[2005bb5] | 1 | .. model_functions.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView model_functions.html to ReSTructured text |
---|
| 4 | .. S King, Apr 2014 |
---|
| 5 | .. with thanks to A Jackson & P Kienzle for advice! |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | .. Set up some substitutions to make life easier... |
---|
| 9 | |
---|
| 10 | .. |alpha| unicode:: U+03B1 |
---|
| 11 | .. |beta| unicode:: U+03B2 |
---|
| 12 | .. |gamma| unicode:: U+03B3 |
---|
| 13 | .. |delta| unicode:: U+03B4 |
---|
| 14 | .. |epsilon| unicode:: U+03B5 |
---|
| 15 | .. |zeta| unicode:: U+03B6 |
---|
| 16 | .. |eta| unicode:: U+03B7 |
---|
| 17 | .. |theta| unicode:: U+03B8 |
---|
| 18 | .. |iota| unicode:: U+03B9 |
---|
| 19 | .. |kappa| unicode:: U+03BA |
---|
| 20 | .. |lambda| unicode:: U+03BB |
---|
| 21 | .. |mu| unicode:: U+03BC |
---|
| 22 | .. |nu| unicode:: U+03BD |
---|
| 23 | .. |xi| unicode:: U+03BE |
---|
| 24 | .. |omicron| unicode:: U+03BF |
---|
| 25 | .. |pi| unicode:: U+03C0 |
---|
| 26 | .. |rho| unicode:: U+03C1 |
---|
| 27 | .. |sigma| unicode:: U+03C2 |
---|
| 28 | .. |tau| unicode:: U+03C4 |
---|
| 29 | .. |upsilon| unicode:: U+03C5 |
---|
| 30 | .. |phi| unicode:: U+03C6 |
---|
| 31 | .. |chi| unicode:: U+03C7 |
---|
| 32 | .. |psi| unicode:: U+03C8 |
---|
| 33 | .. |omega| unicode:: U+03C9 |
---|
| 34 | |
---|
| 35 | .. |Ang| unicode:: U+212B |
---|
| 36 | .. |Ang^-1| replace:: |Ang|\ :sup:`-1` |
---|
| 37 | .. |Ang^2| replace:: |Ang|\ :sup:`2` |
---|
| 38 | .. |Ang^-2| replace:: |Ang|\ :sup:`-2` |
---|
| 39 | .. |Ang^3| replace:: |Ang|\ :sup:`3` |
---|
| 40 | .. |cm^-1| replace:: cm\ :sup:`-1` |
---|
| 41 | .. |cm^2| replace:: cm\ :sup:`2` |
---|
| 42 | .. |cm^-2| replace:: cm\ :sup:`-2` |
---|
| 43 | .. |cm^3| replace:: cm\ :sup:`3` |
---|
| 44 | .. |cm^-3| replace:: cm\ :sup:`-3` |
---|
| 45 | |
---|
| 46 | .. |P0| replace:: P\ :sub:`0`\ |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | .. Actual document starts here... |
---|
| 55 | |
---|
| 56 | SasView Model Functions |
---|
| 57 | ======================= |
---|
| 58 | |
---|
| 59 | Contents |
---|
| 60 | -------- |
---|
| 61 | 1. Introduction_ |
---|
| 62 | |
---|
| 63 | 2. Model_ Functions |
---|
| 64 | |
---|
| 65 | 2.1 Shape-based_ Functions |
---|
| 66 | 2.2 Shape-independent_ Functions |
---|
| 67 | 2.3 Structure-factor_ Functions |
---|
| 68 | 2.4 Customised_ Functions |
---|
| 69 | |
---|
| 70 | 3. References_ |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | .. _Introduction: |
---|
| 79 | |
---|
| 80 | 1. Introduction |
---|
| 81 | --------------- |
---|
| 82 | |
---|
| 83 | Many of our models use the form factor calculations implemented in a c-library provided by the NIST Center for Neutron |
---|
| 84 | Research and thus some content and figures in this document are originated from or shared with the NIST Igor analysis |
---|
| 85 | package. |
---|
| 86 | |
---|
| 87 | This software provides form factors for various particle shapes. After giving a mathematical definition of each model, |
---|
| 88 | we show the list of parameters available to the user. Validation plots for each model are also presented. |
---|
| 89 | |
---|
| 90 | Instructions on how to use SasView itself are available separately. |
---|
| 91 | |
---|
| 92 | To easily compare to the scattering intensity measured in experiments, we normalize the form factors by the volume of |
---|
| 93 | the particle |
---|
| 94 | |
---|
| 95 | .. image:: img/image001.PNG |
---|
| 96 | |
---|
| 97 | with |
---|
| 98 | |
---|
| 99 | .. image:: img/image002.PNG |
---|
| 100 | |
---|
| 101 | where |P0|\ *(q)* is the un-normalized form factor, |rho|\ *(r)* is the scattering length density at a given |
---|
| 102 | point in space and the integration is done over the volume *V* of the scatterer. |
---|
| 103 | |
---|
| 104 | For systems without inter-particle interference, the form factors we provide can be related to the scattering intensity |
---|
| 105 | by the particle volume fraction |
---|
| 106 | |
---|
| 107 | .. image:: img/image003.PNG |
---|
| 108 | |
---|
| 109 | Our so-called 1D scattering intensity functions provide *P(q)* for the case where the scatterer is randomly oriented. In |
---|
| 110 | that case, the scattering intensity only depends on the length of *q* . The intensity measured on the plane of the SANS |
---|
| 111 | detector will have an azimuthal symmetry around *q*\ =0 . |
---|
| 112 | |
---|
| 113 | Our so-called 2D scattering intensity functions provide *P(q,* |phi| *)* for an oriented system as a function of a |
---|
| 114 | q-vector in the plane of the detector. We define the angle |phi| as the angle between the q vector and the horizontal |
---|
| 115 | (x) axis of the plane of the detector. |
---|
| 116 | |
---|
| 117 | For information about polarised and magnetic scattering, click here_. |
---|
| 118 | |
---|
| 119 | .. _here: polar_mag_help.html |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | |
---|
| 123 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | .. _Model: |
---|
| 128 | |
---|
| 129 | 2. Model functions |
---|
| 130 | ------------------ |
---|
| 131 | |
---|
| 132 | .. _Shape-based: |
---|
| 133 | |
---|
| 134 | 2.1 Shape-based Functions |
---|
| 135 | ------------------------- |
---|
| 136 | |
---|
| 137 | Sphere-based |
---|
| 138 | ------------ |
---|
| 139 | |
---|
| 140 | - SphereModel_ (including magnetic 2D version) |
---|
| 141 | - BinaryHSModel_ |
---|
| 142 | - FuzzySphereModel |
---|
| 143 | - RaspBerryModel |
---|
| 144 | - CoreShellModel (including magnetic 2D version) |
---|
| 145 | - CoreMultiShellModel (including magnetic 2D version) |
---|
| 146 | - Core2ndMomentModel |
---|
| 147 | - MultiShellModel |
---|
| 148 | - OnionExpShellModel |
---|
| 149 | - VesicleModel |
---|
| 150 | - SphericalSLDModel |
---|
| 151 | - LinearPearlsModel |
---|
| 152 | - PearlNecklaceModel |
---|
| 153 | |
---|
| 154 | Cylinder-based |
---|
| 155 | -------------- |
---|
| 156 | |
---|
| 157 | - CylinderModel (including magnetic 2D version) |
---|
| 158 | - HollowCylinderModel |
---|
| 159 | - CappedCylinderModel |
---|
| 160 | - CoreShellCylinderModel |
---|
| 161 | - EllipticalCylinderModel |
---|
| 162 | - FlexibleCylinderModel |
---|
| 163 | - FlexCylEllipXModel |
---|
| 164 | - CoreShellBicelleModel |
---|
| 165 | - BarBellModel |
---|
| 166 | - StackedDisksModel |
---|
| 167 | - PringleModel |
---|
| 168 | |
---|
| 169 | Ellipsoid-based |
---|
| 170 | --------------- |
---|
| 171 | |
---|
| 172 | - EllipsoidModel |
---|
| 173 | - CoreShellEllipsoidModel |
---|
| 174 | - TriaxialEllipsoidModel |
---|
| 175 | |
---|
| 176 | Lamellae |
---|
| 177 | -------- |
---|
| 178 | |
---|
| 179 | - LamellarModel |
---|
| 180 | - LamellarFFHGModel |
---|
| 181 | - LamellarPSModel |
---|
| 182 | - LamellarPSHGModel |
---|
| 183 | |
---|
| 184 | Paracrystals |
---|
| 185 | ------------ |
---|
| 186 | |
---|
| 187 | - LamellarPCrystalModel |
---|
| 188 | - SCCrystalModel |
---|
| 189 | - FCCrystalModel |
---|
| 190 | - BCCrystalModel |
---|
| 191 | |
---|
| 192 | Parallelpipeds |
---|
| 193 | -------------- |
---|
| 194 | |
---|
| 195 | - ParallelepipedModel (including magnetic 2D version) |
---|
| 196 | - CSParallelepipedModel |
---|
| 197 | |
---|
| 198 | .. _Shape-independent: |
---|
| 199 | |
---|
| 200 | 2.2 Shape-Independent Functions |
---|
| 201 | ------------------------------- |
---|
| 202 | |
---|
| 203 | - AbsolutePower_Law |
---|
| 204 | - BEPolyelectrolyte |
---|
| 205 | - BroadPeakModel |
---|
| 206 | - CorrLength |
---|
| 207 | - DABModel |
---|
| 208 | - Debye |
---|
| 209 | - FractalModel |
---|
| 210 | - FractalCoreShell |
---|
| 211 | - GaussLorentzGel |
---|
| 212 | - Guinier |
---|
| 213 | - GuinierPorod |
---|
| 214 | - Lorentz |
---|
| 215 | - MassFractalModel |
---|
| 216 | - MassSurfaceFractal |
---|
| 217 | - PeakGaussModel |
---|
| 218 | - PeakLorentzModel |
---|
| 219 | - Poly_GaussCoil |
---|
| 220 | - PolyExclVolume |
---|
| 221 | - PorodModel |
---|
| 222 | - RPA10Model |
---|
| 223 | - StarPolymer |
---|
| 224 | - SurfaceFractalModel |
---|
| 225 | - Teubner Strey |
---|
| 226 | - TwoLorentzian |
---|
| 227 | - TwoPowerLaw |
---|
| 228 | - UnifiedPowerRg |
---|
| 229 | - LineModel |
---|
| 230 | - ReflectivityModel |
---|
| 231 | - ReflectivityIIModel |
---|
| 232 | - GelFitModel |
---|
| 233 | |
---|
| 234 | .. _Structure-factor: |
---|
| 235 | |
---|
| 236 | 2.3 Structure Factor Functions |
---|
| 237 | ------------------------------ |
---|
| 238 | |
---|
| 239 | - HardSphereStructure |
---|
| 240 | - SquareWellStructure |
---|
| 241 | - HayterMSAStructure |
---|
| 242 | - StickyHSStructure |
---|
| 243 | |
---|
| 244 | .. _Customised: |
---|
| 245 | |
---|
| 246 | 2.4 Customized Functions |
---|
| 247 | ------------------------ |
---|
| 248 | |
---|
| 249 | - testmodel |
---|
| 250 | - testmodel_2 |
---|
| 251 | - sum_p1_p2 |
---|
| 252 | - sum_Ap1_1_Ap2 |
---|
| 253 | - polynomial5 |
---|
| 254 | - sph_bessel_jn |
---|
| 255 | |
---|
| 256 | |
---|
| 257 | |
---|
| 258 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | .. _References: |
---|
| 263 | |
---|
| 264 | 3. References |
---|
| 265 | ------------- |
---|
| 266 | *Small-Angle Scattering of X-Rays* |
---|
| 267 | A. Guinier and G. Fournet |
---|
| 268 | John Wiley & Sons, New York (1955) |
---|
| 269 | |
---|
| 270 | P. Stckel, R. May, I. Strell, Z. Cejka, W. Hoppe, H. Heumann, W. Zillig and H. Crespi |
---|
| 271 | *Eur. J. Biochem.*, 112, (1980), 411-417 |
---|
| 272 | |
---|
| 273 | G. Porod |
---|
| 274 | in *Small Angle X-ray Scattering* |
---|
| 275 | (editors) O. Glatter and O. Kratky |
---|
| 276 | Academic Press (1982) |
---|
| 277 | |
---|
| 278 | *Structure Analysis by Small-Angle X-Ray and Neutron Scattering* |
---|
| 279 | L.A. Feigin and D. I. Svergun |
---|
| 280 | Plenum Press, New York (1987) |
---|
| 281 | |
---|
| 282 | S. Hansen |
---|
| 283 | *J. Appl. Cryst.* 23, (1990), 344-346 |
---|
| 284 | |
---|
| 285 | S.J. Henderson |
---|
| 286 | *Biophys. J.* 70, (1996), 1618-1627 |
---|
| 287 | |
---|
| 288 | B.C. McAlister and B.P. Grady, B.P |
---|
| 289 | *J. Appl. Cryst.* 31, (1998), 594-599 |
---|
| 290 | |
---|
| 291 | S.R. Kline |
---|
| 292 | *J Appl. Cryst.* 39(6), (2006), 895 |
---|
| 293 | |
---|
| 294 | **Also see the references at the end of the each model function descriptions.** |
---|
| 295 | |
---|
| 296 | |
---|
| 297 | |
---|
| 298 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | |
---|
| 302 | Model Definitions |
---|
| 303 | ----------------- |
---|
| 304 | |
---|
| 305 | .. _SphereModel: |
---|
| 306 | |
---|
| 307 | **2.1.1. SphereModel** |
---|
| 308 | |
---|
| 309 | This model provides the form factor, *P(q)*, for a monodisperse spherical particle with uniform scattering length |
---|
| 310 | density. The form factor is normalized by the particle volume as described below. |
---|
| 311 | |
---|
| 312 | For information about polarised and magnetic scattering, click here_. |
---|
| 313 | |
---|
| 314 | .. _here: polar_mag_help.html |
---|
| 315 | |
---|
| 316 | *2.1.1.1. Definition* |
---|
| 317 | |
---|
| 318 | The 1D scattering intensity is calculated in the following way (Guinier, 1955) |
---|
| 319 | |
---|
| 320 | .. image:: img/image004.PNG |
---|
| 321 | |
---|
| 322 | where *scale* is a volume fraction, *V* is the volume of the scatterer, *r* is the radius of the sphere, *bkg* is |
---|
| 323 | the background level and *sldXXX* is the scattering length density (SLD) of the scatterer or the solvent. |
---|
| 324 | |
---|
| 325 | Note that if your data is in absolute scale, the *scale* should represent the volume fraction (which is unitless) if |
---|
| 326 | you have a good fit. If not, it should represent the volume fraction \* a factor (by which your data might need to be |
---|
| 327 | rescaled). |
---|
| 328 | |
---|
| 329 | The 2D scattering intensity is the same as above, regardless of the orientation of the q vector. |
---|
| 330 | |
---|
| 331 | The returned value is scaled to units of |cm^-1| and the parameters of the sphere model are the following: |
---|
| 332 | |
---|
| 333 | ============== ======== ============= |
---|
| 334 | Parameter name Units Default value |
---|
| 335 | ============== ======== ============= |
---|
| 336 | scale None 1 |
---|
| 337 | radius |Ang| 60 |
---|
| 338 | sldSph |Ang^-2| 2.0e-6 |
---|
| 339 | sldSolv |Ang^-2| 1.0e-6 |
---|
| 340 | background |cm^-1| 0 |
---|
| 341 | ============== ======== ============= |
---|
| 342 | |
---|
| 343 | Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron |
---|
| 344 | Research (Kline, 2006). |
---|
| 345 | |
---|
| 346 | *2.1.1.2. Validation of the SphereModel* |
---|
| 347 | |
---|
| 348 | Validation of our code was done by comparing the output of the 1D model to the output of the software provided by the |
---|
| 349 | NIST (Kline, 2006). Figure 1 shows a comparison of the output of our model and the output of the NIST software. |
---|
| 350 | |
---|
| 351 | .. image:: img/image005.JPG |
---|
| 352 | |
---|
| 353 | Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the NIST SANS analysis software. |
---|
| 354 | The parameters were set to: Scale=1.0, Radius=60 |Ang|, Contrast=1e-6 |Ang^-2|, and Background=0.01 |cm^-1|. |
---|
| 355 | |
---|
| 356 | *2013/09/09 and 2014/01/06 - Description reviewed by S. King and P. Parker.* |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | .. _BinaryHSModel: |
---|
| 361 | |
---|
| 362 | **2.1.2. BinaryHSModel** |
---|
| 363 | |
---|
| 364 | *2.1.2.1. Definition* |
---|
| 365 | |
---|
| 366 | This model (binary hard sphere model) provides the scattering intensity, for binary mixture of spheres including hard |
---|
| 367 | sphere interaction between those particles. Using Percus-Yevick closure, the calculation is an exact multi-component |
---|
| 368 | solution |
---|
| 369 | |
---|
| 370 | .. image:: img/image006.PNG |
---|
| 371 | |
---|
| 372 | where *Sij* are the partial structure factors and *fi* are the scattering amplitudes of the particles. The subscript 1 |
---|
| 373 | is for the smaller particle and 2 is for the larger. The number fraction of the larger particle, (*x* = n2/(n1+n2), |
---|
| 374 | where *n* = the number density) is internally calculated based on |
---|
| 375 | |
---|
| 376 | .. image:: img/image007.PNG |
---|
| 377 | |
---|
| 378 | The 2D scattering intensity is the same as 1D, regardless of the orientation of the *q* vector which is defined as |
---|
| 379 | |
---|
| 380 | .. image:: img/image008.PNG |
---|
| 381 | |
---|
| 382 | The parameters of the binary hard sphere are the following (in the names, *l* (or *ls*\ ) stands for larger spheres |
---|
| 383 | while *s* (or *ss*\ ) for the smaller spheres). |
---|
| 384 | |
---|
| 385 | ============== ======== ============= |
---|
| 386 | Parameter name Units Default value |
---|
| 387 | ============== ======== ============= |
---|
| 388 | background |cm^-1| 0.001 |
---|
| 389 | l_radius |Ang| 100.0 |
---|
| 390 | ss_sld |Ang^-2| 0.0 |
---|
| 391 | ls_sld |Ang^-2| 3e-6 |
---|
| 392 | solvent_sld |Ang^-2| 6e-6 |
---|
| 393 | s_radius |Ang| 25.0 |
---|
| 394 | vol_frac_ls 0.1 |
---|
| 395 | vol_frac_ss 0.2 |
---|
| 396 | ============== ======== ============= |
---|
| 397 | |
---|
| 398 | .. image:: img/image009.JPG |
---|
| 399 | |
---|
| 400 | *Figure. 1D plot using the default values above (w/200 data point).* |
---|
| 401 | |
---|
| 402 | Our model uses the form factor calculations implemented in a c-library provided by the NIST Center for Neutron |
---|
| 403 | Research (Kline, 2006). |
---|
| 404 | |
---|
| 405 | See the reference for details. |
---|
| 406 | |
---|
| 407 | REFERENCE |
---|
| 408 | N. W. Ashcroft and D. C. Langreth, Physical Review, v. 156 (1967) 685-692 |
---|
| 409 | |
---|
| 410 | [Errata found in Phys. Rev. 166 (1968) 934.] |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | |
---|
| 414 | .. _FuzzySphereModel: |
---|
| 415 | |
---|
| 416 | **2.1.3. FuzzySphereModel** |
---|
| 417 | |
---|
| 418 | **This model is to calculate the scattering from spherical particles |
---|
| 419 | with a "fuzzy" interface.** |
---|
| 420 | |
---|
| 421 | *2.1.3.1. Definition* |
---|
| 422 | |
---|
| 423 | The 1D scattering intensity is calculated in the following way |
---|
| 424 | (Guinier, 1955): |
---|
| 425 | |
---|
| 426 | The returned value is scaled to units of [cm-1 sr-1], absolute scale. |
---|
| 427 | |
---|
| 428 | The scattering intensity I(q) is calculated as: |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | |
---|
| 432 | where the amplitude A(q) is given as the typical sphere scattering |
---|
| 433 | convoluted with a Gaussian to get a gradual drop-off in the scattering |
---|
| 434 | length density: |
---|
| 435 | |
---|
| 436 | |
---|
| 437 | |
---|
| 438 | Here A2(q) is the form factor, P(q). The scale is equivalent to the |
---|
| 439 | volume fraction of spheres, each of volume, V. Contrast ( * ) is the |
---|
| 440 | difference of scattering length densities of the sphere and the |
---|
| 441 | surrounding solvent. |
---|
| 442 | |
---|
| 443 | The poly-dispersion in radius and in fuzziness is provided. |
---|
| 444 | |
---|
| 445 | (direct from the reference) |
---|
| 446 | |
---|
| 447 | The "fuzziness" of the interface is defined by the parameter |
---|
| 448 | (sigma)fuzzy. The particle radius R represents the radius of the |
---|
| 449 | particle where the scattering length density profile decreased to 1/2 |
---|
| 450 | of the core density. The (sigma)fuzzy is the width of the smeared |
---|
| 451 | particle surface: i.e., the standard deviation from the average height |
---|
| 452 | of the fuzzy interface. The inner regions of the microgel that display |
---|
| 453 | a higher density are described by the radial box profile extending to |
---|
| 454 | a radius of approximately Rbox ~ R - 2(sigma). the profile approaches |
---|
| 455 | zero as Rsans ~ R + 2(sigma). |
---|
| 456 | |
---|
| 457 | For 2D data: The 2D scattering intensity is calculated in the same way |
---|
| 458 | as 1D, where the *q* vector is defined as . |
---|
| 459 | |
---|
| 460 | REFERENCE |
---|
| 461 | |
---|
| 462 | M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20 |
---|
| 463 | (2004) 7283-7292. |
---|
| 464 | |
---|
| 465 | *2.1.3.2. Validation of the fuzzy sphere model* |
---|
| 466 | |
---|
| 467 | This example dataset is produced by running the FuzzySphereModel, |
---|
| 468 | using 200 data points, qmin = 0.001 -1, qmax = 0.7 A-1 and the default |
---|
| 469 | values: |
---|
| 470 | |
---|
| 471 | Parameter name |
---|
| 472 | |
---|
| 473 | Units |
---|
| 474 | |
---|
| 475 | Default value |
---|
| 476 | |
---|
| 477 | scale |
---|
| 478 | |
---|
| 479 | None |
---|
| 480 | |
---|
| 481 | 1.0 |
---|
| 482 | |
---|
| 483 | radius |
---|
| 484 | |
---|
| 485 | |
---|
| 486 | |
---|
| 487 | 60 |
---|
| 488 | |
---|
| 489 | fuzziness |
---|
| 490 | |
---|
| 491 | |
---|
| 492 | |
---|
| 493 | 10 |
---|
| 494 | |
---|
| 495 | sldSolv |
---|
| 496 | |
---|
| 497 | -2 |
---|
| 498 | |
---|
| 499 | 3e-6 |
---|
| 500 | |
---|
| 501 | sldSph |
---|
| 502 | |
---|
| 503 | -2 |
---|
| 504 | |
---|
| 505 | 1e-6 |
---|
| 506 | |
---|
| 507 | background |
---|
| 508 | |
---|
| 509 | cm-1 |
---|
| 510 | |
---|
| 511 | 0.001 |
---|
| 512 | |
---|
| 513 | |
---|
| 514 | |
---|
| 515 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 516 | |
---|
| 517 | |
---|
| 518 | |
---|
| 519 | .. _RaspBerryModel: |
---|
| 520 | |
---|
| 521 | **2.1.4. RaspBerryModel** |
---|
| 522 | |
---|
| 523 | Calculates the form factor, P(q), for a "Raspberry-like" structure |
---|
| 524 | where there are smaller spheres at the surface of a larger sphere, |
---|
| 525 | such as the structure of a Pickering emulsion. |
---|
| 526 | |
---|
| 527 | *2.1.4.1. Definition* |
---|
| 528 | |
---|
| 529 | The structure is: |
---|
| 530 | |
---|
| 531 | |
---|
| 532 | |
---|
| 533 | Ro = the radius of thelarge sphere |
---|
| 534 | Rp = the radius of the smaller sphere on the surface |
---|
| 535 | delta = the fractional penetration depth |
---|
| 536 | surface coverage = fractional coverage of the large sphere surface |
---|
| 537 | (0.9 max) |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | The large and small spheres have their own SLD, as well as the |
---|
| 541 | solvent. The surface coverage term is a fractional coverage (maximum |
---|
| 542 | of approximately 0.9 for hexagonally packed spheres on a surface). |
---|
| 543 | Since not all of the small spheres are necessarily attached to the |
---|
| 544 | surface, the excess free (small) spheres scattering is also included |
---|
| 545 | in the calculation. The function calculated follows equations (8)-(12) |
---|
| 546 | of the reference below, and the equations are not reproduced here. |
---|
| 547 | |
---|
| 548 | The returned value is scaled to units of [cm-1]. No interparticle |
---|
| 549 | scattering is included in this model. |
---|
| 550 | |
---|
| 551 | For 2D data: The 2D scattering intensity is calculated in the same way |
---|
| 552 | as 1D, where the *q* vector is defined as . |
---|
| 553 | |
---|
| 554 | REFERENCE |
---|
| 555 | Kjersta Larson-Smith, Andrew Jackson, and Danilo C Pozzo, "Small angle |
---|
| 556 | scattering model for Pickering emulsions and raspberry particles." |
---|
| 557 | Journal of Colloid and Interface Science (2010) vol. 343 (1) pp. |
---|
| 558 | 36-41. |
---|
| 559 | |
---|
| 560 | *2.1.4.2. Validation of the RaspBerry Model* |
---|
| 561 | |
---|
| 562 | This example dataset is produced by running the RaspBerryModel, using |
---|
| 563 | 2000 data points, qmin = 0.0001 -1, qmax = 0.2 A-1 and the default |
---|
| 564 | values, where Ssph/Lsph stands for Smaller/Large sphere |
---|
| 565 | andsurfrac_Ssph for the surface fraction of the smaller spheres. |
---|
| 566 | |
---|
| 567 | Parameter name |
---|
| 568 | |
---|
| 569 | Units |
---|
| 570 | |
---|
| 571 | Default value |
---|
| 572 | delta_Ssph 0 radius_Lsph 5000 radius_Ssph 100 sld_Lsph -2 -4e-07 |
---|
| 573 | sld_Ssph |
---|
| 574 | |
---|
| 575 | -2 |
---|
| 576 | |
---|
| 577 | 3.5e-6 |
---|
| 578 | |
---|
| 579 | sld_solv |
---|
| 580 | |
---|
| 581 | -2 |
---|
| 582 | |
---|
| 583 | 6.3e-6 |
---|
| 584 | |
---|
| 585 | surfrac_Ssph |
---|
| 586 | |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | 0.4 |
---|
| 590 | |
---|
| 591 | volf_Lsph |
---|
| 592 | |
---|
| 593 | 0.05 |
---|
| 594 | |
---|
| 595 | volf_Lsph |
---|
| 596 | |
---|
| 597 | |
---|
| 598 | |
---|
| 599 | 0.005 |
---|
| 600 | |
---|
| 601 | background |
---|
| 602 | |
---|
| 603 | cm-1 |
---|
| 604 | |
---|
| 605 | 0 |
---|
| 606 | |
---|
| 607 | |
---|
| 608 | |
---|
| 609 | *Figure. 1D plot using the values of /2000 data points.* |
---|
| 610 | |
---|
| 611 | |
---|
| 612 | |
---|
| 613 | .. _CoreShellModel: |
---|
| 614 | |
---|
| 615 | **2.1.5. CoreShellModel** |
---|
| 616 | |
---|
| 617 | This model provides the form factor, P( *q*), for a spherical particle |
---|
| 618 | with a core-shell structure. The form factor is normalized by the |
---|
| 619 | particle volume. |
---|
| 620 | |
---|
| 621 | For information about polarised and magnetic scattering, click here_. |
---|
| 622 | |
---|
| 623 | *2.1.5.1. Definition* |
---|
| 624 | |
---|
| 625 | The 1D scattering intensity is calculated in the following way |
---|
| 626 | (Guinier, 1955): |
---|
| 627 | |
---|
| 628 | |
---|
| 629 | |
---|
| 630 | |
---|
| 631 | |
---|
| 632 | where *scale* is a scale factor, *Vs* is the volume of the outer |
---|
| 633 | shell, *Vc* is the volume of the core, *rs* is the radius of the |
---|
| 634 | shell, *rc* is the radius of the core, *c* is the scattering length |
---|
| 635 | density of the core, *s* is the scattering length density of the |
---|
| 636 | shell, solv is the scattering length density of the solvent, and *bkg* |
---|
| 637 | is the background level. |
---|
| 638 | |
---|
| 639 | The 2D scattering intensity is the same as P(q) above, regardless of |
---|
| 640 | the orientation of the q vector. |
---|
| 641 | |
---|
| 642 | For P*S: The outer most radius (= radius + thickness) is used as the |
---|
| 643 | effective radius toward S(Q) when P(Q)*S(Q) is applied. |
---|
| 644 | |
---|
| 645 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 646 | the core-shell sphere model are the following: |
---|
| 647 | |
---|
| 648 | Here, radius = the radius of the core and thickness = the thickness of |
---|
| 649 | the shell. |
---|
| 650 | |
---|
| 651 | Parameter name |
---|
| 652 | |
---|
| 653 | Units |
---|
| 654 | |
---|
| 655 | Default value |
---|
| 656 | |
---|
| 657 | scale |
---|
| 658 | |
---|
| 659 | None |
---|
| 660 | |
---|
| 661 | 1.0 |
---|
| 662 | |
---|
| 663 | (core) radius |
---|
| 664 | |
---|
| 665 | |
---|
| 666 | |
---|
| 667 | 60 |
---|
| 668 | |
---|
| 669 | thickness |
---|
| 670 | |
---|
| 671 | |
---|
| 672 | |
---|
| 673 | 10 |
---|
| 674 | |
---|
| 675 | core_sld |
---|
| 676 | |
---|
| 677 | -2 |
---|
| 678 | |
---|
| 679 | 1e-6 |
---|
| 680 | |
---|
| 681 | shell_sld |
---|
| 682 | |
---|
| 683 | -2 |
---|
| 684 | |
---|
| 685 | 2e-6 |
---|
| 686 | |
---|
| 687 | solvent_sld |
---|
| 688 | |
---|
| 689 | -2 |
---|
| 690 | |
---|
| 691 | 3e-6 |
---|
| 692 | |
---|
| 693 | background |
---|
| 694 | |
---|
| 695 | cm-1 |
---|
| 696 | |
---|
| 697 | 0.001 |
---|
| 698 | |
---|
| 699 | Our model uses the form factor calculations implemented in a c-library |
---|
| 700 | provided by the NIST Center for Neutron Research (Kline, 2006). |
---|
| 701 | |
---|
| 702 | |
---|
| 703 | |
---|
| 704 | REFERENCE |
---|
| 705 | |
---|
| 706 | Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John |
---|
| 707 | Wiley and Sons, New York, (1955). |
---|
| 708 | |
---|
| 709 | *2.1.5.2. Validation of the core-shell sphere model* |
---|
| 710 | |
---|
| 711 | Validation of our code was done by comparing the output of the 1D |
---|
| 712 | model to the output of the software provided by the NIST (Kline, |
---|
| 713 | 2006). Figure 1 shows a comparison of the output of our model and the |
---|
| 714 | output of the NIST software. |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | |
---|
| 718 | Figure 7: Comparison of the DANSE scattering intensity for a core- |
---|
| 719 | shell sphere with the output of the NIST SANS analysis software. The |
---|
| 720 | parameters were set to: Scale=1.0, Radius=60 , Contrast=1e-6 -2, and |
---|
| 721 | Background=0.001 cm -1. |
---|
| 722 | |
---|
| 723 | |
---|
| 724 | |
---|
| 725 | .. _CoreMultiShellModel: |
---|
| 726 | |
---|
| 727 | **2.1.6. CoreMultiShellModel** |
---|
| 728 | |
---|
| 729 | This model provides the scattering from spherical core with from 1 up |
---|
| 730 | to 4 shell structures. Ithas a core of a specified radius, with four |
---|
| 731 | shells. The SLDs of the core and each shell are individually |
---|
| 732 | specified. |
---|
| 733 | |
---|
| 734 | For information about polarised and magnetic scattering, click here_. |
---|
| 735 | |
---|
| 736 | *1.1. Definition* |
---|
| 737 | |
---|
| 738 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 739 | |
---|
| 740 | This model is a trivial extension of the CoreShell function to a |
---|
| 741 | larger number of shells. See the CoreShell function for a diagram and |
---|
| 742 | documentation. |
---|
| 743 | |
---|
| 744 | Be careful that the SLDs and scale can be highly correlated. Hold as |
---|
| 745 | many of these fixed as possible. |
---|
| 746 | |
---|
| 747 | The 2D scattering intensity is the same as P(q) of 1D, regardless of |
---|
| 748 | the orientation of the q vector. |
---|
| 749 | |
---|
| 750 | For P*S: The outer most radius (= radius + 4 thicknesses) is used as |
---|
| 751 | the effective radius toward S(Q) if P(Q)*S(Q) is applied. |
---|
| 752 | |
---|
| 753 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 754 | the CoreFourshell sphere model are the following: |
---|
| 755 | |
---|
| 756 | Here, rad_core = the radius of the core, thick_shelli = the thickness |
---|
| 757 | of the shell i and sld_shelli = the SLD of the shell i. |
---|
| 758 | |
---|
| 759 | And the sld_core and the sld_solv are the SLD of the core and the |
---|
| 760 | solvent, respectively. |
---|
| 761 | |
---|
| 762 | Parameter name |
---|
| 763 | |
---|
| 764 | Units |
---|
| 765 | |
---|
| 766 | Default value |
---|
| 767 | |
---|
| 768 | scale |
---|
| 769 | |
---|
| 770 | None |
---|
| 771 | |
---|
| 772 | 1.0 |
---|
| 773 | |
---|
| 774 | rad_core |
---|
| 775 | |
---|
| 776 | |
---|
| 777 | |
---|
| 778 | 60 |
---|
| 779 | |
---|
| 780 | sld_core |
---|
| 781 | |
---|
| 782 | -2 |
---|
| 783 | |
---|
| 784 | 6.4e-6 |
---|
| 785 | |
---|
| 786 | sld_shell1 |
---|
| 787 | |
---|
| 788 | -2 |
---|
| 789 | |
---|
| 790 | 1e-6 |
---|
| 791 | |
---|
| 792 | sld_shell2 |
---|
| 793 | |
---|
| 794 | -2 |
---|
| 795 | |
---|
| 796 | 2e-6 |
---|
| 797 | |
---|
| 798 | sld_shell3 |
---|
| 799 | |
---|
| 800 | -2 |
---|
| 801 | |
---|
| 802 | 3e-6 |
---|
| 803 | |
---|
| 804 | sld_shell4 |
---|
| 805 | |
---|
| 806 | -2 |
---|
| 807 | |
---|
| 808 | 4e-6 |
---|
| 809 | |
---|
| 810 | sld_solv |
---|
| 811 | |
---|
| 812 | -2 |
---|
| 813 | |
---|
| 814 | 6.4e-6 |
---|
| 815 | |
---|
| 816 | thick_shell1 |
---|
| 817 | |
---|
| 818 | |
---|
| 819 | |
---|
| 820 | 10 |
---|
| 821 | |
---|
| 822 | thick_shell2 |
---|
| 823 | |
---|
| 824 | |
---|
| 825 | |
---|
| 826 | 10 |
---|
| 827 | |
---|
| 828 | thick_shell3 |
---|
| 829 | |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | 10 |
---|
| 833 | |
---|
| 834 | thick_shell4 |
---|
| 835 | |
---|
| 836 | |
---|
| 837 | |
---|
| 838 | 10 |
---|
| 839 | |
---|
| 840 | background |
---|
| 841 | |
---|
| 842 | cm-1 |
---|
| 843 | |
---|
| 844 | 0.001 |
---|
| 845 | |
---|
| 846 | Our model uses the form factor calculations implemented in a c-library |
---|
| 847 | provided by the NIST Center for Neutron Research (Kline, 2006). |
---|
| 848 | |
---|
| 849 | |
---|
| 850 | |
---|
| 851 | REFERENCE |
---|
| 852 | |
---|
| 853 | See the CoreShell documentation. |
---|
| 854 | |
---|
| 855 | TEST DATASET |
---|
| 856 | |
---|
| 857 | This example dataset is produced by running the CoreMultiShellModel |
---|
| 858 | using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above |
---|
| 859 | default values. |
---|
| 860 | |
---|
| 861 | |
---|
| 862 | |
---|
| 863 | *Figure: 1D plot using the default values (w/200 data point).* |
---|
| 864 | |
---|
| 865 | The scattering length density profile for the default sld values (w/ 4 |
---|
| 866 | shells). |
---|
| 867 | |
---|
| 868 | |
---|
| 869 | |
---|
| 870 | *Figure: SLD profile against the radius of the sphere for default |
---|
| 871 | SLDs.* |
---|
| 872 | |
---|
| 873 | |
---|
| 874 | |
---|
| 875 | .. _Core2ndMomentModel: |
---|
| 876 | |
---|
| 877 | **2.1.7. Core2ndMomentModel** |
---|
| 878 | |
---|
| 879 | This model describes the scattering from a layer of surfactant or |
---|
| 880 | polymer adsorbed on spherical particles under the conditions that (i) |
---|
| 881 | theparticles (cores) are contrast-matched to the dispersion medium, |
---|
| 882 | (ii) S(Q)~1 (ie, the particle volume fraction is dilute), (iii) the |
---|
| 883 | particle radius is >> layer thickness (ie, the interface is locally |
---|
| 884 | flat), and (iv) scattering from excess unadsorbed adsorbate in the |
---|
| 885 | bulk medium is absent or has been corrected for. |
---|
| 886 | |
---|
| 887 | Unlike a core-shell model, this model does not assume any form for the |
---|
| 888 | density distribution of the adsorbed species normal to the interface |
---|
| 889 | (cf, a core-shell model which assumes the density distribution to be a |
---|
| 890 | homogeneous step-function). For comparison, if the thickness of a |
---|
| 891 | (core-shell like) step function distribution is t, the second moment, |
---|
| 892 | sigma = sqrt((t^2)/12). Thesigma is the second moment about the mean |
---|
| 893 | of the density distribution (ie, the distance of the centre-of-mass of |
---|
| 894 | the distribution from the interface). |
---|
| 895 | |
---|
| 896 | *1.1. Definition* |
---|
| 897 | |
---|
| 898 | The I0 is calculated in the following way (King, 2002): |
---|
| 899 | |
---|
| 900 | |
---|
| 901 | |
---|
| 902 | |
---|
| 903 | |
---|
| 904 | where *scale* is a scale factor, *poly* is the sld of the polymer (or |
---|
| 905 | surfactant) layer,solv is the sld of the solvent/medium and cores, |
---|
| 906 | phi_cores is the volume fraction of the core paraticles, and Gamma and |
---|
| 907 | delta arethe adsorbed amount and the bulk density of the polymers |
---|
| 908 | respectively. The sigma is the second moment of the thickness |
---|
| 909 | distribution. |
---|
| 910 | |
---|
| 911 | |
---|
| 912 | |
---|
| 913 | Note that all parameters except the 'sigma' are correlated for fitting |
---|
| 914 | so that fittingthose with more than one parameters will be generally |
---|
| 915 | failed. And note that unlike other shape models, no volume |
---|
| 916 | normalization was applied to this model. |
---|
| 917 | |
---|
| 918 | The returned value is scaled to units of [cm-1] and the parameters are |
---|
| 919 | the following: |
---|
| 920 | |
---|
| 921 | Parameter name |
---|
| 922 | |
---|
| 923 | Units |
---|
| 924 | |
---|
| 925 | Default value |
---|
| 926 | |
---|
| 927 | scale |
---|
| 928 | |
---|
| 929 | None |
---|
| 930 | |
---|
| 931 | 1.0 |
---|
| 932 | |
---|
| 933 | density_poly |
---|
| 934 | |
---|
| 935 | g/cm2 |
---|
| 936 | |
---|
| 937 | 0.7 |
---|
| 938 | |
---|
| 939 | radius_core |
---|
| 940 | |
---|
| 941 | |
---|
| 942 | |
---|
| 943 | 500 |
---|
| 944 | |
---|
| 945 | ads_amount |
---|
| 946 | |
---|
| 947 | mg/m2 |
---|
| 948 | |
---|
| 949 | 1.9 |
---|
| 950 | second_moment 23.0 volf_cores None 0.14 |
---|
| 951 | sld_poly |
---|
| 952 | |
---|
| 953 | -2 |
---|
| 954 | |
---|
| 955 | 1.5e-6 |
---|
| 956 | |
---|
| 957 | sld_solv |
---|
| 958 | |
---|
| 959 | -2 |
---|
| 960 | |
---|
| 961 | 6.3e-6 |
---|
| 962 | |
---|
| 963 | background |
---|
| 964 | |
---|
| 965 | cm-1 |
---|
| 966 | |
---|
| 967 | 0.0 |
---|
| 968 | |
---|
| 969 | |
---|
| 970 | |
---|
| 971 | REFERENCE |
---|
| 972 | |
---|
| 973 | S. King, P. Griffiths, J. Hone, and T. Cosgrove, "SANS from Adsorbed |
---|
| 974 | Polymer Lyaers", Macromol. Symp. 190, 33-42 (2002). |
---|
| 975 | |
---|
| 976 | |
---|
| 977 | |
---|
| 978 | .. _MultiShellModel: |
---|
| 979 | |
---|
| 980 | **2.1.8. MultiShellModel** |
---|
| 981 | |
---|
| 982 | This model provides the form factor, P( *q*), for a multi-lamellar |
---|
| 983 | vesicle with N shells where the core is filled with solvent and the |
---|
| 984 | shells are interleaved with layers of solvent. For N = 1, this return |
---|
| 985 | to the vesicle model (above). |
---|
| 986 | |
---|
| 987 | |
---|
| 988 | |
---|
| 989 | The 2D scattering intensity is the same as 1D, regardless of the |
---|
| 990 | orientation of the *q* vector which is defined as . |
---|
| 991 | |
---|
| 992 | For P*S: The outer most radius (= core_radius + n_pairs * s_thickness |
---|
| 993 | + (n_pairs -1) * w_thickness) is used as the effective radius toward |
---|
| 994 | S(Q) when P(Q)*S(Q) is applied. |
---|
| 995 | |
---|
| 996 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 997 | the multi-shell model are the following: |
---|
| 998 | |
---|
| 999 | In the parameters, the s_thickness is the shell thickness while the |
---|
| 1000 | w_thickness is the solvent thickness, and the n_pair is the number of |
---|
| 1001 | shells. |
---|
| 1002 | |
---|
| 1003 | Parameter name |
---|
| 1004 | |
---|
| 1005 | Units |
---|
| 1006 | |
---|
| 1007 | Default value |
---|
| 1008 | |
---|
| 1009 | scale |
---|
| 1010 | |
---|
| 1011 | None |
---|
| 1012 | |
---|
| 1013 | 1.0 |
---|
| 1014 | |
---|
| 1015 | core_radius |
---|
| 1016 | |
---|
| 1017 | |
---|
| 1018 | |
---|
| 1019 | 60.0 |
---|
| 1020 | |
---|
| 1021 | n_pairs |
---|
| 1022 | |
---|
| 1023 | None |
---|
| 1024 | |
---|
| 1025 | 2.0 |
---|
| 1026 | |
---|
| 1027 | core_sld |
---|
| 1028 | |
---|
| 1029 | -2 |
---|
| 1030 | |
---|
| 1031 | 6.3e-6 |
---|
| 1032 | |
---|
| 1033 | shell_sld |
---|
| 1034 | |
---|
| 1035 | -2 |
---|
| 1036 | |
---|
| 1037 | 0.0 |
---|
| 1038 | |
---|
| 1039 | background |
---|
| 1040 | |
---|
| 1041 | cm-1 |
---|
| 1042 | |
---|
| 1043 | 0.0 |
---|
| 1044 | |
---|
| 1045 | s_thickness |
---|
| 1046 | |
---|
| 1047 | |
---|
| 1048 | |
---|
| 1049 | 10 |
---|
| 1050 | |
---|
| 1051 | w_thickness |
---|
| 1052 | |
---|
| 1053 | |
---|
| 1054 | |
---|
| 1055 | 10 |
---|
| 1056 | |
---|
| 1057 | |
---|
| 1058 | |
---|
| 1059 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 1060 | |
---|
| 1061 | Our model uses the form factor calculations implemented in a c-library |
---|
| 1062 | provided by the NIST Center for Neutron Research (Kline, 2006). |
---|
| 1063 | |
---|
| 1064 | REFERENCE |
---|
| 1065 | |
---|
| 1066 | Cabane, B., Small Angle Scattering Methods, Surfactant Solutions: New |
---|
| 1067 | Methods of Investigation, Ch.2, Surfactant Science Series Vol. 22, Ed. |
---|
| 1068 | R. Zana, M. Dekker, New York, 1987. |
---|
| 1069 | |
---|
| 1070 | |
---|
| 1071 | |
---|
| 1072 | .. _OnionExpShellModel: |
---|
| 1073 | |
---|
| 1074 | **2.1.9. OnionExpShellModel** |
---|
| 1075 | |
---|
| 1076 | This model provides the form factor, *P*( *q*), for a multi-shell |
---|
| 1077 | sphere where the scattering length density (SLD) of the each shell is |
---|
| 1078 | described by an exponential (linear, or flat-top) function. The form |
---|
| 1079 | factor is normalized by the volume of the sphere where the SLD is not |
---|
| 1080 | identical to the SLD of the solvent. We currently provide up to 9 |
---|
| 1081 | shells with this model. |
---|
| 1082 | |
---|
| 1083 | The 1D scattering intensity is calculated in the following way: |
---|
| 1084 | |
---|
| 1085 | |
---|
| 1086 | |
---|
| 1087 | |
---|
| 1088 | |
---|
| 1089 | where, for a spherically symmetric particle with a particle density |
---|
| 1090 | *r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small- |
---|
| 1091 | Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987], |
---|
| 1092 | |
---|
| 1093 | |
---|
| 1094 | |
---|
| 1095 | so that |
---|
| 1096 | |
---|
| 1097 | |
---|
| 1098 | |
---|
| 1099 | |
---|
| 1100 | |
---|
| 1101 | |
---|
| 1102 | |
---|
| 1103 | |
---|
| 1104 | Here we assumed that the SLDs of the core and solvent are constant |
---|
| 1105 | against *r*. Now lets consider the SLD of a shell, *rshelli*, |
---|
| 1106 | defineded by |
---|
| 1107 | |
---|
| 1108 | |
---|
| 1109 | |
---|
| 1110 | An example of a possible SLD profile is shown below where |
---|
| 1111 | sld_in_shelli ( *rin* ) and thick_shelli ( *Dtshelli* ) stand for the |
---|
| 1112 | SLD of the inner side of the ith shell and the thickness of the ith |
---|
| 1113 | shell in the equation above, respectively. |
---|
| 1114 | |
---|
| 1115 | For \|A\|>0, |
---|
| 1116 | |
---|
| 1117 | |
---|
| 1118 | |
---|
| 1119 | For A *~ *0 (eg., A = - 0.0001), this function converges to that of |
---|
| 1120 | the linear SLD profile (ie, *rshelli*( *r*) = *A \*( *r* - |
---|
| 1121 | *rshelli-1*) / *Dtshelli*) + *B \*), so this case it is equivalent |
---|
| 1122 | to |
---|
| 1123 | |
---|
| 1124 | |
---|
| 1125 | |
---|
| 1126 | |
---|
| 1127 | |
---|
| 1128 | |
---|
| 1129 | |
---|
| 1130 | |
---|
| 1131 | |
---|
| 1132 | For A = 0, the exponential function has no dependence on the radius |
---|
| 1133 | (so that sld_out_shell# ( *rout*) is ignored this case) and becomes |
---|
| 1134 | flat. We set the constant to *rin* for convenience, and thus the form |
---|
| 1135 | factor contributed by the shells is |
---|
| 1136 | |
---|
| 1137 | |
---|
| 1138 | |
---|
| 1139 | |
---|
| 1140 | |
---|
| 1141 | In the equation, |
---|
| 1142 | |
---|
| 1143 | |
---|
| 1144 | |
---|
| 1145 | Finally, the form factor can be calculated by |
---|
| 1146 | |
---|
| 1147 | |
---|
| 1148 | |
---|
| 1149 | where |
---|
| 1150 | |
---|
| 1151 | |
---|
| 1152 | |
---|
| 1153 | |
---|
| 1154 | |
---|
| 1155 | |
---|
| 1156 | |
---|
| 1157 | |
---|
| 1158 | |
---|
| 1159 | |
---|
| 1160 | |
---|
| 1161 | The 2D scattering intensity is the same as *P*( *q*) above, regardless |
---|
| 1162 | of the orientation of the *q* vector which is defined as . |
---|
| 1163 | |
---|
| 1164 | For P*S: The outer most radius is used as the effective radius toward |
---|
| 1165 | S(Q) when P(Q)*S(Q) is applied. |
---|
| 1166 | |
---|
| 1167 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 1168 | this model are the following: |
---|
| 1169 | |
---|
| 1170 | In the parameters, the rad_core represents the core radius (R1) and |
---|
| 1171 | the thick_shell1 (R2 R1) is the thickness of the shell1, etc. |
---|
| 1172 | |
---|
| 1173 | Note: Only No. of shells = 1 is given below. |
---|
| 1174 | |
---|
| 1175 | Parameter name |
---|
| 1176 | |
---|
| 1177 | Units |
---|
| 1178 | |
---|
| 1179 | Default value |
---|
| 1180 | |
---|
| 1181 | A_shell1 |
---|
| 1182 | |
---|
| 1183 | None |
---|
| 1184 | |
---|
| 1185 | 1 |
---|
| 1186 | |
---|
| 1187 | scale |
---|
| 1188 | |
---|
| 1189 | None |
---|
| 1190 | |
---|
| 1191 | 1.0 |
---|
| 1192 | |
---|
| 1193 | rad_core |
---|
| 1194 | |
---|
| 1195 | |
---|
| 1196 | |
---|
| 1197 | 200 |
---|
| 1198 | |
---|
| 1199 | thick_shell1 |
---|
| 1200 | |
---|
| 1201 | |
---|
| 1202 | |
---|
| 1203 | 50 |
---|
| 1204 | |
---|
| 1205 | sld_core |
---|
| 1206 | |
---|
| 1207 | -2 |
---|
| 1208 | |
---|
| 1209 | 1.0e-06 |
---|
| 1210 | |
---|
| 1211 | sld_in_shell1 |
---|
| 1212 | |
---|
| 1213 | -2 |
---|
| 1214 | |
---|
| 1215 | 1.7e-06 |
---|
| 1216 | |
---|
| 1217 | sld_out_shell1 |
---|
| 1218 | |
---|
| 1219 | -2 |
---|
| 1220 | |
---|
| 1221 | 2.0e-06 |
---|
| 1222 | |
---|
| 1223 | sld_solv |
---|
| 1224 | |
---|
| 1225 | -2 |
---|
| 1226 | |
---|
| 1227 | 6.4e-06 |
---|
| 1228 | |
---|
| 1229 | background |
---|
| 1230 | |
---|
| 1231 | cm-1 |
---|
| 1232 | |
---|
| 1233 | 0.0 |
---|
| 1234 | |
---|
| 1235 | |
---|
| 1236 | |
---|
| 1237 | *Figure. 1D plot using the default values (w/400 point).* |
---|
| 1238 | |
---|
| 1239 | |
---|
| 1240 | |
---|
| 1241 | *Figure. SLD profile from the default values.* |
---|
| 1242 | |
---|
| 1243 | REFERENCE |
---|
| 1244 | |
---|
| 1245 | L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray |
---|
| 1246 | and Neutron Scattering, Plenum Press, New York, 1987 |
---|
| 1247 | |
---|
| 1248 | |
---|
| 1249 | |
---|
| 1250 | .. _VesicleModel: |
---|
| 1251 | |
---|
| 1252 | **2.1.10. VesicleModel** |
---|
| 1253 | |
---|
| 1254 | This model provides the form factor, P( *q*), for an unilamellar |
---|
| 1255 | vesicle. The form factor is normalized by the volume of the shell. |
---|
| 1256 | |
---|
| 1257 | The 1D scattering intensity is calculated in the following way |
---|
| 1258 | (Guinier, 1955): |
---|
| 1259 | |
---|
| 1260 | |
---|
| 1261 | |
---|
| 1262 | |
---|
| 1263 | |
---|
| 1264 | where *scale* is a scale factor, *Vshell* is the volume of the shell, *V1* is the volume of the core, *V2* is the total |
---|
| 1265 | volume, *R1* is the radius of the core, *r2* is the outer radius of the shell, *1* is the scattering length density of |
---|
| 1266 | the core and the solvent, *2* is the scattering length density of the shell, and *bkg* is the background level. And |
---|
| 1267 | *J1* = (sin *x *- *x*cos *x*)/ *x*2. The functional form is identical to a "typical" core-shell structure, except that |
---|
| 1268 | the scattering is normalized by the volume that is contributing to the scattering, namely the volume of the shell alone. |
---|
| 1269 | Also, the vesicle is best defined in terms of a core radius (= R1) and a shell thickness, t. |
---|
| 1270 | |
---|
| 1271 | |
---|
| 1272 | |
---|
| 1273 | The 2D scattering intensity is the same as *P*( *q*) above, regardless |
---|
| 1274 | of the orientation of the *q* vector which is defined as . |
---|
| 1275 | |
---|
| 1276 | For P*S: The outer most radius (= radius + thickness) is used as the |
---|
| 1277 | effective radius toward S(Q) when P(Q)*S(Q) is applied. |
---|
| 1278 | |
---|
| 1279 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 1280 | the vesicle model are the following: |
---|
| 1281 | |
---|
| 1282 | In the parameters, the radius represents the core radius (R1) and the |
---|
| 1283 | thickness (R2 R1) is the shell thickness. |
---|
| 1284 | |
---|
| 1285 | Parameter name |
---|
| 1286 | |
---|
| 1287 | Units |
---|
| 1288 | |
---|
| 1289 | Default value |
---|
| 1290 | |
---|
| 1291 | scale |
---|
| 1292 | |
---|
| 1293 | None |
---|
| 1294 | |
---|
| 1295 | 1.0 |
---|
| 1296 | |
---|
| 1297 | radius |
---|
| 1298 | |
---|
| 1299 | |
---|
| 1300 | |
---|
| 1301 | 100 |
---|
| 1302 | |
---|
| 1303 | thickness |
---|
| 1304 | |
---|
| 1305 | |
---|
| 1306 | |
---|
| 1307 | 30 |
---|
| 1308 | |
---|
| 1309 | core_sld |
---|
| 1310 | |
---|
| 1311 | -2 |
---|
| 1312 | |
---|
| 1313 | 6.3e-6 |
---|
| 1314 | |
---|
| 1315 | shell_sld |
---|
| 1316 | |
---|
| 1317 | -2 |
---|
| 1318 | |
---|
| 1319 | 0 |
---|
| 1320 | |
---|
| 1321 | background |
---|
| 1322 | |
---|
| 1323 | cm-1 |
---|
| 1324 | |
---|
| 1325 | 0.0 |
---|
| 1326 | |
---|
| 1327 | |
---|
| 1328 | |
---|
| 1329 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 1330 | |
---|
| 1331 | Our model uses the form factor calculations implemented in a c-library |
---|
| 1332 | provided by the NIST Center for Neutron Research (Kline, 2006). |
---|
| 1333 | |
---|
| 1334 | REFERENCE |
---|
| 1335 | |
---|
| 1336 | Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John |
---|
| 1337 | Wiley and Sons, New York, (1955). |
---|
| 1338 | |
---|
| 1339 | |
---|
| 1340 | |
---|
| 1341 | .. _SphericalSLDModel: |
---|
| 1342 | |
---|
| 1343 | **2.1.11. SphericalSLDModel** |
---|
| 1344 | |
---|
| 1345 | Similarly to the OnionExpShellModel, this model provides the form |
---|
| 1346 | factor, *P*( *q*), for a multi-shell sphere, where the interface |
---|
| 1347 | between the each neighboring shells can be described by one of the |
---|
| 1348 | functions including error, power-law, and exponential functions. This |
---|
| 1349 | model is to calculate the scattering intensity by building a |
---|
| 1350 | continuous custom SLD profile against the radius of the particle. The |
---|
| 1351 | SLD profile is composed of a flat core, a flat solvent, a number (up |
---|
| 1352 | to 9 shells) of flat shells, and the interfacial layers between the |
---|
| 1353 | adjacent flat shells (or core, and solvent) (See below). Unlike |
---|
| 1354 | OnionExpShellModel (using an analytical integration), the interfacial |
---|
| 1355 | layers are sub-divided and numerically integrated assuming each sub- |
---|
| 1356 | layers are described by a line function. The number of the sub-layer |
---|
| 1357 | can be given by users by setting the integer values of npts_inter# in |
---|
| 1358 | GUI. The form factor is normalized by the total volume of the sphere. |
---|
| 1359 | |
---|
| 1360 | The 1D scattering intensity is calculated in the following way: |
---|
| 1361 | |
---|
| 1362 | |
---|
| 1363 | |
---|
| 1364 | |
---|
| 1365 | |
---|
| 1366 | where, for a spherically symmetric particle with a particle density |
---|
| 1367 | *r*( *r*) [L.A.Feigin and D.I.Svergun, Structure Analysis by Small- |
---|
| 1368 | Angle X-Ray and Neutron Scattering, Plenum Press, New York, 1987], |
---|
| 1369 | |
---|
| 1370 | |
---|
| 1371 | |
---|
| 1372 | so that |
---|
| 1373 | |
---|
| 1374 | |
---|
| 1375 | |
---|
| 1376 | |
---|
| 1377 | |
---|
| 1378 | |
---|
| 1379 | |
---|
| 1380 | |
---|
| 1381 | |
---|
| 1382 | |
---|
| 1383 | |
---|
| 1384 | |
---|
| 1385 | |
---|
| 1386 | Here we assumed that the SLDs of the core and solvent are constant |
---|
| 1387 | against *r*. The SLD at the interface between shells, *rinter_i*, is |
---|
| 1388 | calculated with a function chosen by an user, where the functions are: |
---|
| 1389 | |
---|
| 1390 | 1) Exp; |
---|
| 1391 | |
---|
| 1392 | |
---|
| 1393 | |
---|
| 1394 | 2) Power-Law; |
---|
| 1395 | |
---|
| 1396 | |
---|
| 1397 | |
---|
| 1398 | |
---|
| 1399 | |
---|
| 1400 | 3) Erf; |
---|
| 1401 | |
---|
| 1402 | |
---|
| 1403 | |
---|
| 1404 | |
---|
| 1405 | |
---|
| 1406 | |
---|
| 1407 | |
---|
| 1408 | Then the functions are normalized so that it varies between 0 and 1 |
---|
| 1409 | and they are constrained such that the SLD is continuous at the |
---|
| 1410 | boundaries of the interface as well as each sub-layers and thus the B |
---|
| 1411 | and C are determined. |
---|
| 1412 | |
---|
| 1413 | Once the *rinter_i* is found at the boundary of the sub-layer of the |
---|
| 1414 | interface, we can find its contribution to the form factor P(q); |
---|
| 1415 | |
---|
| 1416 | |
---|
| 1417 | |
---|
| 1418 | |
---|
| 1419 | |
---|
| 1420 | |
---|
| 1421 | |
---|
| 1422 | where we assume that rho_inter_i (r) can be approximately linear |
---|
| 1423 | within a sub-layer j. |
---|
| 1424 | |
---|
| 1425 | In the equation, |
---|
| 1426 | |
---|
| 1427 | |
---|
| 1428 | |
---|
| 1429 | Finally, the form factor can be calculated by |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | |
---|
| 1433 | where |
---|
| 1434 | |
---|
| 1435 | |
---|
| 1436 | |
---|
| 1437 | |
---|
| 1438 | |
---|
| 1439 | |
---|
| 1440 | |
---|
| 1441 | |
---|
| 1442 | |
---|
| 1443 | |
---|
| 1444 | |
---|
| 1445 | The 2D scattering intensity is the same as *P*( *q*) above, regardless |
---|
| 1446 | of the orientation of the *q* vector which is defined as . |
---|
| 1447 | |
---|
| 1448 | For P*S: The outer most radius is used as the effective radius toward |
---|
| 1449 | S(Q) when P(Q)*S(Q) is applied. |
---|
| 1450 | |
---|
| 1451 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 1452 | this model are the following: |
---|
| 1453 | |
---|
| 1454 | In the parameters, the rad_core0 represents the core radius (R1). |
---|
| 1455 | |
---|
| 1456 | Note: Only No. of shells = 1 is given below. |
---|
| 1457 | |
---|
| 1458 | Parameter name |
---|
| 1459 | |
---|
| 1460 | Units |
---|
| 1461 | |
---|
| 1462 | Default value |
---|
| 1463 | |
---|
| 1464 | background |
---|
| 1465 | |
---|
| 1466 | cm-1 |
---|
| 1467 | |
---|
| 1468 | 0.0 |
---|
| 1469 | |
---|
| 1470 | npts_inter |
---|
| 1471 | |
---|
| 1472 | 35 |
---|
| 1473 | |
---|
| 1474 | scale |
---|
| 1475 | |
---|
| 1476 | 1 |
---|
| 1477 | |
---|
| 1478 | sld_solv |
---|
| 1479 | |
---|
| 1480 | -2 |
---|
| 1481 | |
---|
| 1482 | 1e-006 |
---|
| 1483 | |
---|
| 1484 | func_inter1 |
---|
| 1485 | |
---|
| 1486 | Erf |
---|
| 1487 | |
---|
| 1488 | nu_inter |
---|
| 1489 | |
---|
| 1490 | 2.5 |
---|
| 1491 | |
---|
| 1492 | thick_inter1 |
---|
| 1493 | |
---|
| 1494 | |
---|
| 1495 | |
---|
| 1496 | 50 |
---|
| 1497 | |
---|
| 1498 | sld_flat1 |
---|
| 1499 | |
---|
| 1500 | -2 |
---|
| 1501 | |
---|
| 1502 | 4e-006 |
---|
| 1503 | |
---|
| 1504 | thick_flat1 |
---|
| 1505 | |
---|
| 1506 | |
---|
| 1507 | |
---|
| 1508 | 100 |
---|
| 1509 | |
---|
| 1510 | func_inter0 |
---|
| 1511 | |
---|
| 1512 | Erf |
---|
| 1513 | |
---|
| 1514 | nu_inter0 |
---|
| 1515 | |
---|
| 1516 | 2.5 |
---|
| 1517 | |
---|
| 1518 | rad_core0 |
---|
| 1519 | |
---|
| 1520 | |
---|
| 1521 | |
---|
| 1522 | 50 |
---|
| 1523 | |
---|
| 1524 | sld_core0 |
---|
| 1525 | |
---|
| 1526 | -2 |
---|
| 1527 | |
---|
| 1528 | 2.07e-06 |
---|
| 1529 | |
---|
| 1530 | thick_core0 |
---|
| 1531 | |
---|
| 1532 | |
---|
| 1533 | |
---|
| 1534 | 50 |
---|
| 1535 | |
---|
| 1536 | |
---|
| 1537 | |
---|
| 1538 | *Figure. 1D plot using the default values (w/400 point).* |
---|
| 1539 | |
---|
| 1540 | |
---|
| 1541 | |
---|
| 1542 | *Figure. SLD profile from the default values.* |
---|
| 1543 | |
---|
| 1544 | REFERENCE |
---|
| 1545 | |
---|
| 1546 | L.A.Feigin and D.I.Svergun, Structure Analysis by Small-Angle X-Ray |
---|
| 1547 | and Neutron Scattering, Plenum Press, New York, 1987 |
---|
| 1548 | |
---|
| 1549 | |
---|
| 1550 | |
---|
| 1551 | .. _LinearPearlsModel: |
---|
| 1552 | |
---|
| 1553 | **2.1.12. LinearPearlsModel** |
---|
| 1554 | |
---|
| 1555 | This model provides the form factor for pearls linearly joined by |
---|
| 1556 | short strings: N pearls (homogeneous spheres), the radius R and the |
---|
| 1557 | string segment length (or edge separation) l (= A- 2R)). The A is the |
---|
| 1558 | center to center pearl separation distance. The thickness of each |
---|
| 1559 | string is assumed to be negligable. |
---|
| 1560 | |
---|
| 1561 | |
---|
| 1562 | |
---|
| 1563 | |
---|
| 1564 | |
---|
| 1565 | *1.1. Definition* |
---|
| 1566 | |
---|
| 1567 | |
---|
| 1568 | |
---|
| 1569 | The output of the scattering intensity function for the linearpearls |
---|
| 1570 | model is given by (Dobrynin, 1996): |
---|
| 1571 | |
---|
| 1572 | |
---|
| 1573 | |
---|
| 1574 | where the mass mp is (sld(of a pearl) sld(of solvent)) * (volume of |
---|
| 1575 | the N pearls), V is the total volume. |
---|
| 1576 | |
---|
| 1577 | The 2D scattering intensity is the same as P(q) above, regardless of |
---|
| 1578 | the orientation of the q vector. |
---|
| 1579 | |
---|
| 1580 | The returned value is scaled to units of [cm-1] and the parameters are |
---|
| 1581 | the following: |
---|
| 1582 | |
---|
| 1583 | Parameter name |
---|
| 1584 | |
---|
| 1585 | Units |
---|
| 1586 | |
---|
| 1587 | Default value |
---|
| 1588 | |
---|
| 1589 | scale |
---|
| 1590 | |
---|
| 1591 | None |
---|
| 1592 | |
---|
| 1593 | 1.0 |
---|
| 1594 | |
---|
| 1595 | radius |
---|
| 1596 | |
---|
| 1597 | |
---|
| 1598 | |
---|
| 1599 | 80.0 |
---|
| 1600 | |
---|
| 1601 | edge_separation |
---|
| 1602 | |
---|
| 1603 | |
---|
| 1604 | |
---|
| 1605 | 350.0 |
---|
| 1606 | |
---|
| 1607 | num_pearls |
---|
| 1608 | |
---|
| 1609 | (integer) |
---|
| 1610 | |
---|
| 1611 | 3 |
---|
| 1612 | |
---|
| 1613 | sld_pearl |
---|
| 1614 | |
---|
| 1615 | -2 |
---|
| 1616 | |
---|
| 1617 | 1e-6 |
---|
| 1618 | |
---|
| 1619 | sld_solv |
---|
| 1620 | |
---|
| 1621 | -2 |
---|
| 1622 | |
---|
| 1623 | 6.3e-6 |
---|
| 1624 | |
---|
| 1625 | background |
---|
| 1626 | |
---|
| 1627 | cm-1 |
---|
| 1628 | |
---|
| 1629 | 0.0 |
---|
| 1630 | |
---|
| 1631 | |
---|
| 1632 | |
---|
| 1633 | |
---|
| 1634 | |
---|
| 1635 | REFERENCE |
---|
| 1636 | |
---|
| 1637 | A. V. Dobrynin, M. Rubinstein and S. P. Obukhov, Macromol. 29, |
---|
| 1638 | 2974-2979, 1996. |
---|
| 1639 | |
---|
| 1640 | |
---|
| 1641 | |
---|
| 1642 | .. _PearlNecklaceModel: |
---|
| 1643 | |
---|
| 1644 | **2.1.13. PearlNecklaceModel** |
---|
| 1645 | |
---|
| 1646 | This model provides the form factor for a pearl necklace composed of |
---|
| 1647 | two elements: N pearls (homogeneous spheres) freely jointed by M rods |
---|
| 1648 | (like strings) (with a total mass Mw = M *mr + N * ms, the radius R |
---|
| 1649 | and the string segment length (or edge separation) l (= A- 2R)). The A |
---|
| 1650 | is the center to center pearl separation distance. |
---|
| 1651 | |
---|
| 1652 | |
---|
| 1653 | |
---|
| 1654 | |
---|
| 1655 | |
---|
| 1656 | *1.1. Definition* |
---|
| 1657 | |
---|
| 1658 | The output of the scattering intensity function for the pearlnecklace |
---|
| 1659 | model is given by (Schweins, 2004): |
---|
| 1660 | |
---|
| 1661 | |
---|
| 1662 | |
---|
| 1663 | where |
---|
| 1664 | |
---|
| 1665 | , |
---|
| 1666 | |
---|
| 1667 | , |
---|
| 1668 | |
---|
| 1669 | , |
---|
| 1670 | |
---|
| 1671 | , |
---|
| 1672 | |
---|
| 1673 | , |
---|
| 1674 | |
---|
| 1675 | and |
---|
| 1676 | |
---|
| 1677 | . |
---|
| 1678 | |
---|
| 1679 | |
---|
| 1680 | |
---|
| 1681 | where the mass mi is (sld(of i) sld(of solvent)) * (volume of the N |
---|
| 1682 | pearls/rods), V is the total volume of the necklace. |
---|
| 1683 | |
---|
| 1684 | The 2D scattering intensity is the same as P(q) above, regardless of |
---|
| 1685 | the orientation of the q vector. |
---|
| 1686 | |
---|
| 1687 | The returned value is scaled to units of [cm-1] and the parameters are |
---|
| 1688 | the following: |
---|
| 1689 | |
---|
| 1690 | Parameter name |
---|
| 1691 | |
---|
| 1692 | Units |
---|
| 1693 | |
---|
| 1694 | Default value |
---|
| 1695 | |
---|
| 1696 | scale |
---|
| 1697 | |
---|
| 1698 | None |
---|
| 1699 | |
---|
| 1700 | 1.0 |
---|
| 1701 | |
---|
| 1702 | radius |
---|
| 1703 | |
---|
| 1704 | |
---|
| 1705 | |
---|
| 1706 | 80.0 |
---|
| 1707 | |
---|
| 1708 | edge_separation |
---|
| 1709 | |
---|
| 1710 | |
---|
| 1711 | |
---|
| 1712 | 350.0 |
---|
| 1713 | |
---|
| 1714 | num_pearls |
---|
| 1715 | |
---|
| 1716 | (integer) |
---|
| 1717 | |
---|
| 1718 | 3 |
---|
| 1719 | |
---|
| 1720 | sld_pearl |
---|
| 1721 | |
---|
| 1722 | -2 |
---|
| 1723 | |
---|
| 1724 | 1e-6 |
---|
| 1725 | |
---|
| 1726 | sld_solv |
---|
| 1727 | |
---|
| 1728 | -2 |
---|
| 1729 | |
---|
| 1730 | 6.3e-6 |
---|
| 1731 | |
---|
| 1732 | sld_string |
---|
| 1733 | |
---|
| 1734 | -2 |
---|
| 1735 | |
---|
| 1736 | 1e-6 |
---|
| 1737 | |
---|
| 1738 | thick_string |
---|
| 1739 | |
---|
| 1740 | (=rod diameter) |
---|
| 1741 | |
---|
| 1742 | |
---|
| 1743 | |
---|
| 1744 | 2.5 |
---|
| 1745 | |
---|
| 1746 | background |
---|
| 1747 | |
---|
| 1748 | cm-1 |
---|
| 1749 | |
---|
| 1750 | 0.0 |
---|
| 1751 | |
---|
| 1752 | |
---|
| 1753 | |
---|
| 1754 | |
---|
| 1755 | |
---|
| 1756 | REFERENCE |
---|
| 1757 | |
---|
| 1758 | R. Schweins and K. Huber, Particle Scattering Factor of Pearl Necklace |
---|
| 1759 | Chains, Macromol. Symp., 211, 25-42, 2004. |
---|
| 1760 | |
---|
| 1761 | |
---|
| 1762 | |
---|
| 1763 | .. _CylinderModel: |
---|
| 1764 | |
---|
| 1765 | **2.1.14. CylinderModel** |
---|
| 1766 | |
---|
| 1767 | This model provides the form factor for a right circular cylinder with |
---|
| 1768 | uniform scattering length density. The form factor is normalized by |
---|
| 1769 | the particle volume. |
---|
| 1770 | |
---|
| 1771 | For information about polarised and magnetic scattering, click here_. |
---|
| 1772 | |
---|
| 1773 | *1.1. Definition* |
---|
| 1774 | |
---|
| 1775 | The output of the 2D scattering intensity function for oriented |
---|
| 1776 | cylinders is given by (Guinier, 1955): |
---|
| 1777 | |
---|
| 1778 | |
---|
| 1779 | |
---|
| 1780 | |
---|
| 1781 | |
---|
| 1782 | where is the angle between the axis of the cylinder and the q-vector, |
---|
| 1783 | V is the volume of the cylinder, L is the length of the cylinder, r is |
---|
| 1784 | the radius of the cylinder, and * (contrast) is the scattering length |
---|
| 1785 | density difference between the scatterer and the solvent. J1 is the |
---|
| 1786 | first order Bessel function. |
---|
| 1787 | |
---|
| 1788 | To provide easy access to the orientation of the cylinder, we define |
---|
| 1789 | the axis of the cylinder using two angles theta and phi. Those angles |
---|
| 1790 | are defined on Figure 2. |
---|
| 1791 | |
---|
| 1792 | |
---|
| 1793 | |
---|
| 1794 | Figure 2. Definition of the angles for oriented cylinders. |
---|
| 1795 | |
---|
| 1796 | |
---|
| 1797 | |
---|
| 1798 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 1799 | plane. |
---|
| 1800 | |
---|
| 1801 | For P*S: The 2nd virial coefficient of the cylinder is calculate based |
---|
| 1802 | on the radius and length values, and used as the effective radius |
---|
| 1803 | toward S(Q) when P(Q)*S(Q) is applied. |
---|
| 1804 | |
---|
| 1805 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 1806 | the cylinder model are the following: |
---|
| 1807 | |
---|
| 1808 | Parameter name |
---|
| 1809 | |
---|
| 1810 | Units |
---|
| 1811 | |
---|
| 1812 | Default value |
---|
| 1813 | |
---|
| 1814 | scale |
---|
| 1815 | |
---|
| 1816 | None |
---|
| 1817 | |
---|
| 1818 | 1.0 |
---|
| 1819 | |
---|
| 1820 | radius |
---|
| 1821 | |
---|
| 1822 | |
---|
| 1823 | |
---|
| 1824 | 20.0 |
---|
| 1825 | |
---|
| 1826 | length |
---|
| 1827 | |
---|
| 1828 | |
---|
| 1829 | |
---|
| 1830 | 400.0 |
---|
| 1831 | |
---|
| 1832 | contrast |
---|
| 1833 | |
---|
| 1834 | -2 |
---|
| 1835 | |
---|
| 1836 | 3.0e-6 |
---|
| 1837 | |
---|
| 1838 | background |
---|
| 1839 | |
---|
| 1840 | cm-1 |
---|
| 1841 | |
---|
| 1842 | 0.0 |
---|
| 1843 | |
---|
| 1844 | cyl_theta |
---|
| 1845 | |
---|
| 1846 | degree |
---|
| 1847 | |
---|
| 1848 | 60 |
---|
| 1849 | |
---|
| 1850 | cyl_phi |
---|
| 1851 | |
---|
| 1852 | degree |
---|
| 1853 | |
---|
| 1854 | 60 |
---|
| 1855 | |
---|
| 1856 | The output of the 1D scattering intensity function for randomly |
---|
| 1857 | oriented cylinders is then given by: |
---|
| 1858 | |
---|
| 1859 | |
---|
| 1860 | |
---|
| 1861 | The *cyl_theta* and *cyl_phi* parameter are not used for the 1D |
---|
| 1862 | output. Our implementation of the scattering kernel and the 1D |
---|
| 1863 | scattering intensity use the c-library from NIST. |
---|
| 1864 | |
---|
| 1865 | *2.1. Validation of the cylinder model* |
---|
| 1866 | |
---|
| 1867 | Validation of our code was done by comparing the output of the 1D |
---|
| 1868 | model to the output of the software provided by the NIST (Kline, |
---|
| 1869 | 2006). Figure 3 shows a comparison of the 1D output of our model and |
---|
| 1870 | the output of the NIST software. |
---|
| 1871 | |
---|
| 1872 | In general, averaging over a distribution of orientations is done by |
---|
| 1873 | evaluating the following: |
---|
| 1874 | |
---|
| 1875 | |
---|
| 1876 | |
---|
| 1877 | where *p(,* *)* is the probability distribution for the orientation |
---|
| 1878 | and *P0(q,* *)* is the scattering intensity for the fully oriented |
---|
| 1879 | system. Since we have no other software to compare the implementation |
---|
| 1880 | of the intensity for fully oriented cylinders, we can compare the |
---|
| 1881 | result of averaging our 2D output using a uniform distribution *p(,* |
---|
| 1882 | *)* = 1.0. Figure 4 shows the result of such a cross-check. |
---|
| 1883 | |
---|
| 1884 | |
---|
| 1885 | |
---|
| 1886 | |
---|
| 1887 | |
---|
| 1888 | Figure 3: Comparison of the DANSE scattering intensity for a cylinder |
---|
| 1889 | with the output of the NIST SANS analysis software. The parameters |
---|
| 1890 | were set to: Scale=1.0, Radius=20 , Length=400 , Contrast=3e-6 -2, and |
---|
| 1891 | Background=0.01 cm -1. |
---|
| 1892 | |
---|
| 1893 | |
---|
| 1894 | |
---|
| 1895 | |
---|
| 1896 | |
---|
| 1897 | |
---|
| 1898 | |
---|
| 1899 | Figure 4: Comparison of the intensity for uniformly distributed |
---|
| 1900 | cylinders calculated from our 2D model and the intensity from the NIST |
---|
| 1901 | SANS analysis software. The parameters used were: Scale=1.0, Radius=20 |
---|
| 1902 | , Length=400 , Contrast=3e-6 -2, and Background=0.0 cm -1. |
---|
| 1903 | |
---|
| 1904 | |
---|
| 1905 | |
---|
| 1906 | .. _HollowCylinderModel: |
---|
| 1907 | |
---|
| 1908 | **2.1.15. HollowCylinderModel** |
---|
| 1909 | |
---|
| 1910 | This model provides the form factor, P( *q*), for a monodisperse |
---|
| 1911 | hollow right angle circular cylinder (tube) where the form factor is |
---|
| 1912 | normalized by the volume of the tube: |
---|
| 1913 | |
---|
| 1914 | P(q) = scale*<f^2>/Vshell+background where the averaging < > id |
---|
| 1915 | applied only for the 1D calculation. The inside and outside of the |
---|
| 1916 | hollow cylinder have the same SLD. |
---|
| 1917 | |
---|
| 1918 | The 1D scattering intensity is calculated in the following way |
---|
| 1919 | (Guinier, 1955): |
---|
| 1920 | |
---|
| 1921 | |
---|
| 1922 | |
---|
| 1923 | |
---|
| 1924 | |
---|
| 1925 | where *scale* is a scale factor, *J1* is the 1st order Bessel |
---|
| 1926 | function, *J1* (x)= (sin *x *- *x*cos *x*)/ *x*2. |
---|
| 1927 | |
---|
| 1928 | |
---|
| 1929 | |
---|
| 1930 | To provide easy access to the orientation of the core-shell cylinder, |
---|
| 1931 | we define the axis of the cylinder using two angles and . Similarly to |
---|
| 1932 | the case of the cylinder, those angles are defined on Figure 2 in |
---|
| 1933 | Cylinder Model. |
---|
| 1934 | |
---|
| 1935 | For P*S: The 2nd virial coefficient of the solid cylinder is calculate |
---|
| 1936 | based on the (radius) and 2(length) values, and used as the effective |
---|
| 1937 | radius toward S(Q) when P(Q)*S(Q) is applied. |
---|
| 1938 | |
---|
| 1939 | In the parameters, the contrast represents SLD (shell) - SLD (solvent) |
---|
| 1940 | and the radius = Rhell while core_radius = Rcore. |
---|
| 1941 | |
---|
| 1942 | |
---|
| 1943 | |
---|
| 1944 | Parameter name |
---|
| 1945 | |
---|
| 1946 | Units |
---|
| 1947 | |
---|
| 1948 | Default value |
---|
| 1949 | |
---|
| 1950 | scale |
---|
| 1951 | |
---|
| 1952 | None |
---|
| 1953 | |
---|
| 1954 | 1.0 |
---|
| 1955 | |
---|
| 1956 | radius |
---|
| 1957 | |
---|
| 1958 | |
---|
| 1959 | |
---|
| 1960 | 30 |
---|
| 1961 | |
---|
| 1962 | length |
---|
| 1963 | |
---|
| 1964 | |
---|
| 1965 | |
---|
| 1966 | 400 |
---|
| 1967 | |
---|
| 1968 | core_radius |
---|
| 1969 | |
---|
| 1970 | |
---|
| 1971 | |
---|
| 1972 | 20 |
---|
| 1973 | |
---|
| 1974 | sldCyl |
---|
| 1975 | |
---|
| 1976 | -2 |
---|
| 1977 | |
---|
| 1978 | 6.3e-6 |
---|
| 1979 | |
---|
| 1980 | sldSolv |
---|
| 1981 | |
---|
| 1982 | -2 |
---|
| 1983 | |
---|
| 1984 | 5e-06 |
---|
| 1985 | |
---|
| 1986 | background |
---|
| 1987 | |
---|
| 1988 | cm-1 |
---|
| 1989 | |
---|
| 1990 | 0.01 |
---|
| 1991 | |
---|
| 1992 | |
---|
| 1993 | |
---|
| 1994 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 1995 | |
---|
| 1996 | Our model uses the form factor calculations implemented in a c-library |
---|
| 1997 | provided by the NIST Center for Neutron Research (Kline, 2006). |
---|
| 1998 | |
---|
| 1999 | |
---|
| 2000 | |
---|
| 2001 | Figure. Definition of the angles for the oriented HollowCylinderModel. |
---|
| 2002 | |
---|
| 2003 | |
---|
| 2004 | |
---|
| 2005 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 2006 | plane. |
---|
| 2007 | |
---|
| 2008 | REFERENCE |
---|
| 2009 | |
---|
| 2010 | Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle |
---|
| 2011 | X-Ray and Neutron Scattering", Plenum Press, New York, (1987). |
---|
| 2012 | |
---|
| 2013 | |
---|
| 2014 | |
---|
| 2015 | .. _CappedCylinderModel: |
---|
| 2016 | |
---|
| 2017 | **2.1.16 CappedCylinderModel** |
---|
| 2018 | |
---|
| 2019 | Calculates the scattering from a cylinder with spherical section end- |
---|
| 2020 | caps(This model simply becomes the ConvexLensModel when the length of |
---|
| 2021 | the cylinder L = 0. That is, a sphereocylinder with end caps that have |
---|
| 2022 | a radius larger than that of the cylinder and the center of the end |
---|
| 2023 | cap radius lies within the cylinder. See the diagram for the details |
---|
| 2024 | of the geometry and restrictions on parameter values. |
---|
| 2025 | |
---|
| 2026 | |
---|
| 2027 | |
---|
| 2028 | *1.1. Definition* |
---|
| 2029 | |
---|
| 2030 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 2031 | |
---|
| 2032 | The Capped Cylinder geometry is defined as: |
---|
| 2033 | |
---|
| 2034 | |
---|
| 2035 | |
---|
| 2036 | r is the radius of the cylinder. All other parameters are as defined |
---|
| 2037 | in the diagram. Since the end cap radius R >= r and by definition for |
---|
| 2038 | this geometry h < 0, h is then defined by r and R as: |
---|
| 2039 | |
---|
| 2040 | h = -1*sqrt(R^2 - r^2). |
---|
| 2041 | |
---|
| 2042 | The scattering intensity I(q) is calculated as: |
---|
| 2043 | |
---|
| 2044 | |
---|
| 2045 | |
---|
| 2046 | where the amplitude A(q) is given as: |
---|
| 2047 | |
---|
| 2048 | |
---|
| 2049 | |
---|
| 2050 | The < > brackets denote an average of the structure over all |
---|
| 2051 | orientations. <A^2(q)> is then the form factor, P(q). The scale factor |
---|
| 2052 | is equivalent to the volume fraction of cylinders, each of volume, V. |
---|
| 2053 | Contrast is the difference of scattering length densities of the |
---|
| 2054 | cylinder and the surrounding solvent. |
---|
| 2055 | |
---|
| 2056 | The volume of the Capped Cylinder is: |
---|
| 2057 | |
---|
| 2058 | (with h as a positive value here) |
---|
| 2059 | |
---|
| 2060 | |
---|
| 2061 | |
---|
| 2062 | and its radius of gyration: |
---|
| 2063 | |
---|
| 2064 | |
---|
| 2065 | |
---|
| 2066 | The necessary conditions of R >= r is not enforced in the model. It is |
---|
| 2067 | up to you to restrict this during analysis. |
---|
| 2068 | |
---|
| 2069 | REFERENCES |
---|
| 2070 | |
---|
| 2071 | H. Kaya, J. Appl. Cryst. (2004) 37, 223-230. |
---|
| 2072 | |
---|
| 2073 | H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda |
---|
| 2074 | and errata) |
---|
| 2075 | |
---|
| 2076 | TEST DATASET |
---|
| 2077 | |
---|
| 2078 | This example dataset is produced by running the Macro |
---|
| 2079 | CappedCylinder(), using 200 data points, qmin = 0.001 -1, qmax = 0.7 |
---|
| 2080 | -1 and the above default values. |
---|
| 2081 | |
---|
| 2082 | Parameter name |
---|
| 2083 | |
---|
| 2084 | Units |
---|
| 2085 | |
---|
| 2086 | Default value |
---|
| 2087 | |
---|
| 2088 | scale |
---|
| 2089 | |
---|
| 2090 | None |
---|
| 2091 | |
---|
| 2092 | 1.0 |
---|
| 2093 | |
---|
| 2094 | len_cyl |
---|
| 2095 | |
---|
| 2096 | |
---|
| 2097 | |
---|
| 2098 | 400.0 |
---|
| 2099 | |
---|
| 2100 | rad_cap |
---|
| 2101 | |
---|
| 2102 | |
---|
| 2103 | |
---|
| 2104 | 40.0 |
---|
| 2105 | |
---|
| 2106 | rad_cyl |
---|
| 2107 | |
---|
| 2108 | |
---|
| 2109 | |
---|
| 2110 | 20.0 |
---|
| 2111 | |
---|
| 2112 | sld_capcyl |
---|
| 2113 | |
---|
| 2114 | -2 |
---|
| 2115 | |
---|
| 2116 | 1.0e-006 |
---|
| 2117 | |
---|
| 2118 | sld_solv |
---|
| 2119 | |
---|
| 2120 | -2 |
---|
| 2121 | |
---|
| 2122 | 6.3e-006 |
---|
| 2123 | |
---|
| 2124 | background |
---|
| 2125 | |
---|
| 2126 | 0 |
---|
| 2127 | |
---|
| 2128 | |
---|
| 2129 | |
---|
| 2130 | *Figure. 1D plot using the default values (w/256 data point).* |
---|
| 2131 | |
---|
| 2132 | For 2D data: The 2D scattering intensity is calculated similar to the |
---|
| 2133 | 2D cylinder model. At the theta = 45 deg and phi =0 deg with default |
---|
| 2134 | values for other parameters, |
---|
| 2135 | |
---|
| 2136 | |
---|
| 2137 | |
---|
| 2138 | *Figure. 2D plot (w/(256X265) data points).* |
---|
| 2139 | |
---|
| 2140 | |
---|
| 2141 | |
---|
| 2142 | Figure. Definition of the angles for oriented 2D cylinders. |
---|
| 2143 | |
---|
| 2144 | |
---|
| 2145 | |
---|
| 2146 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 2147 | plane. |
---|
| 2148 | |
---|
| 2149 | |
---|
| 2150 | |
---|
| 2151 | .. _CoreShellCylinderModel: |
---|
| 2152 | |
---|
| 2153 | **2.1.17. CoreShellCylinderModel*** |
---|
| 2154 | |
---|
| 2155 | This model provides the form factor for a circular cylinder with a |
---|
| 2156 | core-shell scattering length density profile. The form factor is |
---|
| 2157 | normalized by the particle volume. |
---|
| 2158 | |
---|
| 2159 | *1.1. Definition* |
---|
| 2160 | |
---|
| 2161 | The output of the 2D scattering intensity function for oriented core- |
---|
| 2162 | shell cylinders is given by (Kline, 2006): |
---|
| 2163 | |
---|
| 2164 | |
---|
| 2165 | |
---|
| 2166 | |
---|
| 2167 | |
---|
| 2168 | |
---|
| 2169 | |
---|
| 2170 | where is the angle between the axis of the cylinder and the q-vector, |
---|
| 2171 | *Vs* is the volume of the outer shell (i.e. the total volume, |
---|
| 2172 | including the shell), *Vc* is the volume of the core, *L* is the |
---|
| 2173 | length of the core, *r* is the radius of the core, *t* is the |
---|
| 2174 | thickness of the shell, *c* is the scattering length density of the |
---|
| 2175 | core, *s* is the scattering length density of the shell, solv is the |
---|
| 2176 | scattering length density of the solvent, and *bkg* is the background |
---|
| 2177 | level. The outer radius of the shell is given by *r+t* and the total |
---|
| 2178 | length of the outer shell is given by *L+2t*. J1 is the first order |
---|
| 2179 | Bessel function. |
---|
| 2180 | |
---|
| 2181 | |
---|
| 2182 | |
---|
| 2183 | To provide easy access to the orientation of the core-shell cylinder, |
---|
| 2184 | we define the axis of the cylinder using two angles and . Similarly to |
---|
| 2185 | the case of the cylinder, those angles are defined on Figure 2 in |
---|
| 2186 | Cylinder Model. |
---|
| 2187 | |
---|
| 2188 | For P*S: The 2nd virial coefficient of the solid cylinder is calculate |
---|
| 2189 | based on the (radius+thickness) and 2(length +thickness) values, and |
---|
| 2190 | used as the effective radius toward S(Q) when P(Q)*S(Q) is applied. |
---|
| 2191 | |
---|
| 2192 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 2193 | the core-shell cylinder model are the following: |
---|
| 2194 | |
---|
| 2195 | Parameter name |
---|
| 2196 | |
---|
| 2197 | Units |
---|
| 2198 | |
---|
| 2199 | Default value |
---|
| 2200 | |
---|
| 2201 | scale |
---|
| 2202 | |
---|
| 2203 | None |
---|
| 2204 | |
---|
| 2205 | 1.0 |
---|
| 2206 | |
---|
| 2207 | radius |
---|
| 2208 | |
---|
| 2209 | |
---|
| 2210 | |
---|
| 2211 | 20.0 |
---|
| 2212 | |
---|
| 2213 | thickness |
---|
| 2214 | |
---|
| 2215 | |
---|
| 2216 | |
---|
| 2217 | 10.0 |
---|
| 2218 | |
---|
| 2219 | length |
---|
| 2220 | |
---|
| 2221 | |
---|
| 2222 | |
---|
| 2223 | 400.0 |
---|
| 2224 | |
---|
| 2225 | core_sld |
---|
| 2226 | |
---|
| 2227 | -2 |
---|
| 2228 | |
---|
| 2229 | 1e-6 |
---|
| 2230 | |
---|
| 2231 | shell_sld |
---|
| 2232 | |
---|
| 2233 | -2 |
---|
| 2234 | |
---|
| 2235 | 4e-6 |
---|
| 2236 | |
---|
| 2237 | solvent_sld |
---|
| 2238 | |
---|
| 2239 | -2 |
---|
| 2240 | |
---|
| 2241 | 1e-6 |
---|
| 2242 | |
---|
| 2243 | background |
---|
| 2244 | |
---|
| 2245 | cm-1 |
---|
| 2246 | |
---|
| 2247 | 0.0 |
---|
| 2248 | |
---|
| 2249 | axis_theta |
---|
| 2250 | |
---|
| 2251 | degree |
---|
| 2252 | |
---|
| 2253 | 90 |
---|
| 2254 | |
---|
| 2255 | axis_phi |
---|
| 2256 | |
---|
| 2257 | degree |
---|
| 2258 | |
---|
| 2259 | 0.0 |
---|
| 2260 | |
---|
| 2261 | The output of the 1D scattering intensity function for randomly |
---|
| 2262 | oriented cylinders is then given by the equation above. |
---|
| 2263 | |
---|
| 2264 | The *axis_theta* and axis *_phi* parameters are not used for the 1D |
---|
| 2265 | output. Our implementation of the scattering kernel and the 1D |
---|
| 2266 | scattering intensity use the c-library from NIST. |
---|
| 2267 | |
---|
| 2268 | *2.1. Validation of the core-shell cylinder model* |
---|
| 2269 | |
---|
| 2270 | Validation of our code was done by comparing the output of the 1D |
---|
| 2271 | model to the output of the software provided by the NIST (Kline, |
---|
| 2272 | 2006). Figure 8 shows a comparison of the 1D output of our model and |
---|
| 2273 | the output of the NIST software. |
---|
| 2274 | |
---|
| 2275 | Averaging over a distribution of orientation is done by evaluating the |
---|
| 2276 | equation above. Since we have no other software to compare the |
---|
| 2277 | implementation of the intensity for fully oriented core-shell |
---|
| 2278 | cylinders, we can compare the result of averaging our 2D output using |
---|
| 2279 | a uniform distribution *p(,* *)* = 1.0. Figure 9 shows the result of |
---|
| 2280 | such a cross-check. |
---|
| 2281 | |
---|
| 2282 | |
---|
| 2283 | |
---|
| 2284 | |
---|
| 2285 | |
---|
| 2286 | Figure 8: Comparison of the DANSE scattering intensity for a core- |
---|
| 2287 | shell cylinder with the output of the NIST SANS analysis software. The |
---|
| 2288 | parameters were set to: Scale=1.0, Radius=20 , Thickness=10 , |
---|
| 2289 | Length=400 , Core_sld=1e-6 -2, Shell_sld=4e-6 -2, Solvent_sld=1e-6 -2, |
---|
| 2290 | and Background=0.01 cm -1. |
---|
| 2291 | |
---|
| 2292 | |
---|
| 2293 | |
---|
| 2294 | |
---|
| 2295 | |
---|
| 2296 | |
---|
| 2297 | |
---|
| 2298 | Figure 9: Comparison of the intensity for uniformly distributed core- |
---|
| 2299 | shell cylinders calculated from our 2D model and the intensity from |
---|
| 2300 | the NIST SANS analysis software. The parameters used were: Scale=1.0, |
---|
| 2301 | Radius=20 , Thickness=10 , Length=400 , Core_sld=1e-6 -2, |
---|
| 2302 | Shell_sld=4e-6 -2, Solvent_sld=1e-6 -2, and Background=0.0 cm -1. |
---|
| 2303 | |
---|
| 2304 | |
---|
| 2305 | |
---|
| 2306 | Figure. Definition of the angles for oriented core-shell cylinders. |
---|
| 2307 | |
---|
| 2308 | |
---|
| 2309 | |
---|
| 2310 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 2311 | plane. |
---|
| 2312 | |
---|
| 2313 | 2013/11/26 - Description reviewed by Heenan, R. |
---|
| 2314 | |
---|
| 2315 | |
---|
| 2316 | |
---|
| 2317 | .. _EllipticalCylinderModel: |
---|
| 2318 | |
---|
| 2319 | **2.1.18 EllipticalCylinderModel** |
---|
| 2320 | |
---|
| 2321 | This function calculates the scattering from an oriented elliptical |
---|
| 2322 | cylinder. |
---|
| 2323 | |
---|
| 2324 | *For 2D (orientated system):* |
---|
| 2325 | |
---|
| 2326 | The angles theta and phi define the orientation of the axis of the |
---|
| 2327 | cylinder. The angle psi is defined as the orientation of the major |
---|
| 2328 | axis of the ellipse with respect to the vector Q. A gaussian |
---|
| 2329 | poydispersity can be added to any of the orientation angles, and also |
---|
| 2330 | for the minor radius and the ratio of the ellipse radii. |
---|
| 2331 | |
---|
| 2332 | |
---|
| 2333 | |
---|
| 2334 | *Figure. a= r_minor and * *n= r_ratio (i.e., r_major/r_minor).* |
---|
| 2335 | |
---|
| 2336 | The function calculated is: |
---|
| 2337 | |
---|
| 2338 | |
---|
| 2339 | |
---|
| 2340 | with the functions: |
---|
| 2341 | |
---|
| 2342 | |
---|
| 2343 | |
---|
| 2344 | |
---|
| 2345 | |
---|
| 2346 | |
---|
| 2347 | |
---|
| 2348 | and the angle psi is defined as the orientation of the major axis of |
---|
| 2349 | the ellipse with respect to the vector Q. |
---|
| 2350 | |
---|
| 2351 | *For 1D (no preferred orientation):* |
---|
| 2352 | |
---|
| 2353 | The form factor is averaged over all possible orientation before |
---|
| 2354 | normalized by the particle volume: P(q) = scale*<f^2>/V . |
---|
| 2355 | |
---|
| 2356 | The returned value is scaled to units of [cm-1]. |
---|
| 2357 | |
---|
| 2358 | To provide easy access to the orientation of the elliptical, we define |
---|
| 2359 | the axis of the cylinder using two angles , andY. Similarly to the |
---|
| 2360 | case of the cylinder, those angles, and , are defined on Figure 2 of |
---|
| 2361 | CylinderModel. The angle Y is the rotational angle around its own |
---|
| 2362 | long_c axis against the q plane. For example, Y = 0 when the r_minor |
---|
| 2363 | axis is parallel to the x-axis of the detector. |
---|
| 2364 | |
---|
| 2365 | All angle parameters are valid and given only for 2D calculation |
---|
| 2366 | (Oriented system). |
---|
| 2367 | |
---|
| 2368 | |
---|
| 2369 | |
---|
| 2370 | *Figure. Definition of angels for 2D*. |
---|
| 2371 | |
---|
| 2372 | |
---|
| 2373 | |
---|
| 2374 | Figure. Examples of the angles for oriented elliptical cylinders |
---|
| 2375 | |
---|
| 2376 | against the detector plane. |
---|
| 2377 | |
---|
| 2378 | *For P*S*: The 2nd virial coefficient of the solid cylinder is |
---|
| 2379 | calculate based on the averaged radius (=sqrt(r_minor^2*r_ratio)) and |
---|
| 2380 | length values, and used as the effective radius toward S(Q) when |
---|
| 2381 | P(Q)*S(Q) is applied. |
---|
| 2382 | |
---|
| 2383 | Parameter name |
---|
| 2384 | |
---|
| 2385 | Units |
---|
| 2386 | |
---|
| 2387 | Default value |
---|
| 2388 | |
---|
| 2389 | scale |
---|
| 2390 | |
---|
| 2391 | None |
---|
| 2392 | |
---|
| 2393 | 1.0 |
---|
| 2394 | |
---|
| 2395 | r_minor |
---|
| 2396 | |
---|
| 2397 | |
---|
| 2398 | |
---|
| 2399 | 20.0 |
---|
| 2400 | |
---|
| 2401 | r_ratio |
---|
| 2402 | |
---|
| 2403 | |
---|
| 2404 | |
---|
| 2405 | 1.5 |
---|
| 2406 | |
---|
| 2407 | length |
---|
| 2408 | |
---|
| 2409 | |
---|
| 2410 | |
---|
| 2411 | 400.0 |
---|
| 2412 | |
---|
| 2413 | sldCyl |
---|
| 2414 | |
---|
| 2415 | -2 |
---|
| 2416 | |
---|
| 2417 | 4e-6 |
---|
| 2418 | |
---|
| 2419 | sldSolv |
---|
| 2420 | |
---|
| 2421 | -2 |
---|
| 2422 | |
---|
| 2423 | 1e-006 |
---|
| 2424 | |
---|
| 2425 | background |
---|
| 2426 | |
---|
| 2427 | 0 |
---|
| 2428 | |
---|
| 2429 | |
---|
| 2430 | |
---|
| 2431 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 2432 | |
---|
| 2433 | *Validation of the elliptical cylinder 2D model* |
---|
| 2434 | |
---|
| 2435 | Validation of our code was done by comparing the output of the 1D |
---|
| 2436 | calculation to the angular average of the output of 2 D calculation |
---|
| 2437 | over all possible angles. The Figure below shows the comparison where |
---|
| 2438 | the solid dot refers to averaged 2D while the line represents the |
---|
| 2439 | result of 1D calculation (for 2D averaging, 76, 180, 76 points are |
---|
| 2440 | taken for the angles of theta, phi, and psi respectively). |
---|
| 2441 | |
---|
| 2442 | |
---|
| 2443 | |
---|
| 2444 | *Figure. Comparison between 1D and averaged 2D.* |
---|
| 2445 | |
---|
| 2446 | |
---|
| 2447 | |
---|
| 2448 | In the 2D average, more binning in the angle phi is necessary to get |
---|
| 2449 | the proper result. The following figure shows the results of the |
---|
| 2450 | averaging by varying the number of bin over angles. |
---|
| 2451 | |
---|
| 2452 | |
---|
| 2453 | |
---|
| 2454 | *Figure. The intensities averaged from 2D over different number * |
---|
| 2455 | |
---|
| 2456 | *of points of binning of angles.* |
---|
| 2457 | |
---|
| 2458 | REFERENCE |
---|
| 2459 | |
---|
| 2460 | L. A. Feigin and D. I. Svergun Structure Analysis by Small-Angle X-Ray |
---|
| 2461 | and Neutron Scattering, Plenum, New York, (1987). |
---|
| 2462 | |
---|
| 2463 | |
---|
| 2464 | |
---|
| 2465 | .. _FlexibleCylinderModel: |
---|
| 2466 | |
---|
| 2467 | **2.1.19. FlexibleCylinderModel** |
---|
| 2468 | |
---|
| 2469 | This model provides the form factor, P( *q*), for a flexible cylinder |
---|
| 2470 | where the form factor is normalized by the volume of the cylinder: |
---|
| 2471 | Inter-cylinder interactions are NOT included. P(q) = |
---|
| 2472 | scale*<f^2>/V+background where the averaging < > is applied over all |
---|
| 2473 | orientation for 1D. The 2D scattering intensity is the same as 1D, |
---|
| 2474 | regardless of the orientation of the *q* vector which is defined as . |
---|
| 2475 | |
---|
| 2476 | |
---|
| 2477 | |
---|
| 2478 | The chain of contour length, L, (the total length) can be described a |
---|
| 2479 | chain of some number of locally stiff segments of length lp. The |
---|
| 2480 | persistence length,lp, is the length along the cylinder over which the |
---|
| 2481 | flexible cylinder can be considered a rigid rod. The Kuhn length (b = |
---|
| 2482 | 2*lp) is also used to describe the stiffness of a chain. The returned |
---|
| 2483 | value is in units of [cm-1], on absolute scale. In the parameters, the |
---|
| 2484 | sldCyl and sldSolv represent SLD (chain/cylinder) and SLD (solvent) |
---|
| 2485 | respectively. |
---|
| 2486 | |
---|
| 2487 | |
---|
| 2488 | |
---|
| 2489 | |
---|
| 2490 | |
---|
| 2491 | Parameter name |
---|
| 2492 | |
---|
| 2493 | Units |
---|
| 2494 | |
---|
| 2495 | Default value |
---|
| 2496 | |
---|
| 2497 | scale |
---|
| 2498 | |
---|
| 2499 | None |
---|
| 2500 | |
---|
| 2501 | 1.0 |
---|
| 2502 | |
---|
| 2503 | radius |
---|
| 2504 | |
---|
| 2505 | |
---|
| 2506 | |
---|
| 2507 | 20 |
---|
| 2508 | |
---|
| 2509 | length |
---|
| 2510 | |
---|
| 2511 | |
---|
| 2512 | |
---|
| 2513 | 1000 |
---|
| 2514 | |
---|
| 2515 | sldCyl |
---|
| 2516 | |
---|
| 2517 | -2 |
---|
| 2518 | |
---|
| 2519 | 1e-06 |
---|
| 2520 | |
---|
| 2521 | sldSolv |
---|
| 2522 | |
---|
| 2523 | -2 |
---|
| 2524 | |
---|
| 2525 | 6.3e-06 |
---|
| 2526 | |
---|
| 2527 | background |
---|
| 2528 | |
---|
| 2529 | cm-1 |
---|
| 2530 | |
---|
| 2531 | 0.01 |
---|
| 2532 | |
---|
| 2533 | kuhn_length |
---|
| 2534 | |
---|
| 2535 | |
---|
| 2536 | |
---|
| 2537 | 100 |
---|
| 2538 | |
---|
| 2539 | |
---|
| 2540 | |
---|
| 2541 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 2542 | |
---|
| 2543 | Our model uses the form factor calculations implemented in a c-library |
---|
| 2544 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 2545 | |
---|
| 2546 | From the reference, "Method 3 With Excluded Volume" is used. The model |
---|
| 2547 | is a parametrization of simulations of a discrete representation of |
---|
| 2548 | the worm-like chain model of Kratky and Porod applied in the |
---|
| 2549 | pseudocontinuous limit. See equations (13,26-27) in the original |
---|
| 2550 | reference for the details. |
---|
| 2551 | |
---|
| 2552 | REFERENCE |
---|
| 2553 | |
---|
| 2554 | Pedersen, J. S. and P. Schurtenberger (1996). Scattering functions of |
---|
| 2555 | semiflexible polymers with and without excluded volume effects. |
---|
| 2556 | Macromolecules 29: 7602-7612. |
---|
| 2557 | |
---|
| 2558 | Correction of the formula can be found in: |
---|
| 2559 | |
---|
| 2560 | Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating |
---|
| 2561 | Intermicellar Interactions in the Fitting of SANS Data from Cationic |
---|
| 2562 | Wormlike Micelles" Langmuir, August 2006. |
---|
| 2563 | |
---|
| 2564 | |
---|
| 2565 | |
---|
| 2566 | .. _FlexCylEllipXModel: |
---|
| 2567 | |
---|
| 2568 | **2.1.20 FlexCylEllipXModel** |
---|
| 2569 | |
---|
| 2570 | *Flexible Cylinder with Elliptical Cross-Section: *Calculates the |
---|
| 2571 | form factor for a flexible cylinder with an elliptical cross section |
---|
| 2572 | and a uniform scattering length density. The non-negligible diameter |
---|
| 2573 | of the cylinder is included by accounting for excluded volume |
---|
| 2574 | interactions within the walk of a single cylinder. The form factor is |
---|
| 2575 | normalized by the particle volume such that P(q) = scale*<f^2>/Vol + |
---|
| 2576 | bkg, where < > is an average over all possible orientations of the |
---|
| 2577 | flexible cylinder. |
---|
| 2578 | |
---|
| 2579 | *1.1. Definition* |
---|
| 2580 | |
---|
| 2581 | The function calculated is from the reference given below. From that |
---|
| 2582 | paper, "Method 3 With Excluded Volume" is used. The model is a |
---|
| 2583 | parameterization of simulations of a discrete representation of the |
---|
| 2584 | worm-like chain model of Kratky and Porod applied in the pseudo- |
---|
| 2585 | continuous limit. See equations (13, 26-27) in the original reference |
---|
| 2586 | for the details. |
---|
| 2587 | |
---|
| 2588 | NOTE: there are several typos in the original reference that have been |
---|
| 2589 | corrected by WRC. Details of the corrections are in the reference |
---|
| 2590 | below. |
---|
| 2591 | |
---|
| 2592 | - Equation (13): the term (1-w(QR)) should swap position with w(QR) |
---|
| 2593 | |
---|
| 2594 | - Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and solved analytically. The results were converted to code. |
---|
| 2595 | |
---|
| 2596 | - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of max(a3*b/sqrt(RgSquare),3) |
---|
| 2597 | |
---|
| 2598 | - The scattering function is negative for a range of parameter values and q-values that are experimentally accessible. A correction function has been added to give the proper behavior. |
---|
| 2599 | |
---|
| 2600 | |
---|
| 2601 | |
---|
| 2602 | The chain of contour length, L, (the total length) can be described a |
---|
| 2603 | chain of some number of locally stiff segments of length lp. The |
---|
| 2604 | persistence length, lp, is the length along the cylinder over which |
---|
| 2605 | the flexible cylinder can be considered a rigid rod. The Kuhn length |
---|
| 2606 | (b) used in the model is also used to describe the stiffness of a |
---|
| 2607 | chain, and is simply b = 2*lp. |
---|
| 2608 | |
---|
| 2609 | The cross section of the cylinder is elliptical, with minor radius a. |
---|
| 2610 | The major radius is larger, so of course, the axis ratio (parameter 4) |
---|
| 2611 | must be greater than one. Simple constraints should be applied during |
---|
| 2612 | curve fitting to maintain this inequality. |
---|
| 2613 | |
---|
| 2614 | The returned value is in units of [cm-1], on absolute scale. |
---|
| 2615 | |
---|
| 2616 | The sldCyl = SLD (chain), sldSolv = SLD (solvent). The scale, and the |
---|
| 2617 | contrast are both multiplicative factors in the model and are |
---|
| 2618 | perfectly correlated. One or both of these parameters must be held |
---|
| 2619 | fixed during model fitting. |
---|
| 2620 | |
---|
| 2621 | If the scale is set equal to the particle volume fraction, f, the |
---|
| 2622 | returned value is the scattered intensity per unit volume, I(q) = |
---|
| 2623 | f*P(q). However, no inter-particle interference effects are included |
---|
| 2624 | in this calculation. |
---|
| 2625 | |
---|
| 2626 | For 2D data: The 2D scattering intensity is calculated in the same way |
---|
| 2627 | as 1D, where the *q* vector is defined as . |
---|
| 2628 | |
---|
| 2629 | REFERENCE |
---|
| 2630 | |
---|
| 2631 | Pedersen, J. S. and P. Schurtenberger (1996). Scattering functions of |
---|
| 2632 | semiflexible polymers with and without excluded volume effects. |
---|
| 2633 | Macromolecules 29: 7602-7612. |
---|
| 2634 | |
---|
| 2635 | Corrections are in: |
---|
| 2636 | |
---|
| 2637 | Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating |
---|
| 2638 | Intermicellar Interactions in the Fitting of SANS Data from Cationic |
---|
| 2639 | Wormlike Micelles" Langmuir, August 2006. |
---|
| 2640 | |
---|
| 2641 | |
---|
| 2642 | |
---|
| 2643 | TEST DATASET |
---|
| 2644 | |
---|
| 2645 | This example dataset is produced by running the Macro |
---|
| 2646 | FlexCylEllipXModel, using 200 data points, qmin = 0.001 -1, qmax = 0.7 |
---|
| 2647 | -1 and the default values below. |
---|
| 2648 | |
---|
| 2649 | Parameter name |
---|
| 2650 | |
---|
| 2651 | Units |
---|
| 2652 | |
---|
| 2653 | Default value |
---|
| 2654 | |
---|
| 2655 | axis_ratio |
---|
| 2656 | |
---|
| 2657 | 1.5 |
---|
| 2658 | |
---|
| 2659 | background |
---|
| 2660 | |
---|
| 2661 | cm-1 |
---|
| 2662 | |
---|
| 2663 | 0.0001 |
---|
| 2664 | |
---|
| 2665 | Kuhn_length |
---|
| 2666 | |
---|
| 2667 | |
---|
| 2668 | |
---|
| 2669 | 100 |
---|
| 2670 | |
---|
| 2671 | (Contour) length |
---|
| 2672 | |
---|
| 2673 | |
---|
| 2674 | |
---|
| 2675 | 1e+3 |
---|
| 2676 | |
---|
| 2677 | radius |
---|
| 2678 | |
---|
| 2679 | |
---|
| 2680 | |
---|
| 2681 | 20.0 |
---|
| 2682 | |
---|
| 2683 | scale |
---|
| 2684 | |
---|
| 2685 | 1.0 |
---|
| 2686 | |
---|
| 2687 | sldCyl |
---|
| 2688 | |
---|
| 2689 | -2 |
---|
| 2690 | |
---|
| 2691 | 1e-6 |
---|
| 2692 | |
---|
| 2693 | sldSolv |
---|
| 2694 | |
---|
| 2695 | -2 |
---|
| 2696 | |
---|
| 2697 | 6.3e-6 |
---|
| 2698 | |
---|
| 2699 | |
---|
| 2700 | |
---|
| 2701 | *Figure. 1D plot using the default values (w/200 data points).* |
---|
| 2702 | |
---|
| 2703 | |
---|
| 2704 | |
---|
| 2705 | .. _CoreShellBicelleModel: |
---|
| 2706 | |
---|
| 2707 | **2.1.21 CoreShellBicelleModel** |
---|
| 2708 | |
---|
| 2709 | This model provides the form factor for a circular cylinder with a |
---|
| 2710 | core-shell scattering length density profile. The form factor is |
---|
| 2711 | normalized by the particle volume. This model is a more general case |
---|
| 2712 | of core-shell cylinder model (seeabove and reference below) in that |
---|
| 2713 | the parameters of the shell are separated into a face-shell and a rim- |
---|
| 2714 | shell so that users can set different values of the thicknesses and |
---|
| 2715 | slds. |
---|
| 2716 | |
---|
| 2717 | |
---|
| 2718 | |
---|
| 2719 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 2720 | the core-shell cylinder model are the following: |
---|
| 2721 | |
---|
| 2722 | Parameter name |
---|
| 2723 | |
---|
| 2724 | Units |
---|
| 2725 | |
---|
| 2726 | Default value |
---|
| 2727 | |
---|
| 2728 | scale |
---|
| 2729 | |
---|
| 2730 | None |
---|
| 2731 | |
---|
| 2732 | 1.0 |
---|
| 2733 | |
---|
| 2734 | radius |
---|
| 2735 | |
---|
| 2736 | |
---|
| 2737 | |
---|
| 2738 | 20.0 |
---|
| 2739 | |
---|
| 2740 | rim_thick |
---|
| 2741 | |
---|
| 2742 | |
---|
| 2743 | |
---|
| 2744 | 10.0 |
---|
| 2745 | face_thick 10.0 |
---|
| 2746 | length |
---|
| 2747 | |
---|
| 2748 | |
---|
| 2749 | |
---|
| 2750 | 400.0 |
---|
| 2751 | |
---|
| 2752 | core_sld |
---|
| 2753 | |
---|
| 2754 | -2 |
---|
| 2755 | |
---|
| 2756 | 1e-6 |
---|
| 2757 | |
---|
| 2758 | rim_sld |
---|
| 2759 | |
---|
| 2760 | -2 |
---|
| 2761 | |
---|
| 2762 | 4e-6 |
---|
| 2763 | face_sld -2 4e-6 |
---|
| 2764 | solvent_sld |
---|
| 2765 | |
---|
| 2766 | -2 |
---|
| 2767 | |
---|
| 2768 | 1e-6 |
---|
| 2769 | |
---|
| 2770 | background |
---|
| 2771 | |
---|
| 2772 | cm-1 |
---|
| 2773 | |
---|
| 2774 | 0.0 |
---|
| 2775 | |
---|
| 2776 | axis_theta |
---|
| 2777 | |
---|
| 2778 | degree |
---|
| 2779 | |
---|
| 2780 | 90 |
---|
| 2781 | |
---|
| 2782 | axis_phi |
---|
| 2783 | |
---|
| 2784 | degree |
---|
| 2785 | |
---|
| 2786 | 0.0 |
---|
| 2787 | |
---|
| 2788 | The output of the 1D scattering intensity function for randomly |
---|
| 2789 | oriented cylinders is then given by the equation above. |
---|
| 2790 | |
---|
| 2791 | The *axis_theta* and axis *_phi* parameters are not used for the 1D |
---|
| 2792 | output. Our implementation of the scattering kernel and the 1D |
---|
| 2793 | scattering intensity use the c-library from NIST. |
---|
| 2794 | |
---|
| 2795 | |
---|
| 2796 | |
---|
| 2797 | |
---|
| 2798 | |
---|
| 2799 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 2800 | |
---|
| 2801 | |
---|
| 2802 | |
---|
| 2803 | Figure. Definition of the angles for the oriented Core-Shell Cylinder |
---|
| 2804 | Bicelle Model. |
---|
| 2805 | |
---|
| 2806 | |
---|
| 2807 | |
---|
| 2808 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 2809 | plane. |
---|
| 2810 | |
---|
| 2811 | REFERENCE |
---|
| 2812 | Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle |
---|
| 2813 | X-Ray and Neutron Scattering", Plenum Press, New York, (1987). |
---|
| 2814 | |
---|
| 2815 | |
---|
| 2816 | |
---|
| 2817 | .. _BarBellModel: |
---|
| 2818 | |
---|
| 2819 | **2.1.22. BarBellModel** |
---|
| 2820 | |
---|
| 2821 | Calculates the scattering from a barbell-shaped cylinder (This model |
---|
| 2822 | simply becomes the DumBellModel when the length of the cylinder, L, is |
---|
| 2823 | set to zero). That is, a sphereocylinder with spherical end caps that |
---|
| 2824 | have a radius larger than that of the cylinder and the center of the |
---|
| 2825 | end cap radius lies outside of the cylinder All dimensions of the |
---|
| 2826 | barbell are considered to be monodisperse. See the diagram for the |
---|
| 2827 | details of the geometry and restrictions on parameter values. |
---|
| 2828 | |
---|
| 2829 | *1.1. Definition* |
---|
| 2830 | |
---|
| 2831 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 2832 | |
---|
| 2833 | The barbell geometry is defined as: |
---|
| 2834 | |
---|
| 2835 | |
---|
| 2836 | |
---|
| 2837 | r is the radius of the cylinder. All other parameters are as defined |
---|
| 2838 | in the diagram. Since the end cap radius R >= r and by definition for |
---|
| 2839 | this geometry h > 0, h is then defined by r and R as: |
---|
| 2840 | |
---|
| 2841 | h = sqrt(R^2 - r^2). |
---|
| 2842 | |
---|
| 2843 | The scattering intensity I(q) is calculated as: |
---|
| 2844 | |
---|
| 2845 | |
---|
| 2846 | |
---|
| 2847 | where the amplitude A(q) is given as: |
---|
| 2848 | |
---|
| 2849 | |
---|
| 2850 | |
---|
| 2851 | |
---|
| 2852 | |
---|
| 2853 | |
---|
| 2854 | |
---|
| 2855 | The < > brackets denote an average of the structure over all |
---|
| 2856 | orientations. <A^2(q)> is then the form factor, P(q). The scale factor |
---|
| 2857 | is equivalent to the volume fraction of cylinders, each of volume, V. |
---|
| 2858 | Contrast is the difference of scattering length densities of the |
---|
| 2859 | cylinder and the surrounding solvent. |
---|
| 2860 | |
---|
| 2861 | The volume of the barbell is: |
---|
| 2862 | |
---|
| 2863 | |
---|
| 2864 | |
---|
| 2865 | and its radius of gyration: |
---|
| 2866 | |
---|
| 2867 | |
---|
| 2868 | |
---|
| 2869 | The necessary conditions of R >= r is not enforced in the model. It is |
---|
| 2870 | up to you to restrict this during analysis. |
---|
| 2871 | |
---|
| 2872 | REFERENCES |
---|
| 2873 | |
---|
| 2874 | H. Kaya, J. Appl. Cryst. (2004) 37, 223-230. |
---|
| 2875 | |
---|
| 2876 | H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda |
---|
| 2877 | and errata) |
---|
| 2878 | |
---|
| 2879 | TEST DATASET |
---|
| 2880 | |
---|
| 2881 | This example dataset is produced by running the Macro PlotBarbell(), |
---|
| 2882 | using 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the above |
---|
| 2883 | default values. |
---|
| 2884 | |
---|
| 2885 | Parameter name |
---|
| 2886 | |
---|
| 2887 | Units |
---|
| 2888 | |
---|
| 2889 | Default value |
---|
| 2890 | |
---|
| 2891 | scale |
---|
| 2892 | |
---|
| 2893 | None |
---|
| 2894 | |
---|
| 2895 | 1.0 |
---|
| 2896 | |
---|
| 2897 | len_bar |
---|
| 2898 | |
---|
| 2899 | |
---|
| 2900 | |
---|
| 2901 | 400.0 |
---|
| 2902 | |
---|
| 2903 | rad_bar |
---|
| 2904 | |
---|
| 2905 | |
---|
| 2906 | |
---|
| 2907 | 20.0 |
---|
| 2908 | |
---|
| 2909 | rad_bell |
---|
| 2910 | |
---|
| 2911 | |
---|
| 2912 | |
---|
| 2913 | 40.0 |
---|
| 2914 | |
---|
| 2915 | sld_barbell |
---|
| 2916 | |
---|
| 2917 | -2 |
---|
| 2918 | |
---|
| 2919 | 1.0e-006 |
---|
| 2920 | |
---|
| 2921 | sld_solv |
---|
| 2922 | |
---|
| 2923 | -2 |
---|
| 2924 | |
---|
| 2925 | 6.3e-006 |
---|
| 2926 | |
---|
| 2927 | background |
---|
| 2928 | |
---|
| 2929 | 0 |
---|
| 2930 | |
---|
| 2931 | |
---|
| 2932 | |
---|
| 2933 | *Figure. 1D plot using the default values (w/256 data point).* |
---|
| 2934 | |
---|
| 2935 | For 2D data: The 2D scattering intensity is calculated similar to the |
---|
| 2936 | 2D cylinder model. At the theta = 45 deg and phi =0 deg with default |
---|
| 2937 | values for other parameters, |
---|
| 2938 | |
---|
| 2939 | |
---|
| 2940 | |
---|
| 2941 | *Figure. 2D plot (w/(256X265) data points).* |
---|
| 2942 | |
---|
| 2943 | |
---|
| 2944 | |
---|
| 2945 | |
---|
| 2946 | |
---|
| 2947 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 2948 | plane. |
---|
| 2949 | |
---|
| 2950 | Figure. Definition of the angles for oriented 2D barbells. |
---|
| 2951 | |
---|
| 2952 | |
---|
| 2953 | |
---|
| 2954 | .. _StackedDisksModel: |
---|
| 2955 | |
---|
| 2956 | **2.1.23. StackedDisksModel** |
---|
| 2957 | |
---|
| 2958 | This model provides the form factor, P( *q*), for stacked discs |
---|
| 2959 | (tactoids) with a core/layer structure where the form factor is |
---|
| 2960 | normalized by the volume of the cylinder. Assuming the next neighbor |
---|
| 2961 | distance (d-spacing) in a stack of parallel discs obeys a Gaussian |
---|
| 2962 | distribution, a structure factor S(q) proposed by Kratky and Porod in |
---|
| 2963 | 1949 is used in this function. Note that the resolution smearing |
---|
| 2964 | calculation uses 76 Gauss quadrature points to properly smear the |
---|
| 2965 | model since the function is HIGHLY oscillatory, especially around the |
---|
| 2966 | q-values that correspond to the repeat distance of the layers. |
---|
| 2967 | |
---|
| 2968 | The 2D scattering intensity is the same as 1D, regardless of the |
---|
| 2969 | orientation of the *q* vector which is defined as . |
---|
| 2970 | |
---|
| 2971 | |
---|
| 2972 | |
---|
| 2973 | |
---|
| 2974 | |
---|
| 2975 | |
---|
| 2976 | |
---|
| 2977 | The returned value is in units of [cm-1 sr-1], on absolute scale. |
---|
| 2978 | |
---|
| 2979 | The scattering intensity I(q) is: |
---|
| 2980 | |
---|
| 2981 | |
---|
| 2982 | |
---|
| 2983 | where the contrast, |
---|
| 2984 | |
---|
| 2985 | |
---|
| 2986 | |
---|
| 2987 | N is the number of discs per unit volume, ais the angle between the |
---|
| 2988 | axis of the disc and q, and Vt and Vc are the total volume and the |
---|
| 2989 | core volume of a single disc, respectively. |
---|
| 2990 | |
---|
| 2991 | |
---|
| 2992 | |
---|
| 2993 | |
---|
| 2994 | |
---|
| 2995 | |
---|
| 2996 | |
---|
| 2997 | where d = thickness of the layer (layer_thick), 2h= core thickness |
---|
| 2998 | (core_thick), and R = radius of the disc (radius). |
---|
| 2999 | |
---|
| 3000 | |
---|
| 3001 | |
---|
| 3002 | where n = the total number of the disc stacked (n_stacking), D=the |
---|
| 3003 | next neighbor center to cent distance (d-spacing), and sD= the |
---|
| 3004 | Gaussian standard deviation of the d-spacing (sigma_d). |
---|
| 3005 | |
---|
| 3006 | To provide easy access to the orientation of the stackeddisks, we |
---|
| 3007 | define the axis of the cylinder using two angles and . Similarly to |
---|
| 3008 | the case of the cylinder, those angles are defined on Figure 2 of |
---|
| 3009 | CylinderModel. |
---|
| 3010 | |
---|
| 3011 | For P*S: The 2nd virial coefficient of the solid cylinder is calculate |
---|
| 3012 | based on the (radius) and length = n_stacking*(core_thick |
---|
| 3013 | +2*layer_thick) values, and used as the effective radius toward S(Q) |
---|
| 3014 | when P(Q)*S(Q) is applied. |
---|
| 3015 | |
---|
| 3016 | Parameter name |
---|
| 3017 | |
---|
| 3018 | Units |
---|
| 3019 | |
---|
| 3020 | Default value |
---|
| 3021 | |
---|
| 3022 | background |
---|
| 3023 | |
---|
| 3024 | cm-1 |
---|
| 3025 | |
---|
| 3026 | 0.001 |
---|
| 3027 | |
---|
| 3028 | core_sld |
---|
| 3029 | |
---|
| 3030 | -2 |
---|
| 3031 | |
---|
| 3032 | 4e-006 |
---|
| 3033 | |
---|
| 3034 | core_thick |
---|
| 3035 | |
---|
| 3036 | |
---|
| 3037 | |
---|
| 3038 | 10 |
---|
| 3039 | |
---|
| 3040 | layer_sld |
---|
| 3041 | |
---|
| 3042 | -2 |
---|
| 3043 | |
---|
| 3044 | 0 |
---|
| 3045 | |
---|
| 3046 | layer_thick |
---|
| 3047 | |
---|
| 3048 | |
---|
| 3049 | |
---|
| 3050 | 15 |
---|
| 3051 | |
---|
| 3052 | n_stacking |
---|
| 3053 | |
---|
| 3054 | 1 |
---|
| 3055 | |
---|
| 3056 | radius |
---|
| 3057 | |
---|
| 3058 | |
---|
| 3059 | |
---|
| 3060 | 3e+003 |
---|
| 3061 | |
---|
| 3062 | scale |
---|
| 3063 | |
---|
| 3064 | 0.01 |
---|
| 3065 | |
---|
| 3066 | sigma_d |
---|
| 3067 | |
---|
| 3068 | 0 |
---|
| 3069 | |
---|
| 3070 | solvent_sld |
---|
| 3071 | |
---|
| 3072 | -2 |
---|
| 3073 | |
---|
| 3074 | 5e-006 |
---|
| 3075 | |
---|
| 3076 | |
---|
| 3077 | |
---|
| 3078 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 3079 | |
---|
| 3080 | |
---|
| 3081 | |
---|
| 3082 | Figure. Examples of the angles for oriented stackeddisks against the |
---|
| 3083 | detector plane. |
---|
| 3084 | |
---|
| 3085 | |
---|
| 3086 | |
---|
| 3087 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 3088 | plane. |
---|
| 3089 | |
---|
| 3090 | Our model uses the form factor calculations implemented in a c-library |
---|
| 3091 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 3092 | |
---|
| 3093 | REFERENCE |
---|
| 3094 | |
---|
| 3095 | Guinier, A. and Fournet, G., "Small-Angle Scattering of X-Rays", John |
---|
| 3096 | Wiley and Sons, New York, 1955. |
---|
| 3097 | |
---|
| 3098 | Kratky, O. and Porod, G., J. Colloid Science, 4, 35, 1949. |
---|
| 3099 | |
---|
| 3100 | Higgins, J.S. and Benoit, H.C., "Polymers and Neutron Scattering", |
---|
| 3101 | Clarendon, Oxford, 1994. |
---|
| 3102 | |
---|
| 3103 | |
---|
| 3104 | |
---|
| 3105 | .. _PringleModel: |
---|
| 3106 | |
---|
| 3107 | **2.1.24. PringleModel** |
---|
| 3108 | |
---|
| 3109 | This model provides the form factor, P( *q*), for a 'pringle' or |
---|
| 3110 | 'saddle-shaped' object (a hyperbolic paraboloid). |
---|
| 3111 | |
---|
| 3112 | |
---|
| 3113 | |
---|
| 3114 | The returned value is in units of [cm-1], on absolute scale. |
---|
| 3115 | |
---|
| 3116 | The form factor calculated is: |
---|
| 3117 | |
---|
| 3118 | |
---|
| 3119 | |
---|
| 3120 | where |
---|
| 3121 | |
---|
| 3122 | |
---|
| 3123 | |
---|
| 3124 | |
---|
| 3125 | |
---|
| 3126 | The parameters of the model and a plot comparing the pringle model |
---|
| 3127 | with the equivalent cylinder are shown below. |
---|
| 3128 | |
---|
| 3129 | Parameter name |
---|
| 3130 | |
---|
| 3131 | Units |
---|
| 3132 | |
---|
| 3133 | Default value |
---|
| 3134 | |
---|
| 3135 | background |
---|
| 3136 | |
---|
| 3137 | cm-1 |
---|
| 3138 | |
---|
| 3139 | 0.0 |
---|
| 3140 | |
---|
| 3141 | alpha |
---|
| 3142 | |
---|
| 3143 | |
---|
| 3144 | |
---|
| 3145 | 0.001 |
---|
| 3146 | |
---|
| 3147 | beta |
---|
| 3148 | |
---|
| 3149 | |
---|
| 3150 | |
---|
| 3151 | 0.02 |
---|
| 3152 | |
---|
| 3153 | radius |
---|
| 3154 | |
---|
| 3155 | 60 |
---|
| 3156 | |
---|
| 3157 | scale |
---|
| 3158 | |
---|
| 3159 | |
---|
| 3160 | |
---|
| 3161 | 1 |
---|
| 3162 | |
---|
| 3163 | sld_pringle |
---|
| 3164 | |
---|
| 3165 | -2 |
---|
| 3166 | |
---|
| 3167 | 1e-006 |
---|
| 3168 | |
---|
| 3169 | sld_solvent |
---|
| 3170 | |
---|
| 3171 | -2 |
---|
| 3172 | |
---|
| 3173 | 6.3e-006 |
---|
| 3174 | |
---|
| 3175 | thickness |
---|
| 3176 | |
---|
| 3177 | |
---|
| 3178 | |
---|
| 3179 | 10 |
---|
| 3180 | |
---|
| 3181 | |
---|
| 3182 | |
---|
| 3183 | *Figure. 1D plot using the default values (w/150 data point).* |
---|
| 3184 | |
---|
| 3185 | REFERENCE |
---|
| 3186 | |
---|
| 3187 | S. Alexandru Rautu, Private Communication. |
---|
| 3188 | |
---|
| 3189 | |
---|
| 3190 | |
---|
| 3191 | .. _EllipsoidModel: |
---|
| 3192 | |
---|
| 3193 | **2.1.25. EllipsoidModel** |
---|
| 3194 | |
---|
| 3195 | This model provides the form factor for an ellipsoid (ellipsoid of |
---|
| 3196 | revolution) with uniform scattering length density. The form factor is |
---|
| 3197 | normalized by the particle volume. |
---|
| 3198 | |
---|
| 3199 | *1.1. Definition* |
---|
| 3200 | |
---|
| 3201 | The output of the 2D scattering intensity function for oriented |
---|
| 3202 | ellipsoids is given by (Feigin, 1987): |
---|
| 3203 | |
---|
| 3204 | |
---|
| 3205 | |
---|
| 3206 | |
---|
| 3207 | |
---|
| 3208 | |
---|
| 3209 | |
---|
| 3210 | where is the angle between the axis of the ellipsoid and the q-vector, |
---|
| 3211 | V is the volume of the ellipsoid, Ra is the radius along the rotation |
---|
| 3212 | axis of the ellipsoid, Rb is the radius perpendicular to the rotation |
---|
| 3213 | axis of the ellipsoid and * (contrast) is the scattering length |
---|
| 3214 | density difference between the scatterer and the solvent. |
---|
| 3215 | |
---|
| 3216 | To provide easy access to the orientation of the ellipsoid, we define |
---|
| 3217 | the rotation axis of the ellipsoid using two angles and . Similarly to |
---|
| 3218 | the case of the cylinder, those angles are defined on Figure 2. For |
---|
| 3219 | the ellipsoid, is the angle between the rotation axis and the z-axis. |
---|
| 3220 | |
---|
| 3221 | For P*S: The 2nd virial coefficient of the solid ellipsoid is |
---|
| 3222 | calculate based on the radius_a and radius_b values, and used as the |
---|
| 3223 | effective radius toward S(Q) when P(Q)*S(Q) is applied. |
---|
| 3224 | |
---|
| 3225 | The returned value is scaled to units of [cm-1] and the parameters of |
---|
| 3226 | the ellipsoid model are the following: |
---|
| 3227 | |
---|
| 3228 | Parameter name |
---|
| 3229 | |
---|
| 3230 | Units |
---|
| 3231 | |
---|
| 3232 | Default value |
---|
| 3233 | |
---|
| 3234 | scale |
---|
| 3235 | |
---|
| 3236 | None |
---|
| 3237 | |
---|
| 3238 | 1.0 |
---|
| 3239 | |
---|
| 3240 | radius_a (polar) |
---|
| 3241 | |
---|
| 3242 | |
---|
| 3243 | |
---|
| 3244 | 20.0 |
---|
| 3245 | |
---|
| 3246 | radius_b (equatorial) |
---|
| 3247 | |
---|
| 3248 | |
---|
| 3249 | |
---|
| 3250 | 400.0 |
---|
| 3251 | |
---|
| 3252 | sldEll |
---|
| 3253 | |
---|
| 3254 | -2 |
---|
| 3255 | |
---|
| 3256 | 4.0e-6 |
---|
| 3257 | |
---|
| 3258 | sldSolv |
---|
| 3259 | |
---|
| 3260 | -2 |
---|
| 3261 | |
---|
| 3262 | 1.0e-6 |
---|
| 3263 | |
---|
| 3264 | background |
---|
| 3265 | |
---|
| 3266 | cm-1 |
---|
| 3267 | |
---|
| 3268 | 0.0 |
---|
| 3269 | |
---|
| 3270 | axis_theta |
---|
| 3271 | |
---|
| 3272 | degree |
---|
| 3273 | |
---|
| 3274 | 90 |
---|
| 3275 | |
---|
| 3276 | axis_phi |
---|
| 3277 | |
---|
| 3278 | degree |
---|
| 3279 | |
---|
| 3280 | 0.0 |
---|
| 3281 | |
---|
| 3282 | |
---|
| 3283 | |
---|
| 3284 | The output of the 1D scattering intensity function for randomly |
---|
| 3285 | oriented ellipsoids is then given by the equation above. |
---|
| 3286 | |
---|
| 3287 | The *axis_theta* and axis *_phi* parameters are not used for the 1D |
---|
| 3288 | output. Our implementation of the scattering kernel and the 1D |
---|
| 3289 | scattering intensity use the c-library from NIST. |
---|
| 3290 | |
---|
| 3291 | |
---|
| 3292 | |
---|
| 3293 | Figure. The angles for oriented ellipsoid |
---|
| 3294 | |
---|
| 3295 | *2.1. Validation of the ellipsoid model* |
---|
| 3296 | |
---|
| 3297 | Validation of our code was done by comparing the output of the 1D |
---|
| 3298 | model to the output of the software provided by the NIST (Kline, |
---|
| 3299 | 2006). Figure 5 shows a comparison of the 1D output of our model and |
---|
| 3300 | the output of the NIST software. |
---|
| 3301 | |
---|
| 3302 | Averaging over a distribution of orientation is done by evaluating the |
---|
| 3303 | equation above. Since we have no other software to compare the |
---|
| 3304 | implementation of the intensity for fully oriented ellipsoids, we can |
---|
| 3305 | compare the result of averaging our 2D output using a uniform |
---|
| 3306 | distribution *p(,* *)* = 1.0. Figure 6 shows the result of such a |
---|
| 3307 | cross-check. |
---|
| 3308 | |
---|
| 3309 | |
---|
| 3310 | |
---|
| 3311 | The discrepancy above q=0.3 -1 is due to the way the form factors are |
---|
| 3312 | calculated in the c-library provided by NIST. A numerical integration |
---|
| 3313 | has to be performed to obtain P(q) for randomly oriented particles. |
---|
| 3314 | The NIST software performs that integration with a 76-point Gaussian |
---|
| 3315 | quadrature rule, which will become imprecise at high q where the |
---|
| 3316 | amplitude varies quickly as a function of q. The DANSE result shown |
---|
| 3317 | has been obtained by summing over 501 equidistant points in . Our |
---|
| 3318 | result was found to be stable over the range of q shown for a number |
---|
| 3319 | of points higher than 500. |
---|
| 3320 | |
---|
| 3321 | * * |
---|
| 3322 | |
---|
| 3323 | Figure 5: Comparison of the DANSE scattering intensity for an |
---|
| 3324 | ellipsoid with the output of the NIST SANS analysis software. The |
---|
| 3325 | parameters were set to: Scale=1.0, Radius_a=20 , Radius_b=400 , |
---|
| 3326 | |
---|
| 3327 | Contrast=3e-6 -2, and Background=0.01 cm -1. |
---|
| 3328 | |
---|
| 3329 | |
---|
| 3330 | |
---|
| 3331 | |
---|
| 3332 | |
---|
| 3333 | Figure 6: Comparison of the intensity for uniformly distributed |
---|
| 3334 | ellipsoids calculated from our 2D model and the intensity from the |
---|
| 3335 | NIST SANS analysis software. The parameters used were: Scale=1.0, |
---|
| 3336 | Radius_a=20 , Radius_b=400 , Contrast=3e-6 -2, and Background=0.0 cm |
---|
| 3337 | -1. |
---|
| 3338 | |
---|
| 3339 | |
---|
| 3340 | |
---|
| 3341 | .. _CoreShellEllipsoidModel: |
---|
| 3342 | |
---|
| 3343 | **2.1.26. CoreShellEllipsoidModel** |
---|
| 3344 | |
---|
| 3345 | This model provides the form factor, P( *q*), for a core shell |
---|
| 3346 | ellipsoid (below) where the form factor is normalized by the volume of |
---|
| 3347 | the cylinder. P(q) = scale*<f^2>/V+background where the volume V= |
---|
| 3348 | 4pi/3*rmaj*rmin2 and the averaging < > is applied over all orientation |
---|
| 3349 | for 1D. |
---|
| 3350 | |
---|
| 3351 | |
---|
| 3352 | |
---|
| 3353 | The returned value is in units of [cm-1], on absolute scale. |
---|
| 3354 | |
---|
| 3355 | The form factor calculated is: |
---|
| 3356 | |
---|
| 3357 | |
---|
| 3358 | |
---|
| 3359 | |
---|
| 3360 | |
---|
| 3361 | |
---|
| 3362 | |
---|
| 3363 | To provide easy access to the orientation of the coreshell ellipsoid, |
---|
| 3364 | we define the axis of the solid ellipsoid using two angles , . |
---|
| 3365 | Similarly to the case of the cylinder, those angles, and , are defined |
---|
| 3366 | on Figure 2 of CylinderModel. |
---|
| 3367 | |
---|
| 3368 | The contrast is defined as SLD(core) SLD(shell) or SLD(shell solvent). |
---|
| 3369 | In the parameters, equat_core = equatorial core radius, polar_core = |
---|
| 3370 | polar core radius, equat_shell = rmin (or equatorial outer radius), |
---|
| 3371 | and polar_shell = = rmaj (or polar outer radius). |
---|
| 3372 | |
---|
| 3373 | For P*S: The 2nd virial coefficient of the solid ellipsoid is |
---|
| 3374 | calculate based on the radius_a (= polar_shell) and radius_b (= |
---|
| 3375 | equat_shell) values, and used as the effective radius toward S(Q) when |
---|
| 3376 | P(Q)*S(Q) is applied. |
---|
| 3377 | |
---|
| 3378 | |
---|
| 3379 | |
---|
| 3380 | Parameter name |
---|
| 3381 | |
---|
| 3382 | Units |
---|
| 3383 | |
---|
| 3384 | Default value |
---|
| 3385 | |
---|
| 3386 | background |
---|
| 3387 | |
---|
| 3388 | cm-1 |
---|
| 3389 | |
---|
| 3390 | 0.001 |
---|
| 3391 | |
---|
| 3392 | equat_core |
---|
| 3393 | |
---|
| 3394 | |
---|
| 3395 | |
---|
| 3396 | 200 |
---|
| 3397 | |
---|
| 3398 | equat_shell |
---|
| 3399 | |
---|
| 3400 | |
---|
| 3401 | |
---|
| 3402 | 250 |
---|
| 3403 | |
---|
| 3404 | sld_solvent |
---|
| 3405 | |
---|
| 3406 | -2 |
---|
| 3407 | |
---|
| 3408 | 6e-006 |
---|
| 3409 | |
---|
| 3410 | ploar_shell |
---|
| 3411 | |
---|
| 3412 | |
---|
| 3413 | |
---|
| 3414 | 30 |
---|
| 3415 | |
---|
| 3416 | ploar_core |
---|
| 3417 | |
---|
| 3418 | |
---|
| 3419 | |
---|
| 3420 | 20 |
---|
| 3421 | |
---|
| 3422 | scale |
---|
| 3423 | |
---|
| 3424 | 1 |
---|
| 3425 | |
---|
| 3426 | sld_core |
---|
| 3427 | |
---|
| 3428 | -2 |
---|
| 3429 | |
---|
| 3430 | 2e-006 |
---|
| 3431 | |
---|
| 3432 | sld_shell |
---|
| 3433 | |
---|
| 3434 | -2 |
---|
| 3435 | |
---|
| 3436 | 1e-006 |
---|
| 3437 | |
---|
| 3438 | |
---|
| 3439 | |
---|
| 3440 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 3441 | |
---|
| 3442 | |
---|
| 3443 | |
---|
| 3444 | |
---|
| 3445 | |
---|
| 3446 | Figure. The angles for oriented coreshellellipsoid . |
---|
| 3447 | |
---|
| 3448 | Our model uses the form factor calculations implemented in a c-library |
---|
| 3449 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 3450 | |
---|
| 3451 | REFERENCE |
---|
| 3452 | |
---|
| 3453 | Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461. |
---|
| 3454 | |
---|
| 3455 | Berr, S. J. Phys. Chem., 1987, 91, 4760. |
---|
| 3456 | |
---|
| 3457 | |
---|
| 3458 | |
---|
| 3459 | .. _TriaxialEllipsoidalModel: |
---|
| 3460 | |
---|
| 3461 | **2.1.27. TriaxialEllipsoidModel*** |
---|
| 3462 | |
---|
| 3463 | This model provides the form factor, P( *q*), for an ellipsoid (below) |
---|
| 3464 | where all three axes are of different lengths, i.e., Ra =< Rb =< Rc |
---|
| 3465 | (Note that users should maintains this inequality for the all |
---|
| 3466 | calculations). P(q) = scale*<f^2>/V+background where the volume V= |
---|
| 3467 | 4pi/3*Ra*Rb*Rc, and the averaging < > is applied over all orientation |
---|
| 3468 | for 1D. |
---|
| 3469 | |
---|
| 3470 | |
---|
| 3471 | |
---|
| 3472 | |
---|
| 3473 | |
---|
| 3474 | The returned value is in units of [cm-1], on absolute scale. |
---|
| 3475 | |
---|
| 3476 | The form factor calculated is: |
---|
| 3477 | |
---|
| 3478 | |
---|
| 3479 | |
---|
| 3480 | To provide easy access to the orientation of the triaxial ellipsoid, |
---|
| 3481 | we define the axis of the cylinder using the angles , andY. Similarly |
---|
| 3482 | to the case of the cylinder, those angles, and , are defined on Figure |
---|
| 3483 | 2 of CylinderModel. The angle Y is the rotational angle around its own |
---|
| 3484 | semi_axisC axis against the q plane. For example, Y = 0 when the |
---|
| 3485 | semi_axisA axis is parallel to the x-axis of the detector. |
---|
| 3486 | |
---|
| 3487 | The radius of gyration for this system is Rg2 = (Ra2*Rb2*Rc2)/5. The |
---|
| 3488 | contrast is defined as SLD(ellipsoid) SLD(solvent). In the parameters, |
---|
| 3489 | semi_axisA = Ra (or minor equatorial radius), semi_axisB = Rb (or |
---|
| 3490 | major equatorial radius), and semi_axisC = Rc (or polar radius of the |
---|
| 3491 | ellipsoid). |
---|
| 3492 | |
---|
| 3493 | For P*S: The 2nd virial coefficient of the solid ellipsoid is |
---|
| 3494 | calculate based on the radius_a (=semi_axisC) and radius_b |
---|
| 3495 | (=sqrt(semi_axisA* semi_axisB)) values, and used as the effective |
---|
| 3496 | radius toward S(Q) when P(Q)*S(Q) is applied. |
---|
| 3497 | |
---|
| 3498 | |
---|
| 3499 | |
---|
| 3500 | |
---|
| 3501 | |
---|
| 3502 | Parameter name |
---|
| 3503 | |
---|
| 3504 | Units |
---|
| 3505 | |
---|
| 3506 | Default value |
---|
| 3507 | |
---|
| 3508 | background |
---|
| 3509 | |
---|
| 3510 | cm-1 |
---|
| 3511 | |
---|
| 3512 | 0.0 |
---|
| 3513 | |
---|
| 3514 | semi_axisA |
---|
| 3515 | |
---|
| 3516 | |
---|
| 3517 | |
---|
| 3518 | 35 |
---|
| 3519 | |
---|
| 3520 | semi_axisB |
---|
| 3521 | |
---|
| 3522 | |
---|
| 3523 | |
---|
| 3524 | 100 |
---|
| 3525 | |
---|
| 3526 | semi_axisC |
---|
| 3527 | |
---|
| 3528 | |
---|
| 3529 | |
---|
| 3530 | 400 |
---|
| 3531 | |
---|
| 3532 | scale |
---|
| 3533 | |
---|
| 3534 | 1 |
---|
| 3535 | |
---|
| 3536 | sldEll |
---|
| 3537 | |
---|
| 3538 | -2 |
---|
| 3539 | |
---|
| 3540 | 1.0e-006 |
---|
| 3541 | |
---|
| 3542 | sldSolv |
---|
| 3543 | |
---|
| 3544 | -2 |
---|
| 3545 | |
---|
| 3546 | 6.3e-006 |
---|
| 3547 | |
---|
| 3548 | |
---|
| 3549 | |
---|
| 3550 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 3551 | |
---|
| 3552 | *Validation of the triaxialellipsoid 2D model* |
---|
| 3553 | |
---|
| 3554 | Validation of our code was done by comparing the output of the 1D |
---|
| 3555 | calculation to the angular average of the output of 2 D calculation |
---|
| 3556 | over all possible angles. The Figure below shows the comparison where |
---|
| 3557 | the solid dot refers to averaged 2D while the line represents the |
---|
| 3558 | result of 1D calculation (for 2D averaging, 76, 180, 76 points are |
---|
| 3559 | taken for the angles of theta, phi, and psi respectively). |
---|
| 3560 | |
---|
| 3561 | |
---|
| 3562 | |
---|
| 3563 | *Figure. Comparison between 1D and averaged 2D.* |
---|
| 3564 | |
---|
| 3565 | |
---|
| 3566 | |
---|
| 3567 | Figure. The angles for oriented ellipsoid. |
---|
| 3568 | |
---|
| 3569 | Our model uses the form factor calculations implemented in a c-library |
---|
| 3570 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 3571 | |
---|
| 3572 | REFERENCE |
---|
| 3573 | |
---|
| 3574 | L. A. Feigin and D. I. Svergun Structure Analysis by Small-Angle X-Ray |
---|
| 3575 | and Neutron Scattering, Plenum, New York, 1987. |
---|
| 3576 | |
---|
| 3577 | |
---|
| 3578 | |
---|
| 3579 | .. _LamellarModel: |
---|
| 3580 | |
---|
| 3581 | **2.1.28. LamellarModel** |
---|
| 3582 | |
---|
| 3583 | This model provides the scattering intensity, I( *q*), for a lyotropic |
---|
| 3584 | lamellar phase where a uniform SLD and random distribution in solution |
---|
| 3585 | are assumed. The ploydispersion in the bilayer thickness can be |
---|
| 3586 | applied from the GUI. |
---|
| 3587 | |
---|
| 3588 | The scattering intensity I(q) is: |
---|
| 3589 | |
---|
| 3590 | |
---|
| 3591 | |
---|
| 3592 | The form factor is, |
---|
| 3593 | |
---|
| 3594 | |
---|
| 3595 | |
---|
| 3596 | where d = bilayer thickness. |
---|
| 3597 | |
---|
| 3598 | The 2D scattering intensity is calculated in the same way as 1D, where |
---|
| 3599 | the *q* vector is defined as . |
---|
| 3600 | |
---|
| 3601 | |
---|
| 3602 | |
---|
| 3603 | The returned value is in units of [cm-1], on absolute scale. In the |
---|
| 3604 | parameters, sld_bi = SLD of the bilayer, sld_sol = SLD of the solvent, |
---|
| 3605 | and bi_thick = the thickness of the bilayer. |
---|
| 3606 | |
---|
| 3607 | |
---|
| 3608 | |
---|
| 3609 | Parameter name |
---|
| 3610 | |
---|
| 3611 | Units |
---|
| 3612 | |
---|
| 3613 | Default value |
---|
| 3614 | |
---|
| 3615 | background |
---|
| 3616 | |
---|
| 3617 | cm-1 |
---|
| 3618 | |
---|
| 3619 | 0.0 |
---|
| 3620 | |
---|
| 3621 | sld_bi |
---|
| 3622 | |
---|
| 3623 | -2 |
---|
| 3624 | |
---|
| 3625 | 1e-006 |
---|
| 3626 | |
---|
| 3627 | bi_thick |
---|
| 3628 | |
---|
| 3629 | |
---|
| 3630 | |
---|
| 3631 | 50 |
---|
| 3632 | |
---|
| 3633 | sld_sol |
---|
| 3634 | |
---|
| 3635 | -2 |
---|
| 3636 | |
---|
| 3637 | 6e-006 |
---|
| 3638 | |
---|
| 3639 | scale |
---|
| 3640 | |
---|
| 3641 | 1 |
---|
| 3642 | |
---|
| 3643 | |
---|
| 3644 | |
---|
| 3645 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 3646 | |
---|
| 3647 | Our model uses the form factor calculations implemented in a c-library |
---|
| 3648 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 3649 | |
---|
| 3650 | REFERENCE |
---|
| 3651 | |
---|
| 3652 | Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. |
---|
| 3653 | |
---|
| 3654 | also in J. Phys. Chem. B, 105, (2001) 11081-11088. |
---|
| 3655 | |
---|
| 3656 | |
---|
| 3657 | |
---|
| 3658 | .. _LamellarFFHGModel: |
---|
| 3659 | |
---|
| 3660 | **2.1.29. LamellarFFHGModel** |
---|
| 3661 | |
---|
| 3662 | This model provides the scattering intensity, I( *q*), for a lyotropic |
---|
| 3663 | lamellar phase where a random distribution in solution are assumed. |
---|
| 3664 | The SLD of the head region is taken to be different from the SLD of |
---|
| 3665 | the tail region. |
---|
| 3666 | |
---|
| 3667 | The scattering intensity I(q) is: |
---|
| 3668 | |
---|
| 3669 | |
---|
| 3670 | |
---|
| 3671 | The form factor is, |
---|
| 3672 | |
---|
| 3673 | |
---|
| 3674 | |
---|
| 3675 | where dT = tail length (or t_length), dH = heasd thickness (or |
---|
| 3676 | h_thickness) , DrH = SLD (headgroup) - SLD(solvent), and DrT = SLD |
---|
| 3677 | (tail) - SLD(headgroup). |
---|
| 3678 | |
---|
| 3679 | The 2D scattering intensity is calculated in the same way as 1D, where |
---|
| 3680 | the *q* vector is defined as . |
---|
| 3681 | |
---|
| 3682 | |
---|
| 3683 | |
---|
| 3684 | The returned value is in units of [cm-1], on absolute scale. In the |
---|
| 3685 | parameters, sld_tail = SLD of the tail group, and sld_head = SLD of |
---|
| 3686 | the head group. |
---|
| 3687 | |
---|
| 3688 | |
---|
| 3689 | |
---|
| 3690 | Parameter name |
---|
| 3691 | |
---|
| 3692 | Units |
---|
| 3693 | |
---|
| 3694 | Default value |
---|
| 3695 | |
---|
| 3696 | background |
---|
| 3697 | |
---|
| 3698 | cm-1 |
---|
| 3699 | |
---|
| 3700 | 0.0 |
---|
| 3701 | |
---|
| 3702 | sld_head |
---|
| 3703 | |
---|
| 3704 | -2 |
---|
| 3705 | |
---|
| 3706 | 3e-006 |
---|
| 3707 | |
---|
| 3708 | scale |
---|
| 3709 | |
---|
| 3710 | 1 |
---|
| 3711 | |
---|
| 3712 | sld_solvent |
---|
| 3713 | |
---|
| 3714 | -2 |
---|
| 3715 | |
---|
| 3716 | 6e-006 |
---|
| 3717 | |
---|
| 3718 | h_thickness |
---|
| 3719 | |
---|
| 3720 | |
---|
| 3721 | |
---|
| 3722 | 10 |
---|
| 3723 | |
---|
| 3724 | t_length |
---|
| 3725 | |
---|
| 3726 | |
---|
| 3727 | |
---|
| 3728 | 15 |
---|
| 3729 | |
---|
| 3730 | sld_tail |
---|
| 3731 | |
---|
| 3732 | -2 |
---|
| 3733 | |
---|
| 3734 | 0 |
---|
| 3735 | |
---|
| 3736 | |
---|
| 3737 | |
---|
| 3738 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 3739 | |
---|
| 3740 | Our model uses the form factor calculations implemented in a c-library |
---|
| 3741 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 3742 | |
---|
| 3743 | REFERENCE |
---|
| 3744 | |
---|
| 3745 | Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. |
---|
| 3746 | |
---|
| 3747 | also in J. Phys. Chem. B, 105, (2001) 11081-11088. |
---|
| 3748 | |
---|
| 3749 | |
---|
| 3750 | |
---|
| 3751 | .. _LamellarPSModel: |
---|
| 3752 | |
---|
| 3753 | **2.1.30. LamellarPSModel** |
---|
| 3754 | |
---|
| 3755 | This model provides the scattering intensity ( *form factor* \* |
---|
| 3756 | *structure factor*), I( *q*), for a lyotropic lamellar phase where a |
---|
| 3757 | random distribution in solution are assumed. |
---|
| 3758 | |
---|
| 3759 | The scattering intensity I(q) is: |
---|
| 3760 | |
---|
| 3761 | |
---|
| 3762 | |
---|
| 3763 | The form factor is |
---|
| 3764 | |
---|
| 3765 | |
---|
| 3766 | |
---|
| 3767 | and the structure is |
---|
| 3768 | |
---|
| 3769 | |
---|
| 3770 | |
---|
| 3771 | where |
---|
| 3772 | |
---|
| 3773 | |
---|
| 3774 | |
---|
| 3775 | |
---|
| 3776 | |
---|
| 3777 | |
---|
| 3778 | |
---|
| 3779 | Here d= (repeat) spacing, d = bilayer thickness, the contrast Dr = SLD |
---|
| 3780 | (headgroup) - SLD(solvent), K=smectic bending elasticity, |
---|
| 3781 | B=compression modulus, and N = number of lamellar plates (n_plates). |
---|
| 3782 | |
---|
| 3783 | Note: When the Caille parameter is greater than approximately 0.8 to |
---|
| 3784 | 1.0, the assumptions of the model are incorrect. And due to the |
---|
| 3785 | complication of the model function, users are responsible to make sure |
---|
| 3786 | that all the assumptions are handled accurately: see the original |
---|
| 3787 | reference (below) for more details. |
---|
| 3788 | |
---|
| 3789 | The 2D scattering intensity is calculated in the same way as 1D, where |
---|
| 3790 | the *q* vector is defined as . |
---|
| 3791 | |
---|
| 3792 | The returned value is in units of [cm-1], on absolute scale. |
---|
| 3793 | |
---|
| 3794 | |
---|
| 3795 | |
---|
| 3796 | Parameter name |
---|
| 3797 | |
---|
| 3798 | Units |
---|
| 3799 | |
---|
| 3800 | Default value |
---|
| 3801 | |
---|
| 3802 | background |
---|
| 3803 | |
---|
| 3804 | cm-1 |
---|
| 3805 | |
---|
| 3806 | 0.0 |
---|
| 3807 | |
---|
| 3808 | contrast |
---|
| 3809 | |
---|
| 3810 | -2 |
---|
| 3811 | |
---|
| 3812 | 5e-006 |
---|
| 3813 | |
---|
| 3814 | scale |
---|
| 3815 | |
---|
| 3816 | 1 |
---|
| 3817 | |
---|
| 3818 | delta |
---|
| 3819 | |
---|
| 3820 | |
---|
| 3821 | |
---|
| 3822 | 30 |
---|
| 3823 | |
---|
| 3824 | n_plates |
---|
| 3825 | |
---|
| 3826 | 20 |
---|
| 3827 | |
---|
| 3828 | spacing |
---|
| 3829 | |
---|
| 3830 | |
---|
| 3831 | |
---|
| 3832 | 400 |
---|
| 3833 | |
---|
| 3834 | caille |
---|
| 3835 | |
---|
| 3836 | -2 |
---|
| 3837 | |
---|
| 3838 | 0.1 |
---|
| 3839 | |
---|
| 3840 | |
---|
| 3841 | |
---|
| 3842 | *Figure. 1D plot using the default values (w/6000 data point).* |
---|
| 3843 | |
---|
| 3844 | Our model uses the form factor calculations implemented in a c-library |
---|
| 3845 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 3846 | |
---|
| 3847 | REFERENCE |
---|
| 3848 | |
---|
| 3849 | Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. |
---|
| 3850 | |
---|
| 3851 | also in J. Phys. Chem. B, 105, (2001) 11081-11088. |
---|
| 3852 | |
---|
| 3853 | |
---|
| 3854 | |
---|
| 3855 | .. _LamellarPSHGModel: |
---|
| 3856 | |
---|
| 3857 | **2.1.31. LamellarPSHGModel** |
---|
| 3858 | |
---|
| 3859 | This model provides the scattering intensity ( *form factor* \* |
---|
| 3860 | *structure factor*), I( *q*), for a lyotropic lamellar phase where a |
---|
| 3861 | random distribution in solution are assumed. The SLD of the head |
---|
| 3862 | region is taken to be different from the SLD of the tail region. |
---|
| 3863 | |
---|
| 3864 | The scattering intensity I(q) is: |
---|
| 3865 | |
---|
| 3866 | |
---|
| 3867 | |
---|
| 3868 | The form factor is, |
---|
| 3869 | |
---|
| 3870 | |
---|
| 3871 | |
---|
| 3872 | The structure factor is |
---|
| 3873 | |
---|
| 3874 | |
---|
| 3875 | |
---|
| 3876 | where |
---|
| 3877 | |
---|
| 3878 | |
---|
| 3879 | |
---|
| 3880 | |
---|
| 3881 | |
---|
| 3882 | |
---|
| 3883 | |
---|
| 3884 | where dT = tail length (or t_length), dH = heasd thickness (or |
---|
| 3885 | h_thickness) , DrH = SLD (headgroup) - SLD(solvent), and DrT = SLD |
---|
| 3886 | (tail) - SLD(headgroup). Here d= (repeat) spacing, K=smectic bending |
---|
| 3887 | elasticity, B=compression modulus, and N = number of lamellar plates |
---|
| 3888 | (n_plates). |
---|
| 3889 | |
---|
| 3890 | Note: When the Caille parameter is greater than approximately 0.8 to |
---|
| 3891 | 1.0, the assumptions of the model are incorrect. And due to the |
---|
| 3892 | complication of the model function, users are responsible to make sure |
---|
| 3893 | that all the assumptions are handled accurately: see the original |
---|
| 3894 | reference (below) for more details. |
---|
| 3895 | |
---|
| 3896 | The 2D scattering intensity is calculated in the same way as 1D, where |
---|
| 3897 | the *q* vector is defined as . |
---|
| 3898 | |
---|
| 3899 | |
---|
| 3900 | |
---|
| 3901 | The returned value is in units of [cm-1], on absolute scale. In the |
---|
| 3902 | parameters, sld_tail = SLD of the tail group, sld_head = SLD of the |
---|
| 3903 | head group, and sld_solvent = SLD of the solvent. |
---|
| 3904 | |
---|
| 3905 | |
---|
| 3906 | |
---|
| 3907 | Parameter name |
---|
| 3908 | |
---|
| 3909 | Units |
---|
| 3910 | |
---|
| 3911 | Default value |
---|
| 3912 | |
---|
| 3913 | background |
---|
| 3914 | |
---|
| 3915 | cm-1 |
---|
| 3916 | |
---|
| 3917 | 0.001 |
---|
| 3918 | |
---|
| 3919 | sld_head |
---|
| 3920 | |
---|
| 3921 | -2 |
---|
| 3922 | |
---|
| 3923 | 2e-006 |
---|
| 3924 | |
---|
| 3925 | scale |
---|
| 3926 | |
---|
| 3927 | 1 |
---|
| 3928 | |
---|
| 3929 | sld_solvent |
---|
| 3930 | |
---|
| 3931 | -2 |
---|
| 3932 | |
---|
| 3933 | 6e-006 |
---|
| 3934 | |
---|
| 3935 | deltaH |
---|
| 3936 | |
---|
| 3937 | |
---|
| 3938 | |
---|
| 3939 | 2 |
---|
| 3940 | |
---|
| 3941 | deltaT |
---|
| 3942 | |
---|
| 3943 | |
---|
| 3944 | |
---|
| 3945 | 10 |
---|
| 3946 | |
---|
| 3947 | sld_tail |
---|
| 3948 | |
---|
| 3949 | -2 |
---|
| 3950 | |
---|
| 3951 | 0 |
---|
| 3952 | |
---|
| 3953 | n_plates |
---|
| 3954 | |
---|
| 3955 | 30 |
---|
| 3956 | |
---|
| 3957 | spacing |
---|
| 3958 | |
---|
| 3959 | |
---|
| 3960 | |
---|
| 3961 | 40 |
---|
| 3962 | |
---|
| 3963 | caille |
---|
| 3964 | |
---|
| 3965 | -2 |
---|
| 3966 | |
---|
| 3967 | 0.001 |
---|
| 3968 | |
---|
| 3969 | |
---|
| 3970 | |
---|
| 3971 | *Figure. 1D plot using the default values (w/6000 data point).* |
---|
| 3972 | |
---|
| 3973 | Our model uses the form factor calculations implemented in a c-library |
---|
| 3974 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 3975 | |
---|
| 3976 | REFERENCE |
---|
| 3977 | |
---|
| 3978 | Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. |
---|
| 3979 | |
---|
| 3980 | also in J. Phys. Chem. B, 105, (2001) 11081-11088. |
---|
| 3981 | |
---|
| 3982 | |
---|
| 3983 | |
---|
| 3984 | .. _LamellarPCrystalModel: |
---|
| 3985 | |
---|
| 3986 | **2.1.32. LamellarPCrystalModel** |
---|
| 3987 | |
---|
| 3988 | Lamella ParaCrystal Model: Calculates the scattering from a stack of |
---|
| 3989 | repeating lamellar structures. The stacks of lamellae (infinite in |
---|
| 3990 | lateral dimension) are treated as a paracrystal to account for the |
---|
| 3991 | repeating spacing. The repeat distance is further characterized by a |
---|
| 3992 | Gaussian polydispersity. This model can be used for large |
---|
| 3993 | multilamellar vesicles. |
---|
| 3994 | |
---|
| 3995 | The scattering intensity I(q) is calculated as: |
---|
| 3996 | |
---|
| 3997 | |
---|
| 3998 | |
---|
| 3999 | The form factor of the bilayer is approximated as the cross section of |
---|
| 4000 | an infinite, planar bilayer of thickness t. |
---|
| 4001 | |
---|
| 4002 | |
---|
| 4003 | |
---|
| 4004 | Here, the scale factor is used instead of the mass per area of the |
---|
| 4005 | bilayer (G). The scale factor is the volume fraction of the material |
---|
| 4006 | in the bilayer, not the total excluded volume of the paracrystal. |
---|
| 4007 | ZN(q) describes the interference effects for aggregates consisting of |
---|
| 4008 | more than one bilayer. The equations used are (3-5) from the Bergstrom |
---|
| 4009 | reference below. |
---|
| 4010 | |
---|
| 4011 | Non-integer numbers of stacks are calculated as a linear combination |
---|
| 4012 | of the lower and higher values: |
---|
| 4013 | |
---|
| 4014 | |
---|
| 4015 | |
---|
| 4016 | The 2D scattering intensity is the same as 1D, regardless of the |
---|
| 4017 | orientation of the *q* vector which is defined as . |
---|
| 4018 | |
---|
| 4019 | The parameters of the model are the following (Nlayers= no. of layers, |
---|
| 4020 | pd_spacing= polydispersity of spacing): |
---|
| 4021 | |
---|
| 4022 | Parameter name |
---|
| 4023 | |
---|
| 4024 | Units |
---|
| 4025 | |
---|
| 4026 | Default value |
---|
| 4027 | |
---|
| 4028 | background |
---|
| 4029 | |
---|
| 4030 | cm-1 |
---|
| 4031 | |
---|
| 4032 | 0 |
---|
| 4033 | |
---|
| 4034 | scale |
---|
| 4035 | |
---|
| 4036 | 1 |
---|
| 4037 | |
---|
| 4038 | Nlayers |
---|
| 4039 | |
---|
| 4040 | 20 |
---|
| 4041 | |
---|
| 4042 | pd_spacing |
---|
| 4043 | |
---|
| 4044 | 0.2 |
---|
| 4045 | |
---|
| 4046 | sld_layer |
---|
| 4047 | |
---|
| 4048 | -2 |
---|
| 4049 | |
---|
| 4050 | 1e-6 |
---|
| 4051 | |
---|
| 4052 | sld_solvent |
---|
| 4053 | |
---|
| 4054 | -2 |
---|
| 4055 | |
---|
| 4056 | 6.34e-6 |
---|
| 4057 | |
---|
| 4058 | spacing |
---|
| 4059 | |
---|
| 4060 | |
---|
| 4061 | |
---|
| 4062 | 250 |
---|
| 4063 | |
---|
| 4064 | thickness |
---|
| 4065 | |
---|
| 4066 | |
---|
| 4067 | |
---|
| 4068 | 33 |
---|
| 4069 | |
---|
| 4070 | |
---|
| 4071 | |
---|
| 4072 | *Figure. 1D plot using the default values above (w/20000 data |
---|
| 4073 | point).* |
---|
| 4074 | |
---|
| 4075 | Our model uses the form factor calculations implemented in a c-library |
---|
| 4076 | provided by the NIST Center for Neutron Research (Kline, 2006). |
---|
| 4077 | |
---|
| 4078 | See the reference for details. |
---|
| 4079 | |
---|
| 4080 | REFERENCE |
---|
| 4081 | |
---|
| 4082 | M. Bergstrom, J. S. Pedersen, P. Schurtenberger, S. U. Egelhaaf, J. |
---|
| 4083 | Phys. Chem. B, 103 (1999) 9888-9897. |
---|
| 4084 | |
---|
| 4085 | |
---|
| 4086 | |
---|
| 4087 | .. _SCCrystalModel: |
---|
| 4088 | |
---|
| 4089 | **2.1.33. SCCrystalModel** |
---|
| 4090 | |
---|
| 4091 | Calculates the scattering from a simple cubic lattice with |
---|
| 4092 | paracrystalline distortion. Thermal vibrations are considered to be |
---|
| 4093 | negligible, and the size of the paracrystal is infinitely large. |
---|
| 4094 | Paracrystalline distortion is assumed to be isotropic and |
---|
| 4095 | characterized by a Gaussian distribution. |
---|
| 4096 | |
---|
| 4097 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 4098 | |
---|
| 4099 | The scattering intensity I(q) is calculated as: |
---|
| 4100 | |
---|
| 4101 | |
---|
| 4102 | |
---|
| 4103 | where scale is the volume fraction of spheres, Vp is the volume of the |
---|
| 4104 | primary particle, V(lattice) is a volume correction for the crystal |
---|
| 4105 | structure, P(q) is the form factor of the sphere (normalized) and Z(q) |
---|
| 4106 | is the paracrystalline structure factor for a simple cubic structure. |
---|
| 4107 | Equation (16) of the 1987 reference is used to calculate Z(q), using |
---|
| 4108 | equations (13)-(15) from the 1987 paper for Z1, Z2, and Z3. |
---|
| 4109 | |
---|
| 4110 | The lattice correction (the occupied volume of the lattice) for a |
---|
| 4111 | simple cubic structure of particles of radius R and nearest neighbor |
---|
| 4112 | separation D is: |
---|
| 4113 | |
---|
| 4114 | |
---|
| 4115 | |
---|
| 4116 | The distortion factor (one standard deviation) of the paracrystal is |
---|
| 4117 | included in the calculation of Z(q): |
---|
| 4118 | |
---|
| 4119 | |
---|
| 4120 | |
---|
| 4121 | where g is a fractional distortion based on the nearest neighbor |
---|
| 4122 | distance. |
---|
| 4123 | |
---|
| 4124 | The simple cubic lattice is: |
---|
| 4125 | |
---|
| 4126 | |
---|
| 4127 | |
---|
| 4128 | For a crystal, diffraction peaks appear at reduced q-values givn by: |
---|
| 4129 | |
---|
| 4130 | |
---|
| 4131 | |
---|
| 4132 | where for a simple cubic lattice any h, k, l are allowed and none are |
---|
| 4133 | forbidden. Thus the peak positions correspond to (just the first 5): |
---|
| 4134 | |
---|
| 4135 | |
---|
| 4136 | |
---|
| 4137 | NOTE: The calculation of Z(q) is a double numerical integral that must |
---|
| 4138 | be carried out with a high density of points to properly capture the |
---|
| 4139 | sharp peaks of the paracrystalline scattering. So be warned that the |
---|
| 4140 | calculation is SLOW. Go get some coffee. Fitting of any experimental |
---|
| 4141 | data must be resolution smeared for any meaningful fit. This makes a |
---|
| 4142 | triple integral. Very, very slow. Go get lunch. |
---|
| 4143 | |
---|
| 4144 | REFERENCES |
---|
| 4145 | |
---|
| 4146 | Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765. |
---|
| 4147 | (Original Paper) |
---|
| 4148 | |
---|
| 4149 | Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856. |
---|
| 4150 | (Corrections to FCC and BCC lattice structure calculation) |
---|
| 4151 | |
---|
| 4152 | |
---|
| 4153 | |
---|
| 4154 | Parameter name |
---|
| 4155 | |
---|
| 4156 | Units |
---|
| 4157 | |
---|
| 4158 | Default value |
---|
| 4159 | |
---|
| 4160 | background |
---|
| 4161 | |
---|
| 4162 | cm-1 |
---|
| 4163 | |
---|
| 4164 | 0 |
---|
| 4165 | |
---|
| 4166 | dnn |
---|
| 4167 | |
---|
| 4168 | |
---|
| 4169 | |
---|
| 4170 | 220 |
---|
| 4171 | |
---|
| 4172 | scale |
---|
| 4173 | |
---|
| 4174 | 1 |
---|
| 4175 | |
---|
| 4176 | sldSolv |
---|
| 4177 | |
---|
| 4178 | -2 |
---|
| 4179 | |
---|
| 4180 | 6.3e-006 |
---|
| 4181 | |
---|
| 4182 | radius |
---|
| 4183 | |
---|
| 4184 | |
---|
| 4185 | |
---|
| 4186 | 40 |
---|
| 4187 | |
---|
| 4188 | sld_Sph |
---|
| 4189 | |
---|
| 4190 | -2 |
---|
| 4191 | |
---|
| 4192 | 3e-006 |
---|
| 4193 | |
---|
| 4194 | d_factor |
---|
| 4195 | |
---|
| 4196 | 0.06 |
---|
| 4197 | |
---|
| 4198 | TEST DATASET |
---|
| 4199 | |
---|
| 4200 | This example dataset is produced using 200 data points, qmin = 0.01 |
---|
| 4201 | -1, qmax = 0.1 -1 and the above default values. |
---|
| 4202 | |
---|
| 4203 | |
---|
| 4204 | |
---|
| 4205 | *Figure. 1D plot in the linear scale using the default values (w/200 |
---|
| 4206 | data point).* |
---|
| 4207 | |
---|
| 4208 | The 2D (Anisotropic model) is based on the reference (above) which |
---|
| 4209 | I(q) is approximated for 1d scattering. Thus the scattering pattern |
---|
| 4210 | for 2D may not be accurate. Note that we are not responsible for any |
---|
| 4211 | incorrectness of the 2D model computation. |
---|
| 4212 | |
---|
| 4213 | |
---|
| 4214 | |
---|
| 4215 | |
---|
| 4216 | |
---|
| 4217 | |
---|
| 4218 | |
---|
| 4219 | |
---|
| 4220 | |
---|
| 4221 | |
---|
| 4222 | |
---|
| 4223 | * * |
---|
| 4224 | |
---|
| 4225 | *Figure. 2D plot using the default values (w/200X200 pixels).* |
---|
| 4226 | |
---|
| 4227 | |
---|
| 4228 | |
---|
| 4229 | .. _FCCrystalModel: |
---|
| 4230 | |
---|
| 4231 | **2.1.34. FCCrystalModel** |
---|
| 4232 | |
---|
| 4233 | Calculates the scattering from a face-centered cubic lattice with |
---|
| 4234 | paracrystalline distortion. Thermal vibrations are considered to be |
---|
| 4235 | negligible, and the size of the paracrystal is infinitely large. |
---|
| 4236 | Paracrystalline distortion is assumed to be isotropic and |
---|
| 4237 | characterized by a Gaussian distribution. |
---|
| 4238 | |
---|
| 4239 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 4240 | |
---|
| 4241 | The scattering intensity I(q) is calculated as: |
---|
| 4242 | |
---|
| 4243 | |
---|
| 4244 | |
---|
| 4245 | where scale is the volume fraction of spheres, Vp is the volume of the |
---|
| 4246 | primary particle, V(lattice) is a volume correction for the crystal |
---|
| 4247 | structure, P(q) is the form factor of the sphere (normalized) and Z(q) |
---|
| 4248 | is the paracrystalline structure factor for a face-centered cubic |
---|
| 4249 | structure. Equation (1) of the 1990 reference is used to calculate |
---|
| 4250 | Z(q), using equations (23)-(25) from the 1987 paper for Z1, Z2, and |
---|
| 4251 | Z3. |
---|
| 4252 | |
---|
| 4253 | The lattice correction (the occupied volume of the lattice) for a |
---|
| 4254 | face-centered cubic structure of particles of radius R and nearest |
---|
| 4255 | neighbor separation D is: |
---|
| 4256 | |
---|
| 4257 | |
---|
| 4258 | |
---|
| 4259 | The distortion factor (one standard deviation) of the paracrystal is |
---|
| 4260 | included in the calculation of Z(q): |
---|
| 4261 | |
---|
| 4262 | |
---|
| 4263 | |
---|
| 4264 | where g is a fractional distortion based on the nearest neighbor |
---|
| 4265 | distance. |
---|
| 4266 | |
---|
| 4267 | The face-centered cubic lattice is: |
---|
| 4268 | |
---|
| 4269 | |
---|
| 4270 | |
---|
| 4271 | For a crystal, diffraction peaks appear at reduced q-values givn by: |
---|
| 4272 | |
---|
| 4273 | |
---|
| 4274 | |
---|
| 4275 | where for a face-centered cubic lattice h, k, l all odd or all even |
---|
| 4276 | are allowed and reflections where h, k, l are mixed odd/even are |
---|
| 4277 | forbidden. Thus the peak positions correspond to (just the first 5): |
---|
| 4278 | |
---|
| 4279 | |
---|
| 4280 | |
---|
| 4281 | NOTE: The calculation of Z(q) is a double numerical integral that must |
---|
| 4282 | be carried out with a high density of points to properly capture the |
---|
| 4283 | sharp peaks of the paracrystalline scattering. So be warned that the |
---|
| 4284 | calculation is SLOW. Go get some coffee. Fitting of any experimental |
---|
| 4285 | data must be resolution smeared for any meaningful fit. This makes a |
---|
| 4286 | triple integral. Very, very slow. Go get lunch. |
---|
| 4287 | |
---|
| 4288 | REFERENCES |
---|
| 4289 | |
---|
| 4290 | Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765. |
---|
| 4291 | (Original Paper) |
---|
| 4292 | |
---|
| 4293 | Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856. |
---|
| 4294 | (Corrections to FCC and BCC lattice structure calculation) |
---|
| 4295 | |
---|
| 4296 | |
---|
| 4297 | |
---|
| 4298 | |
---|
| 4299 | |
---|
| 4300 | Parameter name |
---|
| 4301 | |
---|
| 4302 | Units |
---|
| 4303 | |
---|
| 4304 | Default value |
---|
| 4305 | |
---|
| 4306 | background |
---|
| 4307 | |
---|
| 4308 | cm-1 |
---|
| 4309 | |
---|
| 4310 | 0 |
---|
| 4311 | |
---|
| 4312 | dnn |
---|
| 4313 | |
---|
| 4314 | |
---|
| 4315 | |
---|
| 4316 | 220 |
---|
| 4317 | |
---|
| 4318 | scale |
---|
| 4319 | |
---|
| 4320 | 1 |
---|
| 4321 | |
---|
| 4322 | sldSolv |
---|
| 4323 | |
---|
| 4324 | -2 |
---|
| 4325 | |
---|
| 4326 | 6.3e-006 |
---|
| 4327 | |
---|
| 4328 | radius |
---|
| 4329 | |
---|
| 4330 | |
---|
| 4331 | |
---|
| 4332 | 40 |
---|
| 4333 | |
---|
| 4334 | sld_Sph |
---|
| 4335 | |
---|
| 4336 | -2 |
---|
| 4337 | |
---|
| 4338 | 3e-006 |
---|
| 4339 | |
---|
| 4340 | d_factor |
---|
| 4341 | |
---|
| 4342 | 0.06 |
---|
| 4343 | |
---|
| 4344 | TEST DATASET |
---|
| 4345 | |
---|
| 4346 | This example dataset is produced using 200 data points, qmin = 0.01 |
---|
| 4347 | -1, qmax = 0.1 -1 and the above default values. |
---|
| 4348 | |
---|
| 4349 | |
---|
| 4350 | |
---|
| 4351 | *Figure. 1D plot in the linear scale using the default values (w/200 |
---|
| 4352 | data point).* |
---|
| 4353 | |
---|
| 4354 | The 2D (Anisotropic model) is based on the reference (above) in which |
---|
| 4355 | I(q) is approximated for 1d scattering. Thus the scattering pattern |
---|
| 4356 | for 2D may not be accurate. Note that we are not responsible for any |
---|
| 4357 | incorrectness of the 2D model computation. |
---|
| 4358 | |
---|
| 4359 | |
---|
| 4360 | *Figure. 2D plot using the default values (w/200X200 pixels).* |
---|
| 4361 | |
---|
| 4362 | |
---|
| 4363 | |
---|
| 4364 | .. _BCCrystalModel: |
---|
| 4365 | |
---|
| 4366 | **2.1.35. BCCrystalModel** |
---|
| 4367 | |
---|
| 4368 | Calculates the scattering from a body-centered cubic lattice with |
---|
| 4369 | paracrystalline distortion. Thermal vibrations are considered to be |
---|
| 4370 | negligible, and the size of the paracrystal is infinitely large. |
---|
| 4371 | Paracrystalline distortion is assumed to be isotropic and |
---|
| 4372 | characterized by a Gaussian distribution.The returned value is scaled |
---|
| 4373 | to units of [cm-1sr-1], absolute scale. |
---|
| 4374 | |
---|
| 4375 | The scattering intensity I(q) is calculated as: |
---|
| 4376 | |
---|
| 4377 | |
---|
| 4378 | |
---|
| 4379 | where scale is the volume fraction of spheres, Vp is the volume of the |
---|
| 4380 | primary particle, V(lattice) is a volume correction for the crystal |
---|
| 4381 | structure, P(q) is the form factor of the sphere (normalized) and Z(q) |
---|
| 4382 | is the paracrystalline structure factor for a body-centered cubic |
---|
| 4383 | structure. Equation (1) of the 1990 reference is used to calculate |
---|
| 4384 | Z(q), using equations (29)-(31) from the 1987 paper for Z1, Z2, and |
---|
| 4385 | Z3. |
---|
| 4386 | |
---|
| 4387 | The lattice correction (the occupied volume of the lattice) for a |
---|
| 4388 | body-centered cubic structure of particles of radius R and nearest |
---|
| 4389 | neighbor separation D is: |
---|
| 4390 | |
---|
| 4391 | |
---|
| 4392 | |
---|
| 4393 | The distortion factor (one standard deviation) of the paracrystal is |
---|
| 4394 | included in the calculation of Z(q): |
---|
| 4395 | |
---|
| 4396 | |
---|
| 4397 | |
---|
| 4398 | where g is a fractional distortion based on the nearest neighbor |
---|
| 4399 | distance. |
---|
| 4400 | |
---|
| 4401 | The body-centered cubic lattice is: |
---|
| 4402 | |
---|
| 4403 | |
---|
| 4404 | |
---|
| 4405 | For a crystal, diffraction peaks appear at reduced q-values givn by: |
---|
| 4406 | |
---|
| 4407 | |
---|
| 4408 | |
---|
| 4409 | where for a body-centered cubic lattice, only reflections where |
---|
| 4410 | (h+k+l) = even are allowed and reflections where (h+k+l) = odd are |
---|
| 4411 | forbidden. Thus the peak positions correspond to (just the first 5): |
---|
| 4412 | |
---|
| 4413 | |
---|
| 4414 | |
---|
| 4415 | NOTE: The calculation of Z(q) is a double numerical integral that must |
---|
| 4416 | be carried out with a high density of points to properly capture the |
---|
| 4417 | sharp peaks of the paracrystalline scattering. So be warned that the |
---|
| 4418 | calculation is SLOW. Go get some coffee. Fitting of any experimental |
---|
| 4419 | data must be resolution smeared for any meaningful fit. This makes a |
---|
| 4420 | triple integral. Very, very slow. Go get lunch. |
---|
| 4421 | |
---|
| 4422 | REFERENCES |
---|
| 4423 | |
---|
| 4424 | Hideki Matsuoka et. al. Physical Review B, 36 (1987) 1754-1765. |
---|
| 4425 | (Original Paper) |
---|
| 4426 | |
---|
| 4427 | Hideki Matsuoka et. al. Physical Review B, 41 (1990) 3854 -3856. |
---|
| 4428 | (Corrections to FCC and BCC lattice structure calculation) |
---|
| 4429 | |
---|
| 4430 | |
---|
| 4431 | |
---|
| 4432 | |
---|
| 4433 | |
---|
| 4434 | Parameter name |
---|
| 4435 | |
---|
| 4436 | Units |
---|
| 4437 | |
---|
| 4438 | Default value |
---|
| 4439 | |
---|
| 4440 | background |
---|
| 4441 | |
---|
| 4442 | cm-1 |
---|
| 4443 | |
---|
| 4444 | 0 |
---|
| 4445 | |
---|
| 4446 | dnn |
---|
| 4447 | |
---|
| 4448 | |
---|
| 4449 | |
---|
| 4450 | 220 |
---|
| 4451 | |
---|
| 4452 | scale |
---|
| 4453 | |
---|
| 4454 | 1 |
---|
| 4455 | |
---|
| 4456 | sldSolv |
---|
| 4457 | |
---|
| 4458 | -2 |
---|
| 4459 | |
---|
| 4460 | 6.3e-006 |
---|
| 4461 | |
---|
| 4462 | radius |
---|
| 4463 | |
---|
| 4464 | |
---|
| 4465 | |
---|
| 4466 | 40 |
---|
| 4467 | |
---|
| 4468 | sld_Sph |
---|
| 4469 | |
---|
| 4470 | -2 |
---|
| 4471 | |
---|
| 4472 | 3e-006 |
---|
| 4473 | |
---|
| 4474 | d_factor |
---|
| 4475 | |
---|
| 4476 | 0.06 |
---|
| 4477 | |
---|
| 4478 | TEST DATASET |
---|
| 4479 | |
---|
| 4480 | This example dataset is produced using 200 data points, qmin = 0.001 |
---|
| 4481 | -1, qmax = 0.1 -1 and the above default values. |
---|
| 4482 | |
---|
| 4483 | |
---|
| 4484 | |
---|
| 4485 | *Figure. 1D plot in the linear scale using the default values (w/200 |
---|
| 4486 | data point).* |
---|
| 4487 | |
---|
| 4488 | The 2D (Anisotropic model) is based on the reference (1987) in which |
---|
| 4489 | I(q) is approximated for 1d scattering. Thus the scattering pattern |
---|
| 4490 | for 2D may not be accurate. Note that we are not responsible for any |
---|
| 4491 | incorrectness of the 2D model computation. |
---|
| 4492 | |
---|
| 4493 | |
---|
| 4494 | |
---|
| 4495 | |
---|
| 4496 | |
---|
| 4497 | |
---|
| 4498 | |
---|
| 4499 | |
---|
| 4500 | |
---|
| 4501 | |
---|
| 4502 | |
---|
| 4503 | |
---|
| 4504 | |
---|
| 4505 | *Figure. 2D plot using the default values (w/200X200 pixels).* |
---|
| 4506 | |
---|
| 4507 | |
---|
| 4508 | |
---|
| 4509 | .. _ParallelepipedModel: |
---|
| 4510 | |
---|
| 4511 | **2.1.36. ParallelepipedModel** |
---|
| 4512 | |
---|
| 4513 | This model provides the form factor, P( *q*), for a rectangular |
---|
| 4514 | cylinder (below) where the form factor is normalized by the volume of |
---|
| 4515 | the cylinder. P(q) = scale*<f^2>/V+background where the volume V= ABC |
---|
| 4516 | and the averaging < > is applied over all orientation for 1D. |
---|
| 4517 | |
---|
| 4518 | For information about polarised and magnetic scattering, click here_. |
---|
| 4519 | |
---|
| 4520 | |
---|
| 4521 | |
---|
| 4522 | |
---|
| 4523 | |
---|
| 4524 | The side of the solid must be satisfied the condition of A<B |
---|
| 4525 | |
---|
| 4526 | By this definition, assuming |
---|
| 4527 | |
---|
| 4528 | a = A/B<1; b=B/B=1; c=C/B>1, the form factor, |
---|
| 4529 | |
---|
| 4530 | |
---|
| 4531 | |
---|
| 4532 | The contrast is defined as |
---|
| 4533 | |
---|
| 4534 | |
---|
| 4535 | |
---|
| 4536 | The scattering intensity per unit volume is returned in the unit of |
---|
| 4537 | [cm-1]; I(q) = fP(q). |
---|
| 4538 | |
---|
| 4539 | For P*S: The 2nd virial coefficient of the solid cylinder is calculate |
---|
| 4540 | based on the averaged effective radius (= sqrt(short_a*short_b/pi)) |
---|
| 4541 | and length( = long_c) values, and used as the effective radius toward |
---|
| 4542 | S(Q) when P(Q)*S(Q) is applied. |
---|
| 4543 | |
---|
| 4544 | To provide easy access to the orientation of the parallelepiped, we |
---|
| 4545 | define the axis of the cylinder using two angles , andY. Similarly to |
---|
| 4546 | the case of the cylinder, those angles, and , are defined on Figure 2 |
---|
| 4547 | of CylinderModel. The angle Y is the rotational angle around its own |
---|
| 4548 | long_c axis against the q plane. For example, Y = 0 when the short_b |
---|
| 4549 | axis is parallel to the x-axis of the detector. |
---|
| 4550 | |
---|
| 4551 | |
---|
| 4552 | |
---|
| 4553 | *Figure. Definition of angles for 2D*. |
---|
| 4554 | |
---|
| 4555 | |
---|
| 4556 | |
---|
| 4557 | Figure. Examples of the angles for oriented pp against the detector |
---|
| 4558 | plane. |
---|
| 4559 | |
---|
| 4560 | Parameter name |
---|
| 4561 | |
---|
| 4562 | Units |
---|
| 4563 | |
---|
| 4564 | Default value |
---|
| 4565 | |
---|
| 4566 | background |
---|
| 4567 | |
---|
| 4568 | cm-1 |
---|
| 4569 | |
---|
| 4570 | 0.0 |
---|
| 4571 | |
---|
| 4572 | contrast |
---|
| 4573 | |
---|
| 4574 | -2 |
---|
| 4575 | |
---|
| 4576 | 5e-006 |
---|
| 4577 | |
---|
| 4578 | long_c |
---|
| 4579 | |
---|
| 4580 | |
---|
| 4581 | |
---|
| 4582 | 400 |
---|
| 4583 | |
---|
| 4584 | short_a |
---|
| 4585 | |
---|
| 4586 | -2 |
---|
| 4587 | |
---|
| 4588 | 35 |
---|
| 4589 | |
---|
| 4590 | short_b |
---|
| 4591 | |
---|
| 4592 | |
---|
| 4593 | |
---|
| 4594 | 75 |
---|
| 4595 | |
---|
| 4596 | scale |
---|
| 4597 | |
---|
| 4598 | 1 |
---|
| 4599 | |
---|
| 4600 | |
---|
| 4601 | |
---|
| 4602 | *Figure. 1D plot using the default values (w/1000 data point).* |
---|
| 4603 | |
---|
| 4604 | *Validation of the parallelepiped 2D model* |
---|
| 4605 | |
---|
| 4606 | Validation of our code was done by comparing the output of the 1D |
---|
| 4607 | calculation to the angular average of the output of 2 D calculation |
---|
| 4608 | over all possible angles. The Figure below shows the comparison where |
---|
| 4609 | the solid dot refers to averaged 2D while the line represents the |
---|
| 4610 | result of 1D calculation (for the averaging, 76, 180, 76 points are |
---|
| 4611 | taken over the angles of theta, phi, and psi respectively). |
---|
| 4612 | |
---|
| 4613 | |
---|
| 4614 | |
---|
| 4615 | *Figure. Comparison between 1D and averaged 2D.* |
---|
| 4616 | |
---|
| 4617 | Our model uses the form factor calculations implemented in a c-library |
---|
| 4618 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 4619 | |
---|
| 4620 | REFERENCE |
---|
| 4621 | |
---|
| 4622 | Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211. |
---|
| 4623 | |
---|
| 4624 | Equations (1), (13-14). (in German) |
---|
| 4625 | |
---|
| 4626 | |
---|
| 4627 | |
---|
| 4628 | .. _CSParallelepipedModel: |
---|
| 4629 | |
---|
| 4630 | **2.1.37. CSParallelepipedModel** |
---|
| 4631 | |
---|
| 4632 | Calculates the form factor for a rectangular solid with a core-shell |
---|
| 4633 | structure. The thickness and the scattering length density of the |
---|
| 4634 | shell or "rim" can be different on all three (pairs) of faces. The |
---|
| 4635 | form factor is normalized by the particle volume such that P(q) = |
---|
| 4636 | scale*<f^2>/Vol + bkg, where < > is an average over all possible |
---|
| 4637 | orientations of the rectangular solid. An instrument resolution |
---|
| 4638 | smeared version is also provided. |
---|
| 4639 | |
---|
| 4640 | The function calculated is the form factor of the rectangular solid |
---|
| 4641 | below. The core of the solid is defined by the dimensions ABC such |
---|
| 4642 | that A < B < C. |
---|
| 4643 | |
---|
| 4644 | |
---|
| 4645 | |
---|
| 4646 | There are rectangular "slabs" of thickness tA that add to the A |
---|
| 4647 | dimension (on the BC faces). There are similar slabs on the AC (=tB) |
---|
| 4648 | and AB (=tC) faces. The projection in the AB plane is then: |
---|
| 4649 | |
---|
| 4650 | |
---|
| 4651 | |
---|
| 4652 | The volume of the solid is: |
---|
| 4653 | |
---|
| 4654 | |
---|
| 4655 | |
---|
| 4656 | meaning that there are "gaps" at the corners of the solid. |
---|
| 4657 | |
---|
| 4658 | The intensity calculated follows the parallelepiped model, with the |
---|
| 4659 | core-shell intensity being calculated as the square of the sum of the |
---|
| 4660 | amplitudes of the core and shell, in the same manner as a core-shell |
---|
| 4661 | sphere. |
---|
| 4662 | |
---|
| 4663 | For the calculation of the form factor to be valid, the sides of the |
---|
| 4664 | solid MUST be chosen such that A < B < C. If this inequality in not |
---|
| 4665 | satisfied, the model will not report an error, and the calculation |
---|
| 4666 | will not be correct. |
---|
| 4667 | |
---|
| 4668 | FITTING NOTES: |
---|
| 4669 | |
---|
| 4670 | If the scale is set equal to the particle volume fraction, f, the |
---|
| 4671 | returned value is the scattered intensity per unit volume, I(q) = |
---|
| 4672 | f*P(q). However, no interparticle interference effects are included in |
---|
| 4673 | this calculation. |
---|
| 4674 | |
---|
| 4675 | There are many parameters in this model. Hold as many fixed as |
---|
| 4676 | possible with known values, or you will certainly end up at a solution |
---|
| 4677 | that is unphysical. |
---|
| 4678 | |
---|
| 4679 | Constraints must be applied during fitting to ensure that the |
---|
| 4680 | inequality A < B < C is not violated. The calculation will not report |
---|
| 4681 | an error, but the results will not be correct. |
---|
| 4682 | |
---|
| 4683 | The returned value is in units of [cm-1], on absolute scale. |
---|
| 4684 | |
---|
| 4685 | For P*S: The 2nd virial coefficient of this CSPP is calculate based on |
---|
| 4686 | the averaged effective radius (= |
---|
| 4687 | sqrt((short_a+2*rim_a)*(short_b+2*rim_b)/pi)) and length( = |
---|
| 4688 | long_c+2*rim_c) values, and used as the effective radius toward S(Q) |
---|
| 4689 | when P(Q)*S(Q) is applied. |
---|
| 4690 | |
---|
| 4691 | To provide easy access to the orientation of the CSparallelepiped, we |
---|
| 4692 | define the axis of the cylinder using two angles , andY. Similarly to |
---|
| 4693 | the case of the cylinder, those angles, and , are defined on Figure 2 |
---|
| 4694 | of CylinderModel. The angle Y is the rotational angle around its own |
---|
| 4695 | long_c axis against the q plane. For example, Y = 0 when the short_b |
---|
| 4696 | axis is parallel to the x-axis of the detector. |
---|
| 4697 | |
---|
| 4698 | |
---|
| 4699 | |
---|
| 4700 | *Figure. Definition of angles for 2D*. |
---|
| 4701 | |
---|
| 4702 | |
---|
| 4703 | |
---|
| 4704 | Figure. Examples of the angles for oriented cspp against the detector |
---|
| 4705 | plane. |
---|
| 4706 | |
---|
| 4707 | TEST DATASET |
---|
| 4708 | |
---|
| 4709 | This example dataset is produced by running the Macro |
---|
| 4710 | Plot_CSParallelepiped(), using 100 data points, qmin = 0.001 -1, qmax |
---|
| 4711 | = 0.7 -1 and the below default values. |
---|
| 4712 | |
---|
| 4713 | Parameter name |
---|
| 4714 | |
---|
| 4715 | Units |
---|
| 4716 | |
---|
| 4717 | Default value |
---|
| 4718 | |
---|
| 4719 | background |
---|
| 4720 | |
---|
| 4721 | cm-1 |
---|
| 4722 | |
---|
| 4723 | 0.06 |
---|
| 4724 | |
---|
| 4725 | sld_pcore |
---|
| 4726 | |
---|
| 4727 | -2 |
---|
| 4728 | |
---|
| 4729 | 1e-006 |
---|
| 4730 | |
---|
| 4731 | sld_rimA |
---|
| 4732 | |
---|
| 4733 | -2 |
---|
| 4734 | |
---|
| 4735 | 2e-006 |
---|
| 4736 | |
---|
| 4737 | sld_rimB |
---|
| 4738 | |
---|
| 4739 | -2 |
---|
| 4740 | |
---|
| 4741 | 4e-006 |
---|
| 4742 | |
---|
| 4743 | sld_rimC |
---|
| 4744 | |
---|
| 4745 | -2 |
---|
| 4746 | |
---|
| 4747 | 2e-006 |
---|
| 4748 | |
---|
| 4749 | sld_solv |
---|
| 4750 | |
---|
| 4751 | -2 |
---|
| 4752 | |
---|
| 4753 | 6e-006 |
---|
| 4754 | |
---|
| 4755 | rimA |
---|
| 4756 | |
---|
| 4757 | |
---|
| 4758 | |
---|
| 4759 | 10 |
---|
| 4760 | |
---|
| 4761 | rimB |
---|
| 4762 | |
---|
| 4763 | |
---|
| 4764 | |
---|
| 4765 | 10 |
---|
| 4766 | |
---|
| 4767 | rimC |
---|
| 4768 | |
---|
| 4769 | |
---|
| 4770 | |
---|
| 4771 | 10 |
---|
| 4772 | |
---|
| 4773 | longC |
---|
| 4774 | |
---|
| 4775 | |
---|
| 4776 | |
---|
| 4777 | 400 |
---|
| 4778 | |
---|
| 4779 | shortA |
---|
| 4780 | |
---|
| 4781 | |
---|
| 4782 | |
---|
| 4783 | 35 |
---|
| 4784 | |
---|
| 4785 | midB |
---|
| 4786 | |
---|
| 4787 | |
---|
| 4788 | |
---|
| 4789 | 75 |
---|
| 4790 | |
---|
| 4791 | scale |
---|
| 4792 | |
---|
| 4793 | 1 |
---|
| 4794 | |
---|
| 4795 | |
---|
| 4796 | |
---|
| 4797 | *Figure. 1D plot using the default values (w/256 data points).* |
---|
| 4798 | |
---|
| 4799 | |
---|
| 4800 | |
---|
| 4801 | |
---|
| 4802 | |
---|
| 4803 | *Figure. 2D plot using the default values (w/(256X265) data |
---|
| 4804 | points).* |
---|
| 4805 | |
---|
| 4806 | Our model uses the form factor calculations implemented in a c-library |
---|
| 4807 | provided by the NIST Center for Neutron Research (Kline, 2006): |
---|
| 4808 | |
---|
| 4809 | REFERENCE |
---|
| 4810 | |
---|
| 4811 | see: Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211. |
---|
| 4812 | |
---|
| 4813 | Equations (1), (13-14). (yes, it's in German) |
---|
| 4814 | |
---|
| 4815 | |
---|
| 4816 | |
---|
| 4817 | 2.2 Shape-independent Functions |
---|
| 4818 | ------------------------------- |
---|
| 4819 | |
---|
| 4820 | The following are models used for shape-independent SANS analysis. |
---|
| 4821 | |
---|
| 4822 | **2.2.1. Debye** |
---|
| 4823 | |
---|
| 4824 | The Debye model is a form factor for a linear polymer chain. In |
---|
| 4825 | addition to the radius of gyration, Rg, a scale factor "scale", and a |
---|
| 4826 | constant background term are included in the calculation. |
---|
| 4827 | |
---|
| 4828 | |
---|
| 4829 | |
---|
| 4830 | |
---|
| 4831 | |
---|
| 4832 | |
---|
| 4833 | |
---|
| 4834 | For 2D plot, the wave transfer is defined as . |
---|
| 4835 | |
---|
| 4836 | |
---|
| 4837 | |
---|
| 4838 | Parameter name |
---|
| 4839 | |
---|
| 4840 | Units |
---|
| 4841 | |
---|
| 4842 | Default value |
---|
| 4843 | |
---|
| 4844 | scale |
---|
| 4845 | |
---|
| 4846 | None |
---|
| 4847 | |
---|
| 4848 | 1.0 |
---|
| 4849 | |
---|
| 4850 | rg |
---|
| 4851 | |
---|
| 4852 | |
---|
| 4853 | |
---|
| 4854 | 50.0 |
---|
| 4855 | |
---|
| 4856 | background |
---|
| 4857 | |
---|
| 4858 | cm-1 |
---|
| 4859 | |
---|
| 4860 | 0.0 |
---|
| 4861 | |
---|
| 4862 | |
---|
| 4863 | |
---|
| 4864 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 4865 | |
---|
| 4866 | |
---|
| 4867 | |
---|
| 4868 | Reference: Roe, R.-J., "Methods of X-Ray and Neutron Scattering in |
---|
| 4869 | Polymer Science", Oxford University Press, New York (2000). |
---|
| 4870 | |
---|
| 4871 | *3.2. BroadPeak Model* |
---|
| 4872 | |
---|
| 4873 | Calculate an empirical functional form for SANS data characterized by |
---|
| 4874 | a broad scattering peak. Many SANS spectra are characterized by a |
---|
| 4875 | broad peak even though they are from amorphous soft materials. The |
---|
| 4876 | d-spacing corresponding to the broad peak is a characteristic distance |
---|
| 4877 | between the scattering inhomogeneities (such as in lamellar, |
---|
| 4878 | cylindrical, or spherical morphologies or for bicontinuous |
---|
| 4879 | structures). |
---|
| 4880 | |
---|
| 4881 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 4882 | |
---|
| 4883 | The scattering intensity I(q) is calculated by: |
---|
| 4884 | |
---|
| 4885 | |
---|
| 4886 | |
---|
| 4887 | Here the peak position is related to the d-spacing as Q0 = 2pi/d0. |
---|
| 4888 | Soft systems that show a SANS peak include copolymers, |
---|
| 4889 | polyelectrolytes, multiphase systems, layered structures, etc. |
---|
| 4890 | |
---|
| 4891 | |
---|
| 4892 | |
---|
| 4893 | |
---|
| 4894 | |
---|
| 4895 | For 2D plot, the wave transfer is defined as . |
---|
| 4896 | |
---|
| 4897 | |
---|
| 4898 | |
---|
| 4899 | Parameter name |
---|
| 4900 | |
---|
| 4901 | Units |
---|
| 4902 | |
---|
| 4903 | Default value |
---|
| 4904 | |
---|
| 4905 | scale_l (= C) |
---|
| 4906 | |
---|
| 4907 | 10 |
---|
| 4908 | |
---|
| 4909 | scale_p (=A) |
---|
| 4910 | |
---|
| 4911 | 1e-05 |
---|
| 4912 | |
---|
| 4913 | length_l (=x) |
---|
| 4914 | |
---|
| 4915 | |
---|
| 4916 | |
---|
| 4917 | 50 |
---|
| 4918 | |
---|
| 4919 | q_peak (= Q0) |
---|
| 4920 | |
---|
| 4921 | -1 |
---|
| 4922 | |
---|
| 4923 | 0.1 |
---|
| 4924 | |
---|
| 4925 | exponent_p (=n) |
---|
| 4926 | |
---|
| 4927 | 2 |
---|
| 4928 | |
---|
| 4929 | exponent_l (=m) |
---|
| 4930 | |
---|
| 4931 | 3 |
---|
| 4932 | |
---|
| 4933 | Background (=B) |
---|
| 4934 | |
---|
| 4935 | cm-1 |
---|
| 4936 | |
---|
| 4937 | 0.1 |
---|
| 4938 | |
---|
| 4939 | |
---|
| 4940 | |
---|
| 4941 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 4942 | |
---|
| 4943 | |
---|
| 4944 | |
---|
| 4945 | Reference: None. |
---|
| 4946 | |
---|
| 4947 | 2013/09/09 - Description reviewed by King, S. and Parker, P. |
---|
| 4948 | |
---|
| 4949 | *3.3. CorrLength (CorrelationLengthModel)* |
---|
| 4950 | |
---|
| 4951 | Calculate an empirical functional form for SANS data characterized by |
---|
| 4952 | a low-Q signal and a high-Q signal |
---|
| 4953 | |
---|
| 4954 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 4955 | |
---|
| 4956 | The scattering intensity I(q) is calculated by: |
---|
| 4957 | |
---|
| 4958 | |
---|
| 4959 | |
---|
| 4960 | The first term describes Porod scattering from clusters (exponent = n) |
---|
| 4961 | and the second term is a Lorentzian function describing scattering |
---|
| 4962 | from polymer chains (exponent = m). This second term characterizes the |
---|
| 4963 | polymer/solvent interactions and therefore the thermodynamics. The two |
---|
| 4964 | multiplicative factors A and C, the incoherent background B and the |
---|
| 4965 | two exponents n and m are used as fitting parameters. The final |
---|
| 4966 | parameter (xi) is a correlation length for the polymer chains. Note |
---|
| 4967 | that when m = 2, this functional form becomes the familiar Lorentzian |
---|
| 4968 | function. |
---|
| 4969 | |
---|
| 4970 | |
---|
| 4971 | |
---|
| 4972 | For 2D plot, the wave transfer is defined as . |
---|
| 4973 | |
---|
| 4974 | |
---|
| 4975 | |
---|
| 4976 | Parameter name |
---|
| 4977 | |
---|
| 4978 | Units |
---|
| 4979 | |
---|
| 4980 | Default value |
---|
| 4981 | |
---|
| 4982 | scale_l (= C) |
---|
| 4983 | |
---|
| 4984 | 10 |
---|
| 4985 | |
---|
| 4986 | scale_p (=A) |
---|
| 4987 | |
---|
| 4988 | 1e-06 |
---|
| 4989 | |
---|
| 4990 | length_l (=x) |
---|
| 4991 | |
---|
| 4992 | |
---|
| 4993 | |
---|
| 4994 | 50 |
---|
| 4995 | |
---|
| 4996 | exponent_p (=n) |
---|
| 4997 | |
---|
| 4998 | 2 |
---|
| 4999 | |
---|
| 5000 | exponent_l (=m) |
---|
| 5001 | |
---|
| 5002 | 3 |
---|
| 5003 | |
---|
| 5004 | Background (=B) |
---|
| 5005 | |
---|
| 5006 | cm-1 |
---|
| 5007 | |
---|
| 5008 | 0.1 |
---|
| 5009 | |
---|
| 5010 | |
---|
| 5011 | |
---|
| 5012 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 5013 | |
---|
| 5014 | |
---|
| 5015 | |
---|
| 5016 | REFERENCE |
---|
| 5017 | |
---|
| 5018 | B. Hammouda, D.L. Ho and S.R. Kline, Insight into Clustering in |
---|
| 5019 | Poly(ethylene oxide) Solutions, Macromolecules 37, 6932-6937 (2004). |
---|
| 5020 | |
---|
| 5021 | 2013/09/09 - Description reviewed by King, S. and Parker, P. |
---|
| 5022 | |
---|
| 5023 | *3.4. (Ornstein-Zernicke) Lorentz (Model)* |
---|
| 5024 | |
---|
| 5025 | The Ornstein-Zernicke model is defined by: |
---|
| 5026 | |
---|
| 5027 | |
---|
| 5028 | |
---|
| 5029 | |
---|
| 5030 | |
---|
| 5031 | |
---|
| 5032 | |
---|
| 5033 | The parameter L is referred to as the screening length. |
---|
| 5034 | |
---|
| 5035 | |
---|
| 5036 | |
---|
| 5037 | For 2D plot, the wave transfer is defined as . |
---|
| 5038 | |
---|
| 5039 | |
---|
| 5040 | |
---|
| 5041 | |
---|
| 5042 | |
---|
| 5043 | Parameter name |
---|
| 5044 | |
---|
| 5045 | Units |
---|
| 5046 | |
---|
| 5047 | Default value |
---|
| 5048 | |
---|
| 5049 | scale |
---|
| 5050 | |
---|
| 5051 | None |
---|
| 5052 | |
---|
| 5053 | 1.0 |
---|
| 5054 | |
---|
| 5055 | length |
---|
| 5056 | |
---|
| 5057 | |
---|
| 5058 | |
---|
| 5059 | 50.0 |
---|
| 5060 | |
---|
| 5061 | background |
---|
| 5062 | |
---|
| 5063 | cm-1 |
---|
| 5064 | |
---|
| 5065 | 0.0 |
---|
| 5066 | |
---|
| 5067 | * * |
---|
| 5068 | |
---|
| 5069 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 5070 | |
---|
| 5071 | *3.5. DAB (Debye-Anderson-Brumberger)_Model* |
---|
| 5072 | |
---|
| 5073 | |
---|
| 5074 | |
---|
| 5075 | Calculates the scattering from a randomly distributed, two-phase |
---|
| 5076 | system based on the Debye-Anderson-Brumberger (DAB) model for such |
---|
| 5077 | systems. The two-phase system is characterized by a single length |
---|
| 5078 | scale, the correlation length, which is a measure of the average |
---|
| 5079 | spacing between regions of phase 1 and phase 2. The model also assumes |
---|
| 5080 | smooth interfaces between the phases and hence exhibits Porod behavior |
---|
| 5081 | (I ~ Q-4) at large Q (Q*correlation length >> 1). |
---|
| 5082 | |
---|
| 5083 | |
---|
| 5084 | |
---|
| 5085 | |
---|
| 5086 | |
---|
| 5087 | |
---|
| 5088 | |
---|
| 5089 | The parameter L is referred to as the correlation length. |
---|
| 5090 | |
---|
| 5091 | For 2D plot, the wave transfer is defined as . |
---|
| 5092 | |
---|
| 5093 | |
---|
| 5094 | |
---|
| 5095 | Parameter name |
---|
| 5096 | |
---|
| 5097 | Units |
---|
| 5098 | |
---|
| 5099 | Default value |
---|
| 5100 | |
---|
| 5101 | scale |
---|
| 5102 | |
---|
| 5103 | None |
---|
| 5104 | |
---|
| 5105 | 1.0 |
---|
| 5106 | |
---|
| 5107 | length |
---|
| 5108 | |
---|
| 5109 | |
---|
| 5110 | |
---|
| 5111 | 50.0 |
---|
| 5112 | |
---|
| 5113 | background |
---|
| 5114 | |
---|
| 5115 | cm-1 |
---|
| 5116 | |
---|
| 5117 | 0.0 |
---|
| 5118 | |
---|
| 5119 | * * |
---|
| 5120 | |
---|
| 5121 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 5122 | |
---|
| 5123 | References: |
---|
| 5124 | |
---|
| 5125 | Debye, Anderson, Brumberger, "Scattering by an Inhomogeneous Solid. |
---|
| 5126 | II. The Correlation Function and its Application", J. Appl. Phys. 28 |
---|
| 5127 | (6), 679 (1957). |
---|
| 5128 | |
---|
| 5129 | |
---|
| 5130 | |
---|
| 5131 | Debye, Bueche, "Scattering by an Inhomogeneous Solid", J. Appl. Phys. |
---|
| 5132 | 20, 518 (1949). |
---|
| 5133 | |
---|
| 5134 | 2013/09/09 - Description reviewed by King, S. and Parker, P. |
---|
| 5135 | |
---|
| 5136 | *3.6. Absolute Power_Law * |
---|
| 5137 | |
---|
| 5138 | This model describes a power law with background. |
---|
| 5139 | |
---|
| 5140 | |
---|
| 5141 | |
---|
| 5142 | |
---|
| 5143 | |
---|
| 5144 | Note the minus sign in front of the exponent. |
---|
| 5145 | |
---|
| 5146 | |
---|
| 5147 | |
---|
| 5148 | Parameter name |
---|
| 5149 | |
---|
| 5150 | Units |
---|
| 5151 | |
---|
| 5152 | Default value |
---|
| 5153 | |
---|
| 5154 | Scale |
---|
| 5155 | |
---|
| 5156 | None |
---|
| 5157 | |
---|
| 5158 | 1.0 |
---|
| 5159 | |
---|
| 5160 | m |
---|
| 5161 | |
---|
| 5162 | None |
---|
| 5163 | |
---|
| 5164 | 4 |
---|
| 5165 | |
---|
| 5166 | Background |
---|
| 5167 | |
---|
| 5168 | cm-1 |
---|
| 5169 | |
---|
| 5170 | 0.0 |
---|
| 5171 | |
---|
| 5172 | |
---|
| 5173 | |
---|
| 5174 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 5175 | |
---|
| 5176 | *3.7. Teubner Strey (Model)* |
---|
| 5177 | |
---|
| 5178 | This function calculates the scattered intensity of a two-component |
---|
| 5179 | system using the Teubner-Strey model. |
---|
| 5180 | |
---|
| 5181 | |
---|
| 5182 | |
---|
| 5183 | |
---|
| 5184 | |
---|
| 5185 | |
---|
| 5186 | |
---|
| 5187 | |
---|
| 5188 | |
---|
| 5189 | For 2D plot, the wave transfer is defined as . |
---|
| 5190 | |
---|
| 5191 | |
---|
| 5192 | |
---|
| 5193 | Parameter name |
---|
| 5194 | |
---|
| 5195 | Units |
---|
| 5196 | |
---|
| 5197 | Default value |
---|
| 5198 | |
---|
| 5199 | scale |
---|
| 5200 | |
---|
| 5201 | None |
---|
| 5202 | |
---|
| 5203 | 0.1 |
---|
| 5204 | |
---|
| 5205 | c1 |
---|
| 5206 | |
---|
| 5207 | None |
---|
| 5208 | |
---|
| 5209 | -30.0 |
---|
| 5210 | |
---|
| 5211 | c2 |
---|
| 5212 | |
---|
| 5213 | None |
---|
| 5214 | |
---|
| 5215 | 5000.0 |
---|
| 5216 | |
---|
| 5217 | background |
---|
| 5218 | |
---|
| 5219 | cm-1 |
---|
| 5220 | |
---|
| 5221 | 0.0 |
---|
| 5222 | |
---|
| 5223 | |
---|
| 5224 | |
---|
| 5225 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 5226 | |
---|
| 5227 | References: |
---|
| 5228 | |
---|
| 5229 | Teubner, M; Strey, R. J. Chem. Phys., 87, 3195 (1987). |
---|
| 5230 | |
---|
| 5231 | |
---|
| 5232 | |
---|
| 5233 | Schubert, K-V., Strey, R., Kline, S. R. and E. W. Kaler, J. Chem. |
---|
| 5234 | Phys., 101, 5343 (1994). |
---|
| 5235 | |
---|
| 5236 | *3.8. FractalModel* |
---|
| 5237 | |
---|
| 5238 | Calculates the scattering from fractal-like aggregates built from |
---|
| 5239 | spherical building blocks following the Texiera reference. The value |
---|
| 5240 | returned is in cm-1. |
---|
| 5241 | |
---|
| 5242 | |
---|
| 5243 | |
---|
| 5244 | |
---|
| 5245 | |
---|
| 5246 | |
---|
| 5247 | |
---|
| 5248 | The scale parameter is the volume fraction of the building blocks, R0 |
---|
| 5249 | is the radius of the building block, Df is the fractal dimension, is |
---|
| 5250 | the correlation length, *solvent* is the scattering length density of |
---|
| 5251 | the solvent, and *block* is the scattering length density of the |
---|
| 5252 | building blocks. |
---|
| 5253 | |
---|
| 5254 | *The polydispersion in radius is provided.* |
---|
| 5255 | |
---|
| 5256 | For 2D plot, the wave transfer is defined as . |
---|
| 5257 | |
---|
| 5258 | |
---|
| 5259 | |
---|
| 5260 | Parameter name |
---|
| 5261 | |
---|
| 5262 | Units |
---|
| 5263 | |
---|
| 5264 | Default value |
---|
| 5265 | |
---|
| 5266 | scale |
---|
| 5267 | |
---|
| 5268 | None |
---|
| 5269 | |
---|
| 5270 | 0.05 |
---|
| 5271 | |
---|
| 5272 | radius |
---|
| 5273 | |
---|
| 5274 | |
---|
| 5275 | |
---|
| 5276 | 5.0 |
---|
| 5277 | |
---|
| 5278 | fractal_dim |
---|
| 5279 | |
---|
| 5280 | None |
---|
| 5281 | |
---|
| 5282 | 2 |
---|
| 5283 | |
---|
| 5284 | corr_length |
---|
| 5285 | |
---|
| 5286 | |
---|
| 5287 | |
---|
| 5288 | 100.0 |
---|
| 5289 | |
---|
| 5290 | block_sld |
---|
| 5291 | |
---|
| 5292 | -2 |
---|
| 5293 | |
---|
| 5294 | 2e-6 |
---|
| 5295 | |
---|
| 5296 | solvent_sld |
---|
| 5297 | |
---|
| 5298 | -2 |
---|
| 5299 | |
---|
| 5300 | 6e-6 |
---|
| 5301 | |
---|
| 5302 | background |
---|
| 5303 | |
---|
| 5304 | cm-1 |
---|
| 5305 | |
---|
| 5306 | 0.0 |
---|
| 5307 | |
---|
| 5308 | |
---|
| 5309 | |
---|
| 5310 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 5311 | |
---|
| 5312 | |
---|
| 5313 | |
---|
| 5314 | |
---|
| 5315 | |
---|
| 5316 | References: |
---|
| 5317 | |
---|
| 5318 | J. Teixeira, (1988) J. Appl. Cryst., vol. 21, p781-785 |
---|
| 5319 | |
---|
| 5320 | |
---|
| 5321 | |
---|
| 5322 | *3.9. MassFractalModel* |
---|
| 5323 | |
---|
| 5324 | Calculates the scattering from fractal-like aggregates based on the |
---|
| 5325 | Mildner reference (below). |
---|
| 5326 | |
---|
| 5327 | |
---|
| 5328 | |
---|
| 5329 | |
---|
| 5330 | |
---|
| 5331 | |
---|
| 5332 | |
---|
| 5333 | |
---|
| 5334 | |
---|
| 5335 | |
---|
| 5336 | The R is the radius of the building block, Dm is the mass fractal |
---|
| 5337 | dimension, is the correlation (or cutt-off) length, *solvent* is the |
---|
| 5338 | scattering length density of the solvent, and *particle* is the |
---|
| 5339 | scattering length density of particles. |
---|
| 5340 | |
---|
| 5341 | Note: The mass fractal dimension is valid for 1<mass_dim<6. |
---|
| 5342 | |
---|
| 5343 | |
---|
| 5344 | |
---|
| 5345 | Parameter name |
---|
| 5346 | |
---|
| 5347 | Units |
---|
| 5348 | |
---|
| 5349 | Default value |
---|
| 5350 | |
---|
| 5351 | scale |
---|
| 5352 | |
---|
| 5353 | None |
---|
| 5354 | |
---|
| 5355 | 1 |
---|
| 5356 | |
---|
| 5357 | radius |
---|
| 5358 | |
---|
| 5359 | |
---|
| 5360 | |
---|
| 5361 | 10.0 |
---|
| 5362 | |
---|
| 5363 | mass_dim |
---|
| 5364 | |
---|
| 5365 | None |
---|
| 5366 | |
---|
| 5367 | 1.9 |
---|
| 5368 | |
---|
| 5369 | co_length |
---|
| 5370 | |
---|
| 5371 | |
---|
| 5372 | |
---|
| 5373 | 100.0 |
---|
| 5374 | |
---|
| 5375 | background |
---|
| 5376 | |
---|
| 5377 | |
---|
| 5378 | |
---|
| 5379 | 0.0 |
---|
| 5380 | |
---|
| 5381 | |
---|
| 5382 | |
---|
| 5383 | *Figure. 1D plot* |
---|
| 5384 | |
---|
| 5385 | |
---|
| 5386 | |
---|
| 5387 | |
---|
| 5388 | |
---|
| 5389 | References: |
---|
| 5390 | |
---|
| 5391 | D. Mildner, and P. Hall, J. Phys. D.: Appl. Phys., 19, 1535-1545 |
---|
| 5392 | (1986), Equation(9). |
---|
| 5393 | |
---|
| 5394 | 2013/09/09 - Description reviewed by King, S. and Parker, P. |
---|
| 5395 | |
---|
| 5396 | |
---|
| 5397 | |
---|
| 5398 | |
---|
| 5399 | |
---|
| 5400 | *3.10. SurfaceFractalModel* |
---|
| 5401 | |
---|
| 5402 | Calculates the scattering based on the Mildner reference (below). |
---|
| 5403 | |
---|
| 5404 | |
---|
| 5405 | |
---|
| 5406 | |
---|
| 5407 | |
---|
| 5408 | |
---|
| 5409 | |
---|
| 5410 | |
---|
| 5411 | |
---|
| 5412 | |
---|
| 5413 | The R is the radius of the building block, Ds is the surface fractal |
---|
| 5414 | dimension, is the correlation (or cutt-off) length, *solvent* is the |
---|
| 5415 | scattering length density of the solvent, and *particle* is the |
---|
| 5416 | scattering length density of particles. |
---|
| 5417 | |
---|
| 5418 | Note: The surface fractal dimension is valid for 1<surface_dim<3. Also |
---|
| 5419 | it is valid in a limited q range (see the reference for details). |
---|
| 5420 | |
---|
| 5421 | |
---|
| 5422 | |
---|
| 5423 | Parameter name |
---|
| 5424 | |
---|
| 5425 | Units |
---|
| 5426 | |
---|
| 5427 | Default value |
---|
| 5428 | |
---|
| 5429 | scale |
---|
| 5430 | |
---|
| 5431 | None |
---|
| 5432 | |
---|
| 5433 | 1 |
---|
| 5434 | |
---|
| 5435 | radius |
---|
| 5436 | |
---|
| 5437 | |
---|
| 5438 | |
---|
| 5439 | 10.0 |
---|
| 5440 | |
---|
| 5441 | surface_dim |
---|
| 5442 | |
---|
| 5443 | None |
---|
| 5444 | |
---|
| 5445 | 2.0 |
---|
| 5446 | |
---|
| 5447 | co_length |
---|
| 5448 | |
---|
| 5449 | |
---|
| 5450 | |
---|
| 5451 | 500.0 |
---|
| 5452 | |
---|
| 5453 | background |
---|
| 5454 | |
---|
| 5455 | |
---|
| 5456 | |
---|
| 5457 | 0.0 |
---|
| 5458 | |
---|
| 5459 | |
---|
| 5460 | |
---|
| 5461 | *Figure. 1D plot* |
---|
| 5462 | |
---|
| 5463 | |
---|
| 5464 | |
---|
| 5465 | |
---|
| 5466 | |
---|
| 5467 | References: |
---|
| 5468 | |
---|
| 5469 | D. Mildner, and P. Hall, J. Phys. D.: Appl. Phys., 19, 1535-1545 |
---|
| 5470 | (1986), Equation(13). |
---|
| 5471 | |
---|
| 5472 | |
---|
| 5473 | |
---|
| 5474 | |
---|
| 5475 | |
---|
| 5476 | *3.11. MassSurfaceFractal* |
---|
| 5477 | |
---|
| 5478 | A number of natural and commercial processes form high-surface area |
---|
| 5479 | materials as a result of the vapour-phase aggregation of primary |
---|
| 5480 | particles. Examples of such materials include soots, aerosols, and |
---|
| 5481 | fume or pyrogenic silicas. These are all characterised by cluster mass |
---|
| 5482 | distributions (sometimes also cluster size distributions) and internal |
---|
| 5483 | surfaces that are fractal in nature. The scattering from such |
---|
| 5484 | materials displays two distinct breaks in log-log representation, |
---|
| 5485 | corresponding to the radius-of-gyration of the primary particles, rg, |
---|
| 5486 | and the radius-of-gyration of the clusters (aggregates), Rg. Between |
---|
| 5487 | these boundaries the scattering follows a power law related to the |
---|
| 5488 | mass fractal dimension, Dm, whilst above the high-Q boundary the |
---|
| 5489 | scattering follows a power law related to the surface fractal |
---|
| 5490 | dimension of the primary particles, Ds. |
---|
| 5491 | |
---|
| 5492 | The scattered intensity I(Q) is then calculated using a modified |
---|
| 5493 | Ornstein-Zernicke equation: |
---|
| 5494 | |
---|
| 5495 | |
---|
| 5496 | |
---|
| 5497 | |
---|
| 5498 | |
---|
| 5499 | |
---|
| 5500 | |
---|
| 5501 | |
---|
| 5502 | |
---|
| 5503 | |
---|
| 5504 | The Rg is for the cluster, rg is for the primary, Ds is the surface |
---|
| 5505 | fractal dimension, Dm is the mass fractal dimension, *solvent* is the |
---|
| 5506 | scattering length density of the solvent, and *p* is the scattering |
---|
| 5507 | length density of particles. |
---|
| 5508 | |
---|
| 5509 | Note: The surface and mass fractal dimensions are valid for |
---|
| 5510 | 0<surface_dim<6, 0<mass_dim<6, and (surface_mass+mass_dim)<6. |
---|
| 5511 | |
---|
| 5512 | |
---|
| 5513 | |
---|
| 5514 | Parameter name |
---|
| 5515 | |
---|
| 5516 | Units |
---|
| 5517 | |
---|
| 5518 | Default value |
---|
| 5519 | |
---|
| 5520 | scale |
---|
| 5521 | |
---|
| 5522 | None |
---|
| 5523 | |
---|
| 5524 | 1 |
---|
| 5525 | |
---|
| 5526 | primary_rg |
---|
| 5527 | |
---|
| 5528 | |
---|
| 5529 | |
---|
| 5530 | 4000.0 |
---|
| 5531 | cluster_rg 86.7 |
---|
| 5532 | surface_dim |
---|
| 5533 | |
---|
| 5534 | None |
---|
| 5535 | |
---|
| 5536 | 2.3 |
---|
| 5537 | mass_dim None 1.8 |
---|
| 5538 | background |
---|
| 5539 | |
---|
| 5540 | |
---|
| 5541 | |
---|
| 5542 | 0.0 |
---|
| 5543 | |
---|
| 5544 | |
---|
| 5545 | |
---|
| 5546 | *Figure. 1D plot* |
---|
| 5547 | |
---|
| 5548 | |
---|
| 5549 | |
---|
| 5550 | |
---|
| 5551 | |
---|
| 5552 | References: |
---|
| 5553 | |
---|
| 5554 | P. Schmidt, J Appl. Cryst., 24, 414-435 (1991), Equation(19). |
---|
| 5555 | |
---|
| 5556 | Hurd, Schaefer, Martin, Phys. Rev. A, 35, 2361-2364 (1987), |
---|
| 5557 | Equation(2). |
---|
| 5558 | |
---|
| 5559 | |
---|
| 5560 | |
---|
| 5561 | |
---|
| 5562 | |
---|
| 5563 | *3.12. FractalCoreShell(Model)* |
---|
| 5564 | |
---|
| 5565 | Calculates the scattering from a fractal structure with a primary |
---|
| 5566 | building block of core-shell spheres. |
---|
| 5567 | |
---|
| 5568 | |
---|
| 5569 | |
---|
| 5570 | |
---|
| 5571 | The formfactor P(q) is CoreShellModel with bkg = 0, |
---|
| 5572 | , |
---|
| 5573 | |
---|
| 5574 | while the fractal structure factor S(q); |
---|
| 5575 | |
---|
| 5576 | |
---|
| 5577 | |
---|
| 5578 | where Df = frac_dim, = cor_length, rc = (core) radius, and scale = |
---|
| 5579 | volfraction. |
---|
| 5580 | The fractal structure is as documented in the fractal model. This |
---|
| 5581 | model could find use for aggregates of coated particles, or aggregates |
---|
| 5582 | of vesicles.The polydispersity computation of radius and thickness is |
---|
| 5583 | provided. |
---|
| 5584 | |
---|
| 5585 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 5586 | |
---|
| 5587 | See each of these individual models for full documentation. |
---|
| 5588 | |
---|
| 5589 | For 2D plot, the wave transfer is defined as . |
---|
| 5590 | |
---|
| 5591 | |
---|
| 5592 | |
---|
| 5593 | Parameter name |
---|
| 5594 | |
---|
| 5595 | Units |
---|
| 5596 | |
---|
| 5597 | Default value |
---|
| 5598 | |
---|
| 5599 | volfraction |
---|
| 5600 | |
---|
| 5601 | 0.05 |
---|
| 5602 | |
---|
| 5603 | frac_dim |
---|
| 5604 | |
---|
| 5605 | 2 |
---|
| 5606 | |
---|
| 5607 | thickness |
---|
| 5608 | |
---|
| 5609 | |
---|
| 5610 | |
---|
| 5611 | 5.0 |
---|
| 5612 | |
---|
| 5613 | raidus |
---|
| 5614 | |
---|
| 5615 | 20.0 |
---|
| 5616 | |
---|
| 5617 | cor_length |
---|
| 5618 | |
---|
| 5619 | |
---|
| 5620 | |
---|
| 5621 | 100.0 |
---|
| 5622 | |
---|
| 5623 | core_sld |
---|
| 5624 | |
---|
| 5625 | -2 |
---|
| 5626 | |
---|
| 5627 | 3.5e-6 |
---|
| 5628 | |
---|
| 5629 | shell_sld |
---|
| 5630 | |
---|
| 5631 | -2 |
---|
| 5632 | |
---|
| 5633 | 1e-6 |
---|
| 5634 | |
---|
| 5635 | solvent_sld |
---|
| 5636 | |
---|
| 5637 | -2 |
---|
| 5638 | |
---|
| 5639 | 6.35e-6 |
---|
| 5640 | |
---|
| 5641 | background |
---|
| 5642 | |
---|
| 5643 | cm-1 |
---|
| 5644 | |
---|
| 5645 | 0.0 |
---|
| 5646 | |
---|
| 5647 | |
---|
| 5648 | |
---|
| 5649 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 5650 | |
---|
| 5651 | |
---|
| 5652 | |
---|
| 5653 | |
---|
| 5654 | |
---|
| 5655 | References: |
---|
| 5656 | |
---|
| 5657 | See the PolyCore and Fractal documentation. * * |
---|
| 5658 | |
---|
| 5659 | *3.13. GaussLorentzGel(Model)* |
---|
| 5660 | |
---|
| 5661 | Calculates the scattering from a gel structure, typically a physical |
---|
| 5662 | network. It is modeled as a sum of a low-q exponential decay plus a |
---|
| 5663 | lorentzian at higher q-values. It is generally applicable to gel |
---|
| 5664 | structures. |
---|
| 5665 | |
---|
| 5666 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 5667 | |
---|
| 5668 | The scattering intensity I(q) is calculated as (eqn 5 from the |
---|
| 5669 | reference): |
---|
| 5670 | |
---|
| 5671 | |
---|
| 5672 | |
---|
| 5673 | |
---|
| 5674 | |
---|
| 5675 | Uppercase Zeta is the static correlations in the gel, which can be |
---|
| 5676 | attributed to the "frozen-in" crosslinks of some gels. Lowercase zeta |
---|
| 5677 | is the dynamic correlation length, which can be attributed to the |
---|
| 5678 | fluctuating polymer chain between crosslinks. IG(0) and IL(0) are the |
---|
| 5679 | scaling factors for each of these structures. Your physical system may |
---|
| 5680 | be different, so think about the interpretation of these parameters. |
---|
| 5681 | |
---|
| 5682 | Note that the peaked structure at higher q values (from Figure 2 of |
---|
| 5683 | the reference below) is not reproduced by the model. Peaks can be |
---|
| 5684 | introduced into the model by summing this model with the PeakGauss |
---|
| 5685 | Model function. |
---|
| 5686 | |
---|
| 5687 | For 2D plot, the wave transfer is defined as . |
---|
| 5688 | |
---|
| 5689 | |
---|
| 5690 | |
---|
| 5691 | Parameter name |
---|
| 5692 | |
---|
| 5693 | Units |
---|
| 5694 | |
---|
| 5695 | Default value |
---|
| 5696 | |
---|
| 5697 | dyn_colength(=Dynamic correlation length) |
---|
| 5698 | |
---|
| 5699 | |
---|
| 5700 | |
---|
| 5701 | 20.0 |
---|
| 5702 | |
---|
| 5703 | scale_g(=Gauss scale factor) |
---|
| 5704 | |
---|
| 5705 | 100 |
---|
| 5706 | |
---|
| 5707 | scale_l(=Lorentzian scale factor) |
---|
| 5708 | |
---|
| 5709 | 50 |
---|
| 5710 | |
---|
| 5711 | stat_colength(=Static correlation Z) |
---|
| 5712 | |
---|
| 5713 | |
---|
| 5714 | |
---|
| 5715 | 100.0 |
---|
| 5716 | |
---|
| 5717 | background |
---|
| 5718 | |
---|
| 5719 | cm-1 |
---|
| 5720 | |
---|
| 5721 | 0.0 |
---|
| 5722 | |
---|
| 5723 | |
---|
| 5724 | |
---|
| 5725 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 5726 | |
---|
| 5727 | |
---|
| 5728 | |
---|
| 5729 | |
---|
| 5730 | |
---|
| 5731 | REFERENCE: |
---|
| 5732 | |
---|
| 5733 | G. Evmenenko, E. Theunissen, K. Mortensen, H. Reynaers, Polymer 42 |
---|
| 5734 | (2001) 2907-2913. |
---|
| 5735 | |
---|
| 5736 | *3.14. BEPolyelectrolyte Model* |
---|
| 5737 | |
---|
| 5738 | Calculates the structure factor of a polyelectrolyte solution with the |
---|
| 5739 | RPA expression derived by Borue and Erukhimovich. The value returned |
---|
| 5740 | is in cm-1. |
---|
| 5741 | |
---|
| 5742 | |
---|
| 5743 | |
---|
| 5744 | |
---|
| 5745 | |
---|
| 5746 | |
---|
| 5747 | |
---|
| 5748 | K is a contrast factor of the polymer, Lb is the Bjerrum length, h is |
---|
| 5749 | the virial parameter, b is the monomer length, Cs is the concentration |
---|
| 5750 | of monovalent salt, is the ionization degree, Ca is the polymer molar |
---|
| 5751 | concentration, and background is the incoherent background. |
---|
| 5752 | |
---|
| 5753 | For 2D plot, the wave transfer is defined as . |
---|
| 5754 | |
---|
| 5755 | Parameter name |
---|
| 5756 | |
---|
| 5757 | Units |
---|
| 5758 | |
---|
| 5759 | Default value |
---|
| 5760 | |
---|
| 5761 | K |
---|
| 5762 | |
---|
| 5763 | Barns = 10-24 cm2 |
---|
| 5764 | |
---|
| 5765 | 10 |
---|
| 5766 | |
---|
| 5767 | Lb |
---|
| 5768 | |
---|
| 5769 | |
---|
| 5770 | |
---|
| 5771 | 7.1 |
---|
| 5772 | |
---|
| 5773 | h |
---|
| 5774 | |
---|
| 5775 | -3 |
---|
| 5776 | |
---|
| 5777 | 12 |
---|
| 5778 | |
---|
| 5779 | b |
---|
| 5780 | |
---|
| 5781 | |
---|
| 5782 | |
---|
| 5783 | 10 |
---|
| 5784 | |
---|
| 5785 | Cs |
---|
| 5786 | |
---|
| 5787 | Mol/L |
---|
| 5788 | |
---|
| 5789 | 0 |
---|
| 5790 | |
---|
| 5791 | alpha |
---|
| 5792 | |
---|
| 5793 | None |
---|
| 5794 | |
---|
| 5795 | 0.05 |
---|
| 5796 | |
---|
| 5797 | Ca |
---|
| 5798 | |
---|
| 5799 | Mol/L |
---|
| 5800 | |
---|
| 5801 | 0.7 |
---|
| 5802 | |
---|
| 5803 | background |
---|
| 5804 | |
---|
| 5805 | cm-1 |
---|
| 5806 | |
---|
| 5807 | 0.0 |
---|
| 5808 | |
---|
| 5809 | References: |
---|
| 5810 | |
---|
| 5811 | Borue, V. Y., Erukhimovich, I. Y. Macromolecules 21, 3240 (1988). |
---|
| 5812 | |
---|
| 5813 | Joanny, J.-F., Leibler, L. Journal de Physique 51, 545 (1990). |
---|
| 5814 | |
---|
| 5815 | Moussaid, A., Schosseler, F., Munch, J.-P., Candau, S. J. Journal de |
---|
| 5816 | Physique II France |
---|
| 5817 | |
---|
| 5818 | 3, 573 (1993). |
---|
| 5819 | |
---|
| 5820 | Raphal, E., Joanny, J.-F., Europhysics Letters 11, 179 (1990). |
---|
| 5821 | |
---|
| 5822 | |
---|
| 5823 | |
---|
| 5824 | *3.15. Guinier (Model)* |
---|
| 5825 | |
---|
| 5826 | A Guinier analysis is done by linearizing the data at low q by |
---|
| 5827 | plotting it as log(I) versus Q2. The Guinier radius Rg can be obtained |
---|
| 5828 | by fitting the following model: |
---|
| 5829 | |
---|
| 5830 | |
---|
| 5831 | |
---|
| 5832 | |
---|
| 5833 | |
---|
| 5834 | For 2D plot, the wave transfer is defined as . |
---|
| 5835 | |
---|
| 5836 | |
---|
| 5837 | |
---|
| 5838 | Parameter name |
---|
| 5839 | |
---|
| 5840 | Units |
---|
| 5841 | |
---|
| 5842 | Default value |
---|
| 5843 | |
---|
| 5844 | scale |
---|
| 5845 | |
---|
| 5846 | cm-1 |
---|
| 5847 | |
---|
| 5848 | 1.0 |
---|
| 5849 | |
---|
| 5850 | Rg |
---|
| 5851 | |
---|
| 5852 | |
---|
| 5853 | |
---|
| 5854 | 0.1 |
---|
| 5855 | |
---|
| 5856 | |
---|
| 5857 | |
---|
| 5858 | *3.16. GuinierPorod (Model)* |
---|
| 5859 | |
---|
| 5860 | Calculates the scattering for a generalized Guinier/power law object. |
---|
| 5861 | This is an empirical model that can be used to determine the size and |
---|
| 5862 | dimensionality of scattering objects. |
---|
| 5863 | |
---|
| 5864 | The returned value is P(Q) as written in equation (1), plus the |
---|
| 5865 | incoherent background term. The result is in the units of [cm-1sr-1], |
---|
| 5866 | absolute scale. |
---|
| 5867 | |
---|
| 5868 | A Guinier-Porod empirical model can be used to fit SAS data from |
---|
| 5869 | asymmetric objects such as rods or platelets. It also applies to |
---|
| 5870 | intermediate shapes between spheres and rod or between rods and |
---|
| 5871 | platelets. The following functional form is used: |
---|
| 5872 | |
---|
| 5873 | (1) |
---|
| 5874 | |
---|
| 5875 | |
---|
| 5876 | |
---|
| 5877 | This is based on the generalized Guinier law for such elongated |
---|
| 5878 | objects [2]. For 3D globular objects (such as spheres), s = 0 and one |
---|
| 5879 | recovers the standard Guinier formula. For 2D symmetry (such as for |
---|
| 5880 | rods) s = 1 and for 1D symmetry (such as for lamellae or platelets) s |
---|
| 5881 | = 2. A dimensionality parameter 3-s is defined, and is 3 for spherical |
---|
| 5882 | objects, 2 for rods, and 1 for plates. |
---|
| 5883 | |
---|
| 5884 | Enforcing the continuity of the Guinier and Porod functions and their |
---|
| 5885 | derivatives yields: |
---|
| 5886 | |
---|
| 5887 | |
---|
| 5888 | |
---|
| 5889 | and |
---|
| 5890 | |
---|
| 5891 | |
---|
| 5892 | |
---|
| 5893 | |
---|
| 5894 | |
---|
| 5895 | Note that the radius of gyration for a sphere of radius R is given by |
---|
| 5896 | Rg = R sqrt(3/5) , |
---|
| 5897 | |
---|
| 5898 | that for the cross section of an randomly oriented cylinder of radius |
---|
| 5899 | R is given by Rg = R / sqrt(2). |
---|
| 5900 | |
---|
| 5901 | The cross section of a randomly oriented lamella of thickness T is |
---|
| 5902 | given by Rg = T / sqrt(12). |
---|
| 5903 | |
---|
| 5904 | The intensity given by Eq. 1 is the calculated result, and is plotted |
---|
| 5905 | below for the default parameter values. |
---|
| 5906 | |
---|
| 5907 | REFERENCE |
---|
| 5908 | |
---|
| 5909 | [1] Guinier, A.; Fournet, G. "Small-Angle Scattering of X-Rays", John |
---|
| 5910 | Wiley and Sons, New York, (1955). |
---|
| 5911 | |
---|
| 5912 | [2] Glatter, O.; Kratky, O., Small-Angle X-Ray Scattering, Academic |
---|
| 5913 | Press (1982). Check out Chapter 4 on Data Treatment, pages 155-156. |
---|
| 5914 | |
---|
| 5915 | For 2D plot, the wave transfer is defined as . |
---|
| 5916 | |
---|
| 5917 | |
---|
| 5918 | |
---|
| 5919 | Parameter name |
---|
| 5920 | |
---|
| 5921 | Units |
---|
| 5922 | |
---|
| 5923 | Default value |
---|
| 5924 | |
---|
| 5925 | Scale(=Guinier scale, G) |
---|
| 5926 | |
---|
| 5927 | cm-1 |
---|
| 5928 | |
---|
| 5929 | 1.0 |
---|
| 5930 | |
---|
| 5931 | rg |
---|
| 5932 | |
---|
| 5933 | |
---|
| 5934 | |
---|
| 5935 | 100 |
---|
| 5936 | |
---|
| 5937 | dim(=Dimensional Variable, s) |
---|
| 5938 | |
---|
| 5939 | 1 |
---|
| 5940 | |
---|
| 5941 | m(=Porod exponent) |
---|
| 5942 | |
---|
| 5943 | 3 |
---|
| 5944 | |
---|
| 5945 | background |
---|
| 5946 | |
---|
| 5947 | 0.1 |
---|
| 5948 | |
---|
| 5949 | |
---|
| 5950 | |
---|
| 5951 | * * |
---|
| 5952 | |
---|
| 5953 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 5954 | |
---|
| 5955 | |
---|
| 5956 | |
---|
| 5957 | |
---|
| 5958 | |
---|
| 5959 | *3.17. PorodModel* |
---|
| 5960 | |
---|
| 5961 | A Porod analysis is done by linearizing the data at high q by plotting |
---|
| 5962 | it as log(I) versus log(Q). In the high q region we can fit the |
---|
| 5963 | following model: |
---|
| 5964 | |
---|
| 5965 | |
---|
| 5966 | |
---|
| 5967 | |
---|
| 5968 | |
---|
| 5969 | C is the scale factor and Sv is the specific surface area of the |
---|
| 5970 | sample and is the contrast factor. |
---|
| 5971 | |
---|
| 5972 | The background term is added for data analysis. |
---|
| 5973 | |
---|
| 5974 | For 2D plot, the wave transfer is defined as . |
---|
| 5975 | |
---|
| 5976 | |
---|
| 5977 | |
---|
| 5978 | Parameter name |
---|
| 5979 | |
---|
| 5980 | Units |
---|
| 5981 | |
---|
| 5982 | Default value |
---|
| 5983 | |
---|
| 5984 | scale |
---|
| 5985 | |
---|
| 5986 | -4 |
---|
| 5987 | |
---|
| 5988 | 0.1 |
---|
| 5989 | |
---|
| 5990 | background |
---|
| 5991 | |
---|
| 5992 | cm-1 |
---|
| 5993 | |
---|
| 5994 | 0 |
---|
| 5995 | |
---|
| 5996 | *3.18. PeakGaussModel* |
---|
| 5997 | |
---|
| 5998 | Model describes a Gaussian shaped peak including a flat background, |
---|
| 5999 | |
---|
| 6000 | |
---|
| 6001 | |
---|
| 6002 | |
---|
| 6003 | |
---|
| 6004 | |
---|
| 6005 | |
---|
| 6006 | with the peak having height of I0 centered at qpk having standard |
---|
| 6007 | deviation of B. The fwhm is 2.354*B. |
---|
| 6008 | |
---|
| 6009 | Parameters I0, B, qpk, and BGD can all be adjusted during fitting. |
---|
| 6010 | |
---|
| 6011 | REFERENCE: None |
---|
| 6012 | |
---|
| 6013 | For 2D plot, the wave transfer is defined as . |
---|
| 6014 | |
---|
| 6015 | |
---|
| 6016 | |
---|
| 6017 | Parameter name |
---|
| 6018 | |
---|
| 6019 | Units |
---|
| 6020 | |
---|
| 6021 | Default value |
---|
| 6022 | |
---|
| 6023 | scale |
---|
| 6024 | |
---|
| 6025 | cm-1 |
---|
| 6026 | |
---|
| 6027 | 100 |
---|
| 6028 | |
---|
| 6029 | q0 |
---|
| 6030 | |
---|
| 6031 | |
---|
| 6032 | |
---|
| 6033 | 0.05 |
---|
| 6034 | |
---|
| 6035 | B |
---|
| 6036 | |
---|
| 6037 | 0.005 |
---|
| 6038 | |
---|
| 6039 | background |
---|
| 6040 | |
---|
| 6041 | 1 |
---|
| 6042 | |
---|
| 6043 | |
---|
| 6044 | |
---|
| 6045 | |
---|
| 6046 | |
---|
| 6047 | * * |
---|
| 6048 | |
---|
| 6049 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 6050 | |
---|
| 6051 | |
---|
| 6052 | |
---|
| 6053 | *3.19. PeakLorentzModel* |
---|
| 6054 | |
---|
| 6055 | Model describes a Lorentzian shaped peak including a flat background, |
---|
| 6056 | |
---|
| 6057 | |
---|
| 6058 | |
---|
| 6059 | |
---|
| 6060 | |
---|
| 6061 | |
---|
| 6062 | |
---|
| 6063 | with the peak having height of I0 centered at qpk having a hwhm (half- |
---|
| 6064 | width-half-maximum) of B. |
---|
| 6065 | |
---|
| 6066 | The parameters I0, B, qpk, and BGD can all be adjusted during fitting. |
---|
| 6067 | |
---|
| 6068 | REFERENCE: None |
---|
| 6069 | |
---|
| 6070 | For 2D plot, the wave transfer is defined as . |
---|
| 6071 | |
---|
| 6072 | |
---|
| 6073 | |
---|
| 6074 | Parameter name |
---|
| 6075 | |
---|
| 6076 | Units |
---|
| 6077 | |
---|
| 6078 | Default value |
---|
| 6079 | |
---|
| 6080 | scale |
---|
| 6081 | |
---|
| 6082 | cm-1 |
---|
| 6083 | |
---|
| 6084 | 100 |
---|
| 6085 | |
---|
| 6086 | q0 |
---|
| 6087 | |
---|
| 6088 | |
---|
| 6089 | |
---|
| 6090 | 0.05 |
---|
| 6091 | |
---|
| 6092 | B |
---|
| 6093 | |
---|
| 6094 | 0.005 |
---|
| 6095 | |
---|
| 6096 | background |
---|
| 6097 | |
---|
| 6098 | 1 |
---|
| 6099 | |
---|
| 6100 | |
---|
| 6101 | |
---|
| 6102 | |
---|
| 6103 | |
---|
| 6104 | |
---|
| 6105 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 6106 | |
---|
| 6107 | *3.20. Poly_GaussCoil (Model)* |
---|
| 6108 | |
---|
| 6109 | Polydisperse Gaussian Coil: Calculate an empirical functional form for |
---|
| 6110 | scattering from a polydisperse polymer chain ina good solvent. The |
---|
| 6111 | polymer is polydisperse with a Schulz-Zimm polydispersity of the |
---|
| 6112 | molecular weight distribution. |
---|
| 6113 | |
---|
| 6114 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 6115 | |
---|
| 6116 | |
---|
| 6117 | |
---|
| 6118 | where the dimensionless chain dimension is: |
---|
| 6119 | |
---|
| 6120 | |
---|
| 6121 | |
---|
| 6122 | and the polydispersion is |
---|
| 6123 | |
---|
| 6124 | . |
---|
| 6125 | |
---|
| 6126 | The scattering intensity I(q) is calculated as: |
---|
| 6127 | |
---|
| 6128 | The polydispersion in rg is provided. |
---|
| 6129 | |
---|
| 6130 | |
---|
| 6131 | |
---|
| 6132 | For 2D plot, the wave transfer is defined as . |
---|
| 6133 | |
---|
| 6134 | TEST DATASET |
---|
| 6135 | |
---|
| 6136 | This example dataset is produced by running the Poly_GaussCoil, using |
---|
| 6137 | 200 data points, qmin = 0.001 -1, qmax = 0.7 -1 and the default values |
---|
| 6138 | below. |
---|
| 6139 | |
---|
| 6140 | Parameter name |
---|
| 6141 | |
---|
| 6142 | Units |
---|
| 6143 | |
---|
| 6144 | Default value |
---|
| 6145 | |
---|
| 6146 | Scale |
---|
| 6147 | |
---|
| 6148 | None |
---|
| 6149 | |
---|
| 6150 | 1.0 |
---|
| 6151 | |
---|
| 6152 | rg |
---|
| 6153 | |
---|
| 6154 | |
---|
| 6155 | |
---|
| 6156 | 60.0 |
---|
| 6157 | |
---|
| 6158 | poly_m |
---|
| 6159 | |
---|
| 6160 | Mw/Mn |
---|
| 6161 | |
---|
| 6162 | 2 |
---|
| 6163 | |
---|
| 6164 | background |
---|
| 6165 | |
---|
| 6166 | cm-1 |
---|
| 6167 | |
---|
| 6168 | 0.001 |
---|
| 6169 | |
---|
| 6170 | |
---|
| 6171 | |
---|
| 6172 | |
---|
| 6173 | |
---|
| 6174 | *Figure. 1D plot using the default values (w/200 data point).* |
---|
| 6175 | |
---|
| 6176 | |
---|
| 6177 | |
---|
| 6178 | Reference: |
---|
| 6179 | |
---|
| 6180 | Glatter & Kratky - pg.404. |
---|
| 6181 | |
---|
| 6182 | J.S. Higgins, and H.C. Benoit, Polymers and Neutron Scattering, Oxford |
---|
| 6183 | Science |
---|
| 6184 | |
---|
| 6185 | Publications (1996). |
---|
| 6186 | |
---|
| 6187 | *3.21. PolymerExclVolume (Model)* |
---|
| 6188 | |
---|
| 6189 | Calculates the scattering from polymers with excluded volume effects. |
---|
| 6190 | |
---|
| 6191 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 6192 | |
---|
| 6193 | The returned value is P(Q) as written in equation (2), plus the |
---|
| 6194 | incoherent background term. The result is in the units of [cm-1sr-1], |
---|
| 6195 | absolute scale. |
---|
| 6196 | |
---|
| 6197 | A model describing polymer chain conformations with excluded volume |
---|
| 6198 | was introduced to describe the conformation of polymer chains, and has |
---|
| 6199 | been used as a template for describing mass fractals. The form factor |
---|
| 6200 | for that model (Benoit, 1957) was originally presented in the |
---|
| 6201 | following integral form: |
---|
| 6202 | |
---|
| 6203 | (1) |
---|
| 6204 | |
---|
| 6205 | Here n is the excluded volume parameter which is related to the Porod |
---|
| 6206 | exponent m as n = 1/m, a is the polymer chain statistical segment |
---|
| 6207 | length and n is the degree of polymerization. This integral was later |
---|
| 6208 | put into an almost analytical form (Hammouda, 1993) as follows: |
---|
| 6209 | |
---|
| 6210 | (2) |
---|
| 6211 | |
---|
| 6212 | Here, g(x,U) is the incomplete gamma function which is a built-in |
---|
| 6213 | function in computer libraries. |
---|
| 6214 | |
---|
| 6215 | |
---|
| 6216 | |
---|
| 6217 | The variable U is given in terms of the scattering variable Q as: |
---|
| 6218 | |
---|
| 6219 | |
---|
| 6220 | |
---|
| 6221 | The radius of gyration squared has been defined as: |
---|
| 6222 | |
---|
| 6223 | |
---|
| 6224 | |
---|
| 6225 | Note that this model describing polymer chains with excluded volume |
---|
| 6226 | applies only in the mass fractal range ( 5/3 <= m <= 3) and does not |
---|
| 6227 | apply to surface fractals ( 3 < m <= 4). It does not reproduce the |
---|
| 6228 | rigid rod limit (m = 1) because it assumes chain flexibility from the |
---|
| 6229 | outset. It may cover a portion of the semiflexible chain range ( 1 < m |
---|
| 6230 | < 5/3). |
---|
| 6231 | |
---|
| 6232 | The low-Q expansion yields the Guinier form and the high-Q expansion |
---|
| 6233 | yields the Porod form which is given by: |
---|
| 6234 | |
---|
| 6235 | |
---|
| 6236 | |
---|
| 6237 | Here G(x) = g(x,inf) is the gamma function. The asymptotic limit is |
---|
| 6238 | dominated by the first term: |
---|
| 6239 | |
---|
| 6240 | |
---|
| 6241 | |
---|
| 6242 | The special case when n = 0.5 (or m = 1/n = 2) corresponds to Gaussian |
---|
| 6243 | chains for which the form factor is given by the familiar Debye |
---|
| 6244 | function. |
---|
| 6245 | |
---|
| 6246 | |
---|
| 6247 | |
---|
| 6248 | The form factor given by Eq. 2 is the calculated result, and is |
---|
| 6249 | plotted below for the default parameter values. |
---|
| 6250 | |
---|
| 6251 | REFERENCE |
---|
| 6252 | |
---|
| 6253 | Benoit, H., Comptes Rendus (1957). 245, 2244-2247. |
---|
| 6254 | |
---|
| 6255 | Hammouda, B., SANS from Homogeneous Polymer Mixtures A Unified |
---|
| 6256 | Overview, Advances in Polym. Sci. (1993), 106, 87-133. |
---|
| 6257 | |
---|
| 6258 | For 2D plot, the wave transfer is defined as . |
---|
| 6259 | |
---|
| 6260 | TEST DATASET |
---|
| 6261 | |
---|
| 6262 | This example dataset is produced, using 200 data points, qmin = 0.001 |
---|
| 6263 | -1, qmax = 0.2 -1 and the default values below. |
---|
| 6264 | |
---|
| 6265 | Parameter name |
---|
| 6266 | |
---|
| 6267 | Units |
---|
| 6268 | |
---|
| 6269 | Default value |
---|
| 6270 | |
---|
| 6271 | Scale |
---|
| 6272 | |
---|
| 6273 | None |
---|
| 6274 | |
---|
| 6275 | 1.0 |
---|
| 6276 | |
---|
| 6277 | rg |
---|
| 6278 | |
---|
| 6279 | |
---|
| 6280 | |
---|
| 6281 | 60.0 |
---|
| 6282 | |
---|
| 6283 | m(=Porod exponent) |
---|
| 6284 | |
---|
| 6285 | 3 |
---|
| 6286 | |
---|
| 6287 | background |
---|
| 6288 | |
---|
| 6289 | cm-1 |
---|
| 6290 | |
---|
| 6291 | 0.0 |
---|
| 6292 | |
---|
| 6293 | |
---|
| 6294 | |
---|
| 6295 | |
---|
| 6296 | |
---|
| 6297 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 6298 | |
---|
| 6299 | |
---|
| 6300 | |
---|
| 6301 | *3.22. RPA10Model* |
---|
| 6302 | |
---|
| 6303 | Calculates the macroscopic scattering intensity (units of cm^-1) for a |
---|
| 6304 | multicomponent homogeneous mixture of polymers using the Random Phase |
---|
| 6305 | Approximation. This general formalism contains 10 specific cases: |
---|
| 6306 | |
---|
| 6307 | Case 0: C/D Binary mixture of homopolymers |
---|
| 6308 | |
---|
| 6309 | Case 1: C-D Diblock copolymer |
---|
| 6310 | |
---|
| 6311 | Case 2: B/C/D Ternary mixture of homopolymers |
---|
| 6312 | |
---|
| 6313 | Case 3: C/C-D Mixture of a homopolymer B and a diblock copolymer C-D |
---|
| 6314 | |
---|
| 6315 | Case 4: B-C-D Triblock copolymer |
---|
| 6316 | |
---|
| 6317 | Case 5: A/B/C/D Quaternary mixture of homopolymers |
---|
| 6318 | |
---|
| 6319 | Case 6: A/B/C-D Mixture of two homopolymers A/B and a diblock C-D |
---|
| 6320 | |
---|
| 6321 | Case 7: A/B-C-D Mixture of a homopolymer A and a triblock B-C-D |
---|
| 6322 | |
---|
| 6323 | Case 8: A-B/C-D Mixture of two diblock copolymers A-B and C-D |
---|
| 6324 | |
---|
| 6325 | Case 9: A-B-C-D Four-block copolymer |
---|
| 6326 | |
---|
| 6327 | Note: the case numbers are different from the IGOR/NIST SANS package. |
---|
| 6328 | |
---|
| 6329 | |
---|
| 6330 | |
---|
| 6331 | Only one case can be used at any one time. Plotting a different case |
---|
| 6332 | will overwrite the original parameter waves. |
---|
| 6333 | |
---|
| 6334 | The returned value is scaled to units of [cm-1]. |
---|
| 6335 | |
---|
| 6336 | Component D is assumed to be the "background" component (all contrasts |
---|
| 6337 | are calculated with respect to component D). |
---|
| 6338 | |
---|
| 6339 | Scattering contrast for a C/D blend= {SLD (component C) - SLD |
---|
| 6340 | (component D)}2 |
---|
| 6341 | |
---|
| 6342 | Depending on what case is used, the number of fitting parameters |
---|
| 6343 | varies. These represent the segment lengths (ba, bb, etc) and the Chi |
---|
| 6344 | parameters (Kab, Kac, etc). The last one of these is a scaling factor |
---|
| 6345 | to be held constant equal to unity. |
---|
| 6346 | |
---|
| 6347 | The input parameters are the degree of polymerization, the volume |
---|
| 6348 | fractions for each component the specific volumes and the neutron |
---|
| 6349 | scattering length densities. |
---|
| 6350 | |
---|
| 6351 | This RPA (mean field) formalism applies only when the multicomponent |
---|
| 6352 | polymer mixture is in the homogeneous mixed-phase region. |
---|
| 6353 | |
---|
| 6354 | REFERENCE |
---|
| 6355 | |
---|
| 6356 | A.Z. Akcasu, R. Klein and B. Hammouda, Macromolecules 26, 4136 (1993) |
---|
| 6357 | |
---|
| 6358 | |
---|
| 6359 | |
---|
| 6360 | Fitting parameters for Case0 Model |
---|
| 6361 | |
---|
| 6362 | Parameter name |
---|
| 6363 | |
---|
| 6364 | Units |
---|
| 6365 | |
---|
| 6366 | Default value |
---|
| 6367 | |
---|
| 6368 | background |
---|
| 6369 | |
---|
| 6370 | cm-1 |
---|
| 6371 | |
---|
| 6372 | 0.0 |
---|
| 6373 | |
---|
| 6374 | scale |
---|
| 6375 | |
---|
| 6376 | 1 |
---|
| 6377 | |
---|
| 6378 | bc(=Seg. Length bc) |
---|
| 6379 | |
---|
| 6380 | 5 |
---|
| 6381 | |
---|
| 6382 | bd(=Seg. Length bd) |
---|
| 6383 | |
---|
| 6384 | 5 |
---|
| 6385 | |
---|
| 6386 | Kcd(Chi Param. Kcd) |
---|
| 6387 | |
---|
| 6388 | -0.0004 |
---|
| 6389 | |
---|
| 6390 | |
---|
| 6391 | |
---|
| 6392 | |
---|
| 6393 | |
---|
| 6394 | Fixed parameters for Case0 Model |
---|
| 6395 | |
---|
| 6396 | Parameter name |
---|
| 6397 | |
---|
| 6398 | Units |
---|
| 6399 | |
---|
| 6400 | Default value |
---|
| 6401 | |
---|
| 6402 | Lc(= Scatter. Length_c) |
---|
| 6403 | |
---|
| 6404 | 1e-12 |
---|
| 6405 | |
---|
| 6406 | Ld(= Scatter. Length_d) |
---|
| 6407 | |
---|
| 6408 | 0 |
---|
| 6409 | |
---|
| 6410 | Nc(=Deg.Polym.c) |
---|
| 6411 | |
---|
| 6412 | 1000 |
---|
| 6413 | |
---|
| 6414 | Nd(=Deg.Polym.d) |
---|
| 6415 | |
---|
| 6416 | 1000 |
---|
| 6417 | |
---|
| 6418 | Phic(=Vol. fraction of c) |
---|
| 6419 | |
---|
| 6420 | 0.25 |
---|
| 6421 | |
---|
| 6422 | Phid(=Vol. fraction of d) |
---|
| 6423 | |
---|
| 6424 | 0.25 |
---|
| 6425 | |
---|
| 6426 | vc(=Spec. vol. of c) |
---|
| 6427 | |
---|
| 6428 | 100 |
---|
| 6429 | |
---|
| 6430 | vd(=Spec. vol. of d) |
---|
| 6431 | |
---|
| 6432 | 100 |
---|
| 6433 | |
---|
| 6434 | |
---|
| 6435 | |
---|
| 6436 | |
---|
| 6437 | |
---|
| 6438 | |
---|
| 6439 | |
---|
| 6440 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 6441 | |
---|
| 6442 | |
---|
| 6443 | |
---|
| 6444 | *3.23. TwoLorentzian(Model)* |
---|
| 6445 | |
---|
| 6446 | Calculate an empirical functional form for SANS data characterized by |
---|
| 6447 | a two Lorentzian functions. |
---|
| 6448 | |
---|
| 6449 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 6450 | |
---|
| 6451 | The scattering intensity I(q) is calculated by: |
---|
| 6452 | |
---|
| 6453 | |
---|
| 6454 | |
---|
| 6455 | |
---|
| 6456 | |
---|
| 6457 | A = Lorentzian scale #1 |
---|
| 6458 | |
---|
| 6459 | C = Lorentzian scale #2 |
---|
| 6460 | |
---|
| 6461 | where scale is the peak height centered at q0, and B refers to the |
---|
| 6462 | standard deviation of the function. |
---|
| 6463 | |
---|
| 6464 | The background term is added for data analysis. |
---|
| 6465 | |
---|
| 6466 | For 2D plot, the wave transfer is defined as . |
---|
| 6467 | |
---|
| 6468 | *Default input parameter values* |
---|
| 6469 | |
---|
| 6470 | Parameter name |
---|
| 6471 | |
---|
| 6472 | Units |
---|
| 6473 | |
---|
| 6474 | Default value |
---|
| 6475 | |
---|
| 6476 | scale_1(=A) |
---|
| 6477 | |
---|
| 6478 | 10 |
---|
| 6479 | |
---|
| 6480 | scale_2(=C) |
---|
| 6481 | |
---|
| 6482 | 1 |
---|
| 6483 | |
---|
| 6484 | 1ength_1 (=Correlation length1) |
---|
| 6485 | |
---|
| 6486 | |
---|
| 6487 | |
---|
| 6488 | 100 |
---|
| 6489 | |
---|
| 6490 | 1ength_2(=Correlation length2) |
---|
| 6491 | |
---|
| 6492 | |
---|
| 6493 | |
---|
| 6494 | 10 |
---|
| 6495 | |
---|
| 6496 | exponent_1(=n) |
---|
| 6497 | |
---|
| 6498 | 3 |
---|
| 6499 | |
---|
| 6500 | exponent_2(=m) |
---|
| 6501 | |
---|
| 6502 | 2 |
---|
| 6503 | |
---|
| 6504 | Background(=B) |
---|
| 6505 | |
---|
| 6506 | cm-1 |
---|
| 6507 | |
---|
| 6508 | 0.1 |
---|
| 6509 | |
---|
| 6510 | |
---|
| 6511 | |
---|
| 6512 | |
---|
| 6513 | |
---|
| 6514 | |
---|
| 6515 | |
---|
| 6516 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 6517 | |
---|
| 6518 | |
---|
| 6519 | |
---|
| 6520 | *REFERENCE: None* |
---|
| 6521 | |
---|
| 6522 | *3.24. TwoPowerLaw(Model)* |
---|
| 6523 | |
---|
| 6524 | Calculate an empirical functional form for SANS data characterized by |
---|
| 6525 | two power laws. |
---|
| 6526 | |
---|
| 6527 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 6528 | |
---|
| 6529 | |
---|
| 6530 | |
---|
| 6531 | The scattering intensity I(q) is calculated by: |
---|
| 6532 | |
---|
| 6533 | |
---|
| 6534 | |
---|
| 6535 | |
---|
| 6536 | |
---|
| 6537 | qc is the location of the crossover from one slope to the other. The |
---|
| 6538 | scaling A, sets the overall intensity of the lower Q power law region. |
---|
| 6539 | The scaling of the second power law region is scaled to match the |
---|
| 6540 | first. Be sure to enter the power law exponents as positive values. |
---|
| 6541 | |
---|
| 6542 | For 2D plot, the wave transfer is defined as . |
---|
| 6543 | |
---|
| 6544 | *Default input parameter values* |
---|
| 6545 | |
---|
| 6546 | Parameter name |
---|
| 6547 | |
---|
| 6548 | Units |
---|
| 6549 | |
---|
| 6550 | Default value |
---|
| 6551 | |
---|
| 6552 | coef_A |
---|
| 6553 | |
---|
| 6554 | 1.0 |
---|
| 6555 | |
---|
| 6556 | qc |
---|
| 6557 | |
---|
| 6558 | -1 |
---|
| 6559 | |
---|
| 6560 | 0.04 |
---|
| 6561 | |
---|
| 6562 | power_1(=m1) |
---|
| 6563 | |
---|
| 6564 | 4 |
---|
| 6565 | |
---|
| 6566 | power_2(=m2) |
---|
| 6567 | |
---|
| 6568 | 4 |
---|
| 6569 | |
---|
| 6570 | background |
---|
| 6571 | |
---|
| 6572 | cm-1 |
---|
| 6573 | |
---|
| 6574 | 0.0 |
---|
| 6575 | |
---|
| 6576 | |
---|
| 6577 | |
---|
| 6578 | |
---|
| 6579 | |
---|
| 6580 | |
---|
| 6581 | |
---|
| 6582 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 6583 | |
---|
| 6584 | |
---|
| 6585 | |
---|
| 6586 | *3.25. UnifiedPower(Law and)Rg(Model)* |
---|
| 6587 | |
---|
| 6588 | The returned value is scaled to units of [cm-1sr-1], absolute scale. |
---|
| 6589 | |
---|
| 6590 | Note that the level 0 is an extra function that is the inverse |
---|
| 6591 | function; I (q) = scale/q + background. |
---|
| 6592 | |
---|
| 6593 | Otherwise, program incorporates the empirical multiple level unified |
---|
| 6594 | Exponential/Power-law fit method developed by G. Beaucage. Four |
---|
| 6595 | functions are included so that One, Two, Three, or Four levels can be |
---|
| 6596 | used. |
---|
| 6597 | |
---|
| 6598 | The empirical expressions are able to reasonably approximate the |
---|
| 6599 | scattering from many different types of particles, including fractal |
---|
| 6600 | clusters, random coils (Debye equation), ellipsoidal particles, etc. |
---|
| 6601 | The empirical fit function is |
---|
| 6602 | |
---|
| 6603 | |
---|
| 6604 | |
---|
| 6605 | |
---|
| 6606 | |
---|
| 6607 | For each level, the four parameters Gi, Rg,i, Bi and Pi must be |
---|
| 6608 | chosen. |
---|
| 6609 | |
---|
| 6610 | For example, to approximate the scattering from random coils (Debye |
---|
| 6611 | equation), set Rg,i as the Guinier radius, Pi = 2, and Bi = 2 Gi / |
---|
| 6612 | Rg,i |
---|
| 6613 | |
---|
| 6614 | See the listed references for further information on choosing the |
---|
| 6615 | parameters. |
---|
| 6616 | |
---|
| 6617 | |
---|
| 6618 | |
---|
| 6619 | For 2D plot, the wave transfer is defined as . |
---|
| 6620 | |
---|
| 6621 | *Default input parameter values* |
---|
| 6622 | |
---|
| 6623 | Parameter name |
---|
| 6624 | |
---|
| 6625 | Units |
---|
| 6626 | |
---|
| 6627 | Default value |
---|
| 6628 | |
---|
| 6629 | scale |
---|
| 6630 | |
---|
| 6631 | 1.0 |
---|
| 6632 | |
---|
| 6633 | Rg2 |
---|
| 6634 | |
---|
| 6635 | |
---|
| 6636 | |
---|
| 6637 | 21 |
---|
| 6638 | |
---|
| 6639 | power2 |
---|
| 6640 | |
---|
| 6641 | 2 |
---|
| 6642 | |
---|
| 6643 | G2 |
---|
| 6644 | |
---|
| 6645 | cm-1sr-1 |
---|
| 6646 | |
---|
| 6647 | 3 |
---|
| 6648 | |
---|
| 6649 | B2 |
---|
| 6650 | |
---|
| 6651 | cm-1sr-1 |
---|
| 6652 | |
---|
| 6653 | 0.0006 |
---|
| 6654 | |
---|
| 6655 | Rg1 |
---|
| 6656 | |
---|
| 6657 | |
---|
| 6658 | |
---|
| 6659 | 15.8 |
---|
| 6660 | |
---|
| 6661 | power1 |
---|
| 6662 | |
---|
| 6663 | 4 |
---|
| 6664 | |
---|
| 6665 | G1 |
---|
| 6666 | |
---|
| 6667 | cm-1sr-1 |
---|
| 6668 | |
---|
| 6669 | 400 |
---|
| 6670 | |
---|
| 6671 | B1 |
---|
| 6672 | |
---|
| 6673 | cm-1sr-1 |
---|
| 6674 | |
---|
| 6675 | 4.5e-006 |
---|
| 6676 | |
---|
| 6677 | background |
---|
| 6678 | |
---|
| 6679 | cm-1 |
---|
| 6680 | |
---|
| 6681 | 0.0 |
---|
| 6682 | |
---|
| 6683 | |
---|
| 6684 | |
---|
| 6685 | |
---|
| 6686 | |
---|
| 6687 | |
---|
| 6688 | |
---|
| 6689 | *Figure. 1D plot using the default values (w/500 data points).* |
---|
| 6690 | |
---|
| 6691 | |
---|
| 6692 | |
---|
| 6693 | REFERENCES |
---|
| 6694 | |
---|
| 6695 | G. Beaucage (1995). J. Appl. Cryst., vol. 28, p717-728. |
---|
| 6696 | |
---|
| 6697 | G. Beaucage (1996). J. Appl. Cryst., vol. 29, p134-146. |
---|
| 6698 | |
---|
| 6699 | *3.26. LineModel* |
---|
| 6700 | |
---|
| 6701 | This is a linear function that calculates: |
---|
| 6702 | |
---|
| 6703 | |
---|
| 6704 | |
---|
| 6705 | |
---|
| 6706 | |
---|
| 6707 | where A and B are the coefficients of the first and second order |
---|
| 6708 | terms. |
---|
| 6709 | |
---|
| 6710 | *Note:* For 2D plot, I(q) = I(qx)*I(qy) which is defined differently |
---|
| 6711 | from other shape independent models. |
---|
| 6712 | |
---|
| 6713 | Parameter name |
---|
| 6714 | |
---|
| 6715 | Units |
---|
| 6716 | |
---|
| 6717 | Default value |
---|
| 6718 | |
---|
| 6719 | A |
---|
| 6720 | |
---|
| 6721 | cm-1 |
---|
| 6722 | |
---|
| 6723 | 1.0 |
---|
| 6724 | |
---|
| 6725 | B |
---|
| 6726 | |
---|
| 6727 | |
---|
| 6728 | |
---|
| 6729 | 1.0 |
---|
| 6730 | |
---|
| 6731 | |
---|
| 6732 | |
---|
| 6733 | *3.27. ReflectivityModel* |
---|
| 6734 | |
---|
| 6735 | This model calculates the reflectivity and uses the Parrett algorithm. |
---|
| 6736 | Up to nine film layers are supported between Bottom(substrate) and |
---|
| 6737 | Medium(Superstrate where the neutron enters the first top film). Each |
---|
| 6738 | layers are composed of [ of the interface(from the previous layer or |
---|
| 6739 | substrate) + flat portion + of the interface(to the next layer or |
---|
| 6740 | medium)]. Only two simple interfacial functions are selectable, error |
---|
| 6741 | function and linear function. The each interfacial thickness is |
---|
| 6742 | equivalent to (- 2.5 sigma to +2.5 sigma for the error function, |
---|
| 6743 | sigma=roughness). |
---|
| 6744 | |
---|
| 6745 | Note: This model was contributed by an interested user. |
---|
| 6746 | |
---|
| 6747 | |
---|
| 6748 | |
---|
| 6749 | *Figure. Comparison (using the SLD profile below) with NISTweb |
---|
| 6750 | calculation (circles): |
---|
| 6751 | http://www.ncnr.nist.gov/resources/reflcalc.html.* |
---|
| 6752 | |
---|
| 6753 | |
---|
| 6754 | |
---|
| 6755 | *Figure. SLD profile used for the calculation(above).* |
---|
| 6756 | |
---|
| 6757 | *3.28. ReflectivityIIModel* |
---|
| 6758 | |
---|
| 6759 | Same as the ReflectivityModel except that the it is more customizable. |
---|
| 6760 | More interfacial functions are supplied. The number of points |
---|
| 6761 | (npts_inter) for each interface can be choosen. The constant (A below |
---|
| 6762 | but 'nu' as a parameter name of the model) for exp, erf, or power-law |
---|
| 6763 | is an input. The SLD at the interface between layers, *rinter_i*, is |
---|
| 6764 | calculated with a function chosen by a user, where the functions are: |
---|
| 6765 | |
---|
| 6766 | 1) Erf; |
---|
| 6767 | |
---|
| 6768 | |
---|
| 6769 | |
---|
| 6770 | 2) Power-Law; |
---|
| 6771 | |
---|
| 6772 | |
---|
| 6773 | |
---|
| 6774 | |
---|
| 6775 | |
---|
| 6776 | |
---|
| 6777 | |
---|
| 6778 | 3) Exp; |
---|
| 6779 | |
---|
| 6780 | |
---|
| 6781 | |
---|
| 6782 | |
---|
| 6783 | |
---|
| 6784 | Note: This model was implemented by an interested user. |
---|
| 6785 | |
---|
| 6786 | *3.29. GelFitModel* |
---|
| 6787 | |
---|
| 6788 | Unlike a concentrated polymer solution, the fine-scale polymer |
---|
| 6789 | distribution in a gel involves at least two characteristic length |
---|
| 6790 | scales, a shorter correlation length (a1) to describe the rapid |
---|
| 6791 | fluctuations in the position of the polymer chains that ensure |
---|
| 6792 | thermodynamic equilibrium, and a longer distance (denoted here as a2) |
---|
| 6793 | needed to account for the static accumulations of polymer pinned down |
---|
| 6794 | by junction points or clusters of such points. The letter is derived |
---|
| 6795 | from a simple Guinier function. |
---|
| 6796 | |
---|
| 6797 | The scattered intensity I(Q) is then calculated as: |
---|
| 6798 | |
---|
| 6799 | |
---|
| 6800 | |
---|
| 6801 | Where: |
---|
| 6802 | |
---|
| 6803 | |
---|
| 6804 | |
---|
| 6805 | |
---|
| 6806 | |
---|
| 6807 | |
---|
| 6808 | |
---|
| 6809 | Note the first term reduces to the Ornstein-Zernicke equation when |
---|
| 6810 | D=2; ie, when the Flory exponent is 0.5 (theta conditions). In gels |
---|
| 6811 | with significant hydrogen bonding D has been reported to be ~2.6 to |
---|
| 6812 | 2.8. |
---|
| 6813 | |
---|
| 6814 | Note: This model was implemented by an interested user. |
---|
| 6815 | |
---|
| 6816 | *Default input parameter values* |
---|
| 6817 | |
---|
| 6818 | Parameter name |
---|
| 6819 | |
---|
| 6820 | Units |
---|
| 6821 | |
---|
| 6822 | Default value |
---|
| 6823 | |
---|
| 6824 | Background |
---|
| 6825 | |
---|
| 6826 | cm-1 |
---|
| 6827 | |
---|
| 6828 | 0.01 |
---|
| 6829 | |
---|
| 6830 | Guinier scale |
---|
| 6831 | |
---|
| 6832 | cm-1 |
---|
| 6833 | |
---|
| 6834 | 1.7 |
---|
| 6835 | |
---|
| 6836 | Lorentzian scale |
---|
| 6837 | |
---|
| 6838 | cm-1 |
---|
| 6839 | |
---|
| 6840 | 3.5 |
---|
| 6841 | |
---|
| 6842 | Radius of gyration |
---|
| 6843 | |
---|
| 6844 | |
---|
| 6845 | |
---|
| 6846 | 104 |
---|
| 6847 | |
---|
| 6848 | Fractal exponent |
---|
| 6849 | |
---|
| 6850 | 2 |
---|
| 6851 | |
---|
| 6852 | Correlation length |
---|
| 6853 | |
---|
| 6854 | |
---|
| 6855 | |
---|
| 6856 | 16 |
---|
| 6857 | |
---|
| 6858 | |
---|
| 6859 | |
---|
| 6860 | |
---|
| 6861 | |
---|
| 6862 | |
---|
| 6863 | |
---|
| 6864 | *Figure. 1D plot using the default values (w/300 data points, |
---|
| 6865 | qmin=0.001, and qmax=0.3).* |
---|
| 6866 | |
---|
| 6867 | |
---|
| 6868 | |
---|
| 6869 | REFERENCES |
---|
| 6870 | |
---|
| 6871 | Mitsuhiro Shibayama, Toyoichi Tanaka, Charles C. Han, J. Chem. Phys. |
---|
| 6872 | 1992, 97 (9), 6829-6841. |
---|
| 6873 | |
---|
| 6874 | Simon Mallam, Ferenc Horkay, Anne-Marie Hecht, Adrian R. Rennie, Erik |
---|
| 6875 | Geissler, Macromolecules 1991, 24, 543-548. |
---|
| 6876 | |
---|
| 6877 | |
---|
| 6878 | |
---|
| 6879 | *3.30. Star Polymer with Gaussian Statistics * |
---|
| 6880 | |
---|
| 6881 | For a star with *f* arms: |
---|
| 6882 | |
---|
| 6883 | |
---|
| 6884 | |
---|
| 6885 | |
---|
| 6886 | |
---|
| 6887 | |
---|
| 6888 | |
---|
| 6889 | where is the ensemble average radius of gyration squared of an arm. |
---|
| 6890 | |
---|
| 6891 | |
---|
| 6892 | |
---|
| 6893 | References: |
---|
| 6894 | |
---|
| 6895 | H. Benoit, J. Polymer Science., 11, 596-599 (1953) |
---|
| 6896 | |
---|
| 6897 | |
---|
| 6898 | |
---|
| 6899 | |
---|
| 6900 | |
---|
| 6901 | |
---|
| 6902 | 2.3 Structure-factor Functions |
---|
| 6903 | ------------------------------ |
---|
| 6904 | |
---|
| 6905 | The information in this section is originated from NIST SANS IgorPro |
---|
| 6906 | package. |
---|
| 6907 | |
---|
| 6908 | *5.1. HardSphere Structure * |
---|
| 6909 | |
---|
| 6910 | This calculates the interparticle structure factor for monodisperse spherical particles interacting through hard sphere (excluded volume) interactions. The calculation uses the Percus-Yevick closure where the interparticle potential is: |
---|
| 6911 | |
---|
| 6912 | |
---|
| 6913 | |
---|
| 6914 | |
---|
| 6915 | |
---|
| 6916 | where r is the distance from the center of the sphere of a radius R. |
---|
| 6917 | |
---|
| 6918 | For 2D plot, the wave transfer is defined as . |
---|
| 6919 | |
---|
| 6920 | Parameter name |
---|
| 6921 | |
---|
| 6922 | Units |
---|
| 6923 | |
---|
| 6924 | Default value |
---|
| 6925 | |
---|
| 6926 | effect_radius |
---|
| 6927 | |
---|
| 6928 | |
---|
| 6929 | |
---|
| 6930 | 50.0 |
---|
| 6931 | |
---|
| 6932 | volfraction |
---|
| 6933 | |
---|
| 6934 | 0.2 |
---|
| 6935 | |
---|
| 6936 | |
---|
| 6937 | |
---|
| 6938 | *Figure. 1D plot using the default values (in linear scale).* |
---|
| 6939 | |
---|
| 6940 | References: |
---|
| 6941 | |
---|
| 6942 | Percus, J. K.; Yevick, J. Phys. Rev. 110, 1. (1958). |
---|
| 6943 | |
---|
| 6944 | *5.2. SquareWell Structure * |
---|
| 6945 | |
---|
| 6946 | This calculates the interparticle structure factor for a square well fluid spherical particles The mean spherical |
---|
| 6947 | approximation (MSA) closure was used for this calculation, and is not the most appropriate closure for an attractive |
---|
| 6948 | interparticle potential. This solution has been compared to Monte Carlo simulations for a square well fluid, showing |
---|
| 6949 | this calculation to be limited in applicability to well depths e < 1.5 kT and volume fractions f < 0.08. |
---|
| 6950 | |
---|
| 6951 | Positive well depths correspond to an attractive potential well. Negative well depths correspond to a potential |
---|
| 6952 | "shoulder", which may or may not be physically reasonable. |
---|
| 6953 | |
---|
| 6954 | The well width (l) is defined as multiples of the particle diameter (2*R) |
---|
| 6955 | |
---|
| 6956 | The interaction potential is: |
---|
| 6957 | |
---|
| 6958 | |
---|
| 6959 | |
---|
| 6960 | |
---|
| 6961 | |
---|
| 6962 | where r is the distance from the center of the sphere of a radius R. |
---|
| 6963 | |
---|
| 6964 | For 2D plot, the wave transfer is defined as . |
---|
| 6965 | |
---|
| 6966 | Parameter name |
---|
| 6967 | |
---|
| 6968 | Units |
---|
| 6969 | |
---|
| 6970 | Default value |
---|
| 6971 | |
---|
| 6972 | effect_radius |
---|
| 6973 | |
---|
| 6974 | |
---|
| 6975 | |
---|
| 6976 | 50.0 |
---|
| 6977 | |
---|
| 6978 | volfraction |
---|
| 6979 | |
---|
| 6980 | 0.04 |
---|
| 6981 | |
---|
| 6982 | welldepth |
---|
| 6983 | |
---|
| 6984 | kT |
---|
| 6985 | |
---|
| 6986 | 1.5 |
---|
| 6987 | |
---|
| 6988 | wellwidth |
---|
| 6989 | |
---|
| 6990 | diameters |
---|
| 6991 | |
---|
| 6992 | 1.2 |
---|
| 6993 | |
---|
| 6994 | |
---|
| 6995 | |
---|
| 6996 | *Figure. 1D plot using the default values (in linear scale).* |
---|
| 6997 | |
---|
| 6998 | References: |
---|
| 6999 | |
---|
| 7000 | Sharma, R. V.; Sharma, K. C. Physica, 89A, 213. (1977). |
---|
| 7001 | |
---|
| 7002 | |
---|
| 7003 | |
---|
| 7004 | *5.3. HayterMSA Structure * |
---|
| 7005 | |
---|
| 7006 | This calculates the Structure factor (the Fourier transform of the pair correlation function g(r)) for a system of |
---|
| 7007 | charged, spheroidal objects in a dielectric medium. When combined with an appropriate form factor (such as sphere, |
---|
| 7008 | core+shell, ellipsoid etc), this allows for inclusion of the interparticle interference effects due to screened coulomb |
---|
| 7009 | repulsion between charged particles. This routine only works for charged particles. If the charge is set to zero the |
---|
| 7010 | routine will self destruct. For non-charged particles use a hard sphere potential. |
---|
| 7011 | |
---|
| 7012 | The salt concentration is used to compute the ionic strength of the solution which in turn is used to compute the Debye |
---|
| 7013 | screening length. At present there is no provision for entering the ionic strength directly nor for use of any |
---|
| 7014 | multivalent salts. The counterions are also assumed to be monovalent. |
---|
| 7015 | |
---|
| 7016 | For 2D plot, the wave transfer is defined as . |
---|
| 7017 | |
---|
| 7018 | Parameter name |
---|
| 7019 | |
---|
| 7020 | Units |
---|
| 7021 | |
---|
| 7022 | Default value |
---|
| 7023 | |
---|
| 7024 | effect_radius |
---|
| 7025 | |
---|
| 7026 | |
---|
| 7027 | |
---|
| 7028 | 20.8 |
---|
| 7029 | |
---|
| 7030 | charge |
---|
| 7031 | |
---|
| 7032 | 19 |
---|
| 7033 | |
---|
| 7034 | volfraction |
---|
| 7035 | |
---|
| 7036 | 0.2 |
---|
| 7037 | |
---|
| 7038 | temperature |
---|
| 7039 | |
---|
| 7040 | K |
---|
| 7041 | |
---|
| 7042 | 318 |
---|
| 7043 | |
---|
| 7044 | salt conc |
---|
| 7045 | |
---|
| 7046 | M |
---|
| 7047 | |
---|
| 7048 | 0 |
---|
| 7049 | |
---|
| 7050 | dielectconst |
---|
| 7051 | |
---|
| 7052 | 71.1 |
---|
| 7053 | |
---|
| 7054 | |
---|
| 7055 | |
---|
| 7056 | *Figure. 1D plot using the default values (in linear scale).* |
---|
| 7057 | |
---|
| 7058 | References: |
---|
| 7059 | |
---|
| 7060 | JP Hansen and JB Hayter, Molecular Physics 46, 651-656 (1982). |
---|
| 7061 | |
---|
| 7062 | JB Hayter and J Penfold, Molecular Physics 42, 109-118 (1981). |
---|
| 7063 | |
---|
| 7064 | *5.4. StickyHS Structure * |
---|
| 7065 | |
---|
| 7066 | This calculates the interparticle structure factor for a hard sphere |
---|
| 7067 | fluid with a narrow attractive well. A perturbative solution of the |
---|
| 7068 | Percus-Yevick closure is used. The strength of the attractive well is |
---|
| 7069 | described in terms of "stickiness" as defined below. The returned |
---|
| 7070 | value is a dimensionless structure factor, S(q). |
---|
| 7071 | |
---|
| 7072 | The perturb (perturbation parameter), epsilon, should be held between |
---|
| 7073 | 0.01 and 0.1. It is best to hold the perturbation parameter fixed and |
---|
| 7074 | let the "stickiness" vary to adjust the interaction strength. The |
---|
| 7075 | stickiness, tau, is defined in the equation below and is a function of |
---|
| 7076 | both the perturbation parameter and the interaction strength. Tau and |
---|
| 7077 | epsilon are defined in terms of the hard sphere diameter (sigma = 2R), |
---|
| 7078 | the width of the square well, delta (same units as R), and the depth |
---|
| 7079 | of the well, uo, in units of kT. From the definition, it is clear that |
---|
| 7080 | smaller tau mean stronger attraction. |
---|
| 7081 | |
---|
| 7082 | |
---|
| 7083 | |
---|
| 7084 | |
---|
| 7085 | |
---|
| 7086 | |
---|
| 7087 | |
---|
| 7088 | where the interaction potential is |
---|
| 7089 | |
---|
| 7090 | |
---|
| 7091 | |
---|
| 7092 | |
---|
| 7093 | |
---|
| 7094 | The Percus-Yevick (PY) closure was used for this calculation, and is |
---|
| 7095 | an adequate closure for an attractive interparticle potential. This |
---|
| 7096 | solution has been compared to Monte Carlo simulations for a square |
---|
| 7097 | well fluid, with good agreement. |
---|
| 7098 | |
---|
| 7099 | The true particle volume fraction, f, is not equal to h, which appears |
---|
| 7100 | in most of the reference. The two are related in equation (24) of the |
---|
| 7101 | reference. The reference also describes the relationship between this |
---|
| 7102 | perturbation solution and the original sticky hard sphere (or adhesive |
---|
| 7103 | sphere) model by Baxter. |
---|
| 7104 | |
---|
| 7105 | NOTES: The calculation can go haywire for certain combinations of the |
---|
| 7106 | input parameters, producing unphysical solutions - in this case errors |
---|
| 7107 | are reported to the command window and the S(q) is set to -1 (it will |
---|
| 7108 | disappear on a log-log plot). Use tight bounds to keep the parameters |
---|
| 7109 | to values that you know are physical (test them) and keep nudging them |
---|
| 7110 | until the optimization does not hit the constraints. |
---|
| 7111 | |
---|
| 7112 | For 2D plot, the wave transfer is defined as . |
---|
| 7113 | |
---|
| 7114 | Parameter name |
---|
| 7115 | |
---|
| 7116 | Units |
---|
| 7117 | |
---|
| 7118 | Default value |
---|
| 7119 | |
---|
| 7120 | effect_radius |
---|
| 7121 | |
---|
| 7122 | |
---|
| 7123 | |
---|
| 7124 | 50 |
---|
| 7125 | |
---|
| 7126 | perturb |
---|
| 7127 | |
---|
| 7128 | 0.05 |
---|
| 7129 | |
---|
| 7130 | volfraction |
---|
| 7131 | |
---|
| 7132 | 0.1 |
---|
| 7133 | |
---|
| 7134 | stickiness |
---|
| 7135 | |
---|
| 7136 | K |
---|
| 7137 | |
---|
| 7138 | 0.2 |
---|
| 7139 | |
---|
| 7140 | |
---|
| 7141 | |
---|
| 7142 | *Figure. 1D plot using the default values (in linear scale).* |
---|
| 7143 | |
---|
| 7144 | References: |
---|
| 7145 | |
---|
| 7146 | Menon, S. V. G., Manohar, C. and K. Srinivas Rao J. Chem. Phys., |
---|
| 7147 | 95(12), 9186-9190 (1991). |
---|
| 7148 | |
---|
| 7149 | |
---|
| 7150 | |
---|
| 7151 | |
---|
| 7152 | |
---|
| 7153 | 2.4 Customised Functions |
---|
| 7154 | ------------------------------ |
---|
| 7155 | |
---|
| 7156 | |
---|
| 7157 | Customized model functions can be redefined or added by users (See |
---|
| 7158 | SansView tutorial for details). |
---|
| 7159 | |
---|
| 7160 | *4.1. testmodel* |
---|
| 7161 | |
---|
| 7162 | |
---|
| 7163 | |
---|
| 7164 | This function, as an example of a user defined function, calculates |
---|
| 7165 | the intensity = A + Bcos(2q) + Csin(2q). |
---|
| 7166 | |
---|
| 7167 | *4.2. testmodel_2 * |
---|
| 7168 | |
---|
| 7169 | This function, as an example of a user defined function, calculates |
---|
| 7170 | the intensity = scale * sin(f)/f, where f = A + Bq + Cq2 + Dq3 + Eq4 + |
---|
| 7171 | Fq5. |
---|
| 7172 | |
---|
| 7173 | *4.3. sum_p1_p2 * |
---|
| 7174 | |
---|
| 7175 | This function, as an example of a user defined function, calculates |
---|
| 7176 | the intensity = scale_factor * (CylinderModel + PolymerExclVolume |
---|
| 7177 | model). To make your own sum(P1+P2) model, select 'Easy Custom Sum' |
---|
| 7178 | from the Fitting menu, or modify and compile the file named |
---|
| 7179 | 'sum_p1_p2.py' from 'Edit Custom Model' in the 'Fitting' menu. It |
---|
| 7180 | works only for single functional models. |
---|
| 7181 | |
---|
| 7182 | *4.4. sum_Ap1_1_Ap2 * |
---|
| 7183 | |
---|
| 7184 | This function, as an example of a user defined function, calculates |
---|
| 7185 | the intensity = (scale_factor * CylinderModel + (1-scale_factor) * |
---|
| 7186 | PolymerExclVolume model). To make your own A*p1+(1-A)*p2 model, modify |
---|
| 7187 | and compile the file named 'sum_Ap1_1_Ap2.py' from 'Edit Custom Model' |
---|
| 7188 | in the 'Fitting' menu. It works only for single functional models. |
---|
| 7189 | |
---|
| 7190 | *4.5. polynomial5 * |
---|
| 7191 | |
---|
| 7192 | This function, as an example of a user defined function, calculates |
---|
| 7193 | the intensity = A + Bq + Cq2 + Dq3 + Eq4 + Fq5. This model can be |
---|
| 7194 | modified and compiled from 'Edit Custom Model' in the 'Fitting' menu. |
---|
| 7195 | |
---|
| 7196 | *4.6. sph_bessel_jn * |
---|
| 7197 | |
---|
| 7198 | This function, as an example of a user defined function, calculates |
---|
| 7199 | the intensity = C*sph_jn(Ax+B)+D where the sph_jn is spherical Bessel |
---|
| 7200 | function of the order n. This model can be modified and compiled from |
---|
| 7201 | 'Edit Custom Model' in the 'Fitting' menu. |
---|