
6658
665915.8
6660
6661power1
6662
66634
6664
6665G1
6666
6667cm-1sr-1
6668
6669400
6670
6671B1
6672
6673cm-1sr-1
6674
66754.5e-006
6676
6677background
6678
6679cm-1
6680
66810.0
6682
6683
6684
6685
6686
6687
6688
6689*Figure. 1D plot using the default values (w/500 data points).*
6690
6691
6692
6693REFERENCES
6694
6695G. Beaucage (1995). J. Appl. Cryst., vol. 28, p717-728.
6696
6697G. Beaucage (1996). J. Appl. Cryst., vol. 29, p134-146.
6698
6699*3.26.  LineModel*
6700
6701This is a linear function that calculates:
6702
6703
6704
6705
6706
6707where A and B are the coefficients of the first and second order
6708terms.
6709
6710*Note:* For 2D plot, I(q) = I(qx)*I(qy) which is defined differently
6711from other shape independent models.
6712
6713Parameter name
6714
6715Units
6716
6717Default value
6718
6719A
6720
6721cm-1
6722
67231.0
6724
6725B
6726
6727
6728
67291.0
6730
6731
6732
6733*3.27. ReflectivityModel*
6734
6735This model calculates the reflectivity and uses the Parrett algorithm.
6736Up to nine film layers are supported between Bottom(substrate) and
6737Medium(Superstrate where the neutron enters the first top film). Each
6738layers are composed of [ of the interface(from the previous layer or
6739substrate) + flat portion + of the interface(to the next layer or
6740medium)]. Only two simple interfacial functions are selectable, error
6741function and linear function. The each interfacial thickness is
6742equivalent to (- 2.5 sigma to +2.5 sigma for the error function,
6743sigma=roughness).
6744
6745Note: This model was contributed by an interested user.
6746
6747
6748
6749*Figure. Comparison (using the SLD profile below) with NISTweb
6750calculation (circles):
6751http://www.ncnr.nist.gov/resources/reflcalc.html.*
6752
6753
6754
6755*Figure. SLD profile used for the calculation(above).*
6756
6757*3.28. ReflectivityIIModel*
6758
6759Same as the ReflectivityModel except that the it is more customizable.
6760More interfacial functions are supplied. The number of points
6761(npts_inter) for each interface can be choosen. The constant (A below
6762but 'nu' as a parameter name of the model) for exp, erf, or power-law
6763is an input. The SLD at the interface between layers, *rinter_i*, is
6764calculated with a function chosen by a user, where the functions are:
6765
67661) Erf;
6767
6768
6769
67702) Power-Law;
6771
6772
6773
6774
6775
6776
6777
67783) Exp;
6779
6780
6781
6782
6783
6784Note: This model was implemented by an interested user.
6785
6786*3.29. GelFitModel*
6787
6788Unlike a concentrated polymer solution, the fine-scale polymer
6789distribution in a gel involves at least two characteristic length
6790scales, a shorter correlation length (a1) to describe the rapid
6791fluctuations in the position of the polymer chains that ensure
6792thermodynamic equilibrium, and a longer distance (denoted here as a2)
6793needed to account for the static accumulations of polymer pinned down
6794by junction points or clusters of such points. The letter is derived
6795from a simple Guinier function.
6796
6797The scattered intensity I(Q) is then calculated as:
6798
6799
6800
6801Where:
6802
6803
6804
6805
6806
6807
6808
6809Note the first term reduces to the Ornstein-Zernicke equation when
6810D=2; ie, when the Flory exponent is 0.5 (theta conditions). In gels
6811with significant hydrogen bonding D has been reported to be ~2.6 to
68122.8.
6813
6814Note: This model was implemented by an interested user.
6815
6816*Default input parameter values*
6817
6818Parameter name
6819
6820Units
6821
6822Default value
6823
6824Background
6825
6826cm-1
6827
68280.01
6829
6830Guinier scale
6831
6832cm-1
6833
68341.7
6835
6836Lorentzian scale
6837
6838cm-1
6839
68403.5
6841
6842Radius of gyration
6843
6844
6845
6846104
6847
6848Fractal exponent
6849
68502
6851
6852Correlation length
6853
6854
6855
685616
6857
6858
6859
6860
6861
6862
6863
6864*Figure. 1D plot using the default values (w/300 data points,
6865qmin=0.001, and qmax=0.3).*
6866
6867
6868
6869REFERENCES
6870
6871Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C. Han, J. Chem. Phys.
68721992, 97 (9), 6829-6841.
6873
6874Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R. Rennie, Erik
6875Geissler, Macromolecules 1991, 24, 543-548.
6876
6877
6878
6879*3.30.  Star Polymer with Gaussian Statistics *
6880
6881For a star with *f* arms:
6882
6883
6884
6885
6886
6887
6888
6889where is the ensemble average radius of gyration squared of an arm.
6890
6891
6892
6893References:
6894
6895H. Benoit, J. Polymer Science., 11, 596-599 (1953)
6896
6897
6898
6899
6900
6901
69022.3 Structure-factor Functions
6903------------------------------
6904
6905The information in this section is originated from NIST SANS IgorPro
6906package.
6907
6908*5.1. HardSphere Structure *
6909
6910This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard sphere (excluded volume) interactions. The calculation uses the Percus-Yevick closure where the interparticle potential is:
6911
6912
6913
6914
6915
6916where r is the distance from the center of the sphere of a radius R.
6917
6918For 2D plot, the wave transfer is defined as .
6919
6920Parameter name
6921
6922Units
6923
6924Default value
6925
6926effect_radius
6927
6928
6929
693050.0
6931
6932volfraction
6933
69340.2
6935
6936
6937
6938*Figure. 1D plot using the default values (in linear scale).*
6939
6940References:
6941
6942Percus, J. K.; Yevick, J. Phys. Rev. 110, 1. (1958).
6943
6944*5.2. SquareWell Structure *
6945
6946This calculates the interparticle structure factor for a square well fluid spherical particles The mean spherical
6947approximation (MSA) closure was used for this calculation, and is not the most appropriate closure for an attractive
6948interparticle potential. This solution has been compared to Monte Carlo simulations for a square well fluid, showing
6949this calculation to be limited in applicability to well depths e < 1.5 kT and volume fractions f < 0.08.
6950
6951Positive well depths correspond to an attractive potential well. Negative well depths correspond to a potential
6952"shoulder", which may or may not be physically reasonable.
6953
6954The well width (l) is defined as multiples of the particle diameter (2*R)
6955
6956The interaction potential is:
6957
6958
6959
6960
6961
6962where r is the distance from the center of the sphere of a radius R.
6963
6964For 2D plot, the wave transfer is defined as .
6965
6966Parameter name
6967
6968Units
6969
6970Default value
6971
6972effect_radius
6973
6974
6975
697650.0
6977
6978volfraction
6979
69800.04
6981
6982welldepth
6983
6984kT
6985
69861.5
6987
6988wellwidth
6989
6990diameters
6991
69921.2
6993
6994
6995
6996*Figure. 1D plot using the default values (in linear scale).*
6997
6998References:
6999
7000Sharma, R. V.; Sharma, K. C. Physica, 89A, 213. (1977).
7001
7002
7003
7004*5.3. HayterMSA Structure *
7005
7006This calculates the Structure factor (the Fourier transform of the pair correlation function g(r)) for a system of
7007charged, spheroidal objects in a dielectric medium. When combined with an appropriate form factor (such as sphere,
7008core+shell, ellipsoid etc), this allows for inclusion of the interparticle interference effects due to screened coulomb
7009repulsion between charged particles. This routine only works for charged particles. If the charge is set to zero the
7010routine will self destruct. For non-charged particles use a hard sphere potential.
7011
7012The salt concentration is used to compute the ionic strength of the solution which in turn is used to compute the Debye
7013screening length. At present there is no provision for entering the ionic strength directly nor for use of any
7014multivalent salts. The counterions are also assumed to be monovalent.
7015
7016For 2D plot, the wave transfer is defined as .
7017
7018Parameter name
7019
7020Units
7021
7022Default value
7023
7024effect_radius
7025
7026
7027
702820.8
7029
7030charge
7031
703219
7033
7034volfraction
7035
70360.2
7037
7038temperature
7039
7040K
7041
7042318
7043
7044salt conc
7045
7046M
7047
70480
7049
7050dielectconst
7051
705271.1
7053
7054
7055
7056*Figure. 1D plot using the default values (in linear scale).*
7057
7058References:
7059
7060JP Hansen and JB Hayter, Molecular Physics 46, 651-656 (1982).
7061
7062JB Hayter and J Penfold, Molecular Physics 42, 109-118 (1981).
7063
7064*5.4. StickyHS Structure *
7065
7066This calculates the interparticle structure factor for a hard sphere
7067fluid with a narrow attractive well. A perturbative solution of the
7068Percus-Yevick closure is used. The strength of the attractive well is
7069described in terms of "stickiness" as defined below. The returned
7070value is a dimensionless structure factor, S(q).
7071
7072The perturb (perturbation parameter), epsilon, should be held between
70730.01 and 0.1. It is best to hold the perturbation parameter fixed and
7074let the "stickiness" vary to adjust the interaction strength. The
7075stickiness, tau, is defined in the equation below and is a function of
7076both the perturbation parameter and the interaction strength. Tau and
7077epsilon are defined in terms of the hard sphere diameter (sigma = 2R),
7078the width of the square well, delta (same units as R), and the depth
7079of the well, uo, in units of kT. From the definition, it is clear that
7080smaller tau mean stronger attraction.
7081
7082
7083
7084
7085
7086
7087
7088where the interaction potential is
7089
7090
7091
7092
7093
7094The Percus-Yevick (PY) closure was used for this calculation, and is
7095an adequate closure for an attractive interparticle potential. This
7096solution has been compared to Monte Carlo simulations for a square
7097well fluid, with good agreement.
7098
7099The true particle volume fraction, f, is not equal to h, which appears
7100in most of the reference. The two are related in equation (24) of the
7101reference. The reference also describes the relationship between this
7102perturbation solution and the original sticky hard sphere (or adhesive
7103sphere) model by Baxter.
7104
7105NOTES: The calculation can go haywire for certain combinations of the
7106input parameters, producing unphysical solutions - in this case errors
7107are reported to the command window and the S(q) is set to -1 (it will
7108disappear on a log-log plot). Use tight bounds to keep the parameters
7109to values that you know are physical (test them) and keep nudging them
7110until the optimization does not hit the constraints.
7111
7112For 2D plot, the wave transfer is defined as .
7113
7114Parameter name
7115
7116Units
7117
7118Default value
7119
7120effect_radius
7121
7122
7123
712450
7125
7126perturb
7127
71280.05
7129
7130volfraction
7131
71320.1
7133
7134stickiness
7135
7136K
7137
71380.2
7139
7140
7141
7142*Figure. 1D plot using the default values (in linear scale).*
7143
7144References:
7145
7146Menon, S. V. G., Manohar, C. and K. Srinivas Rao J. Chem. Phys.,
714795(12), 9186-9190 (1991).
7148
7149
7150
7151
7152
71532.4 Customised Functions
7154------------------------------
7155
7156
7157Customized model functions can be redefined or added by users (See
7158SansView tutorial for details).
7159
7160*4.1. testmodel*
7161
7162
7163
7164This function, as an example of a user defined function, calculates
7165the intensity = A + Bcos(2q) + Csin(2q).
7166
7167*4.2. testmodel_2 *
7168
7169This function, as an example of a user defined function, calculates
7170the intensity = scale * sin(f)/f, where f = A + Bq + Cq2 + Dq3 + Eq4 +
7171Fq5.
7172
7173*4.3. sum_p1_p2 *
7174
7175This function, as an example of a user defined function, calculates
7176the intensity = scale_factor * (CylinderModel + PolymerExclVolume
7177model). To make your own sum(P1+P2) model, select 'Easy Custom Sum'
7178from the Fitting menu, or modify and compile the file named
7179'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu. It
7180works only for single functional models.
7181
7182*4.4. sum_Ap1_1_Ap2 *
7183
7184This function, as an example of a user defined function, calculates
7185the intensity = (scale_factor * CylinderModel + (1-scale_factor) *
7186PolymerExclVolume model). To make your own A*p1+(1-A)*p2 model, modify
7187and compile the file named 'sum_Ap1_1_Ap2.py' from 'Edit Custom Model'
7188in the 'Fitting' menu. It works only for single functional models.
7189
7190*4.5. polynomial5 *
7191
7192This function, as an example of a user defined function, calculates
7193the intensity = A + Bq + Cq2 + Dq3 + Eq4 + Fq5. This model can be
7194modified and compiled from 'Edit Custom Model' in the 'Fitting' menu.
7195
7196*4.6. sph_bessel_jn *
7197
7198This function, as an example of a user defined function, calculates
7199the intensity = C*sph_jn(Ax+B)+D where the sph_jn is spherical Bessel
7200function of the order n. This model can be modified and compiled from
7201'Edit Custom Model' in the 'Fitting' menu.
Note: See TracBrowser for help on using the repository browser.