source: sasview/src/sans/models/c_extension/python_wrapper/generated/CCoreShellCylinderModel.cpp @ 400155b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 400155b was 400155b, checked in by gonzalezm, 9 years ago

Implementing request from ticket 261 - default number of bins in Annulus [Phi View] is now 36 and the first bin is now centered at 0 degrees

  • Property mode set to 100644
File size: 28.2 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CCoreShellCylinderModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY src\sans\models\include\core_shell_cylinder.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35
36}
37
38#include "core_shell_cylinder.h"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CCoreShellCylinderModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    CoreShellCylinderModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CCoreShellCylinderModel;
57
58
59static void
60CCoreShellCylinderModel_dealloc(CCoreShellCylinderModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CCoreShellCylinderModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CCoreShellCylinderModel *self;
75   
76    self = (CCoreShellCylinderModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CCoreShellCylinderModel_init(CCoreShellCylinderModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89
90        self->model = new CoreShellCylinderModel();
91
92        // Initialize parameter dictionary
93        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
94        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",90.000000000000));
95        PyDict_SetItemString(self->params,"solvent_sld",Py_BuildValue("d",0.000001000000));
96        PyDict_SetItemString(self->params,"thickness",Py_BuildValue("d",10.000000000000));
97        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.000000000000));
98        PyDict_SetItemString(self->params,"length",Py_BuildValue("d",400.000000000000));
99        PyDict_SetItemString(self->params,"core_sld",Py_BuildValue("d",0.000001000000));
100        PyDict_SetItemString(self->params,"radius",Py_BuildValue("d",20.000000000000));
101        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000000000));
102        PyDict_SetItemString(self->params,"shell_sld",Py_BuildValue("d",0.000004000000));
103        // Initialize dispersion / averaging parameter dict
104        DispersionVisitor* visitor = new DispersionVisitor();
105        PyObject * disp_dict;
106        disp_dict = PyDict_New();
107        self->model->radius.dispersion->accept_as_source(visitor, self->model->radius.dispersion, disp_dict);
108        PyDict_SetItemString(self->dispersion, "radius", disp_dict);
109        disp_dict = PyDict_New();
110        self->model->thickness.dispersion->accept_as_source(visitor, self->model->thickness.dispersion, disp_dict);
111        PyDict_SetItemString(self->dispersion, "thickness", disp_dict);
112        disp_dict = PyDict_New();
113        self->model->length.dispersion->accept_as_source(visitor, self->model->length.dispersion, disp_dict);
114        PyDict_SetItemString(self->dispersion, "length", disp_dict);
115        disp_dict = PyDict_New();
116        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
117        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
118        disp_dict = PyDict_New();
119        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
120        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
121
122
123         
124        // Create empty log
125        self->log = PyDict_New();
126       
127       
128
129    }
130    return 0;
131}
132
133static char name_params[] = "params";
134static char def_params[] = "Parameters";
135static char name_dispersion[] = "dispersion";
136static char def_dispersion[] = "Dispersion parameters";
137static char name_log[] = "log";
138static char def_log[] = "Log";
139
140static PyMemberDef CCoreShellCylinderModel_members[] = {
141    {name_params, T_OBJECT, offsetof(CCoreShellCylinderModel, params), 0, def_params},
142        {name_dispersion, T_OBJECT, offsetof(CCoreShellCylinderModel, dispersion), 0, def_dispersion},     
143    {name_log, T_OBJECT, offsetof(CCoreShellCylinderModel, log), 0, def_log},
144    {NULL}  /* Sentinel */
145};
146
147/** Read double from PyObject
148    @param p PyObject
149    @return double
150*/
151double CCoreShellCylinderModel_readDouble(PyObject *p) {
152    if (PyFloat_Check(p)==1) {
153        return (double)(((PyFloatObject *)(p))->ob_fval);
154    } else if (PyInt_Check(p)==1) {
155        return (double)(((PyIntObject *)(p))->ob_ival);
156    } else if (PyLong_Check(p)==1) {
157        return (double)PyLong_AsLong(p);
158    } else {
159        return 0.0;
160    }
161}
162/**
163 * Function to call to evaluate model
164 * @param args: input numpy array q[]
165 * @return: numpy array object
166 */
167 
168static PyObject *evaluateOneDim(CoreShellCylinderModel* model, PyArrayObject *q){
169    PyArrayObject *result;
170   
171    // Check validity of array q , q must be of dimension 1, an array of double
172    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
173    {
174        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
175        //PyErr_SetString(PyExc_ValueError , message);
176        return NULL;
177    }
178    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), PyArray_DOUBLE);
179        if (result == NULL) {
180        const char * message= "Could not create result ";
181        PyErr_SetString(PyExc_RuntimeError , message);
182                return NULL;
183        }
184#pragma omp parallel for
185         for (int i = 0; i < q->dimensions[0]; i++){
186      double q_value  = *(double *)(q->data + i*q->strides[0]);
187      double *result_value = (double *)(result->data + i*result->strides[0]);
188      *result_value =(*model)(q_value);
189        }
190    return PyArray_Return(result); 
191 }
192
193 /**
194 * Function to call to evaluate model
195 * @param args: input numpy array  [x[],y[]]
196 * @return: numpy array object
197 */
198 static PyObject * evaluateTwoDimXY( CoreShellCylinderModel* model, 
199                              PyArrayObject *x, PyArrayObject *y)
200 {
201    PyArrayObject *result;
202    int x_len, y_len, dims[1];
203    //check validity of input vectors
204    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
205        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
206        || y->dimensions[0] != x->dimensions[0]){
207        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
208        PyErr_SetString(PyExc_ValueError , message); 
209        return NULL;
210    }
211   
212        if (PyArray_Check(x) && PyArray_Check(y)) {
213               
214            x_len = dims[0]= x->dimensions[0];
215        y_len = dims[0]= y->dimensions[0];
216           
217            // Make a new double matrix of same dims
218        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
219        if (result == NULL){
220            const char * message= "Could not create result ";
221        PyErr_SetString(PyExc_RuntimeError , message);
222            return NULL;
223            }
224       
225        /* Do the calculation. */
226#pragma omp parallel for
227        for (int i=0; i< x_len; i++) {
228            double x_value = *(double *)(x->data + i*x->strides[0]);
229                    double y_value = *(double *)(y->data + i*y->strides[0]);
230                        double *result_value = (double *)(result->data +
231                              i*result->strides[0]);
232                        *result_value = (*model)(x_value, y_value);
233        }           
234        return PyArray_Return(result); 
235       
236        }else{
237                    PyErr_SetString(CCoreShellCylinderModelError, 
238                   "CCoreShellCylinderModel.evaluateTwoDimXY couldn't run.");
239                return NULL;
240                }       
241}
242/**
243 *  evalDistribution function evaluate a model function with input vector
244 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
245 *
246 */ 
247static PyObject * evalDistribution(CCoreShellCylinderModel *self, PyObject *args){
248        PyObject *qx, *qy;
249        PyArrayObject * pars;
250        int npars ,mpars;
251       
252        // Get parameters
253       
254            // Reader parameter dictionary
255    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
256    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
257    self->model->solvent_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "solvent_sld") );
258    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
259    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
260    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
261    self->model->core_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_sld") );
262    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
263    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
264    self->model->shell_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shell_sld") );
265    // Read in dispersion parameters
266    PyObject* disp_dict;
267    DispersionVisitor* visitor = new DispersionVisitor();
268    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
269    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
270    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
271    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
272    disp_dict = PyDict_GetItemString(self->dispersion, "length");
273    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
274    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
275    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
276    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
277    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
278
279       
280        // Get input and determine whether we have to supply a 1D or 2D return value.
281        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
282            PyErr_SetString(CCoreShellCylinderModelError, 
283                "CCoreShellCylinderModel.evalDistribution expects a q value.");
284                return NULL;
285        }
286    // Check params
287       
288    if(PyArray_Check(pars)==1) {
289               
290            // Length of list should 1 or 2
291            npars = pars->nd; 
292            if(npars==1) {
293                // input is a numpy array
294                if (PyArray_Check(pars)) {
295                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
296                    }
297                }else{
298                    PyErr_SetString(CCoreShellCylinderModelError, 
299                   "CCoreShellCylinderModel.evalDistribution expect numpy array of one dimension.");
300                return NULL;
301                }
302    }else if( PyList_Check(pars)==1) {
303        // Length of list should be 2 for I(qx,qy)
304            mpars = PyList_GET_SIZE(pars); 
305            if(mpars!=2) {
306                PyErr_SetString(CCoreShellCylinderModelError, 
307                        "CCoreShellCylinderModel.evalDistribution expects a list of dimension 2.");
308                return NULL;
309            }
310             qx = PyList_GET_ITEM(pars,0);
311             qy = PyList_GET_ITEM(pars,1);
312             if (PyArray_Check(qx) && PyArray_Check(qy)) {
313                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
314                           (PyArrayObject*)qy);
315                 }else{
316                    PyErr_SetString(CCoreShellCylinderModelError, 
317                   "CCoreShellCylinderModel.evalDistribution expect 2 numpy arrays in list.");
318                return NULL;
319             }
320        }
321        PyErr_SetString(CCoreShellCylinderModelError, 
322                   "CCoreShellCylinderModel.evalDistribution couln't be run.");
323        return NULL;
324       
325}
326
327/**
328 * Function to call to evaluate model
329 * @param args: input q or [q,phi]
330 * @return: function value
331 */
332static PyObject * run(CCoreShellCylinderModel *self, PyObject *args) {
333        double q_value, phi_value;
334        PyObject* pars;
335        int npars;
336       
337        // Get parameters
338       
339            // Reader parameter dictionary
340    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
341    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
342    self->model->solvent_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "solvent_sld") );
343    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
344    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
345    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
346    self->model->core_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_sld") );
347    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
348    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
349    self->model->shell_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shell_sld") );
350    // Read in dispersion parameters
351    PyObject* disp_dict;
352    DispersionVisitor* visitor = new DispersionVisitor();
353    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
354    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
355    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
356    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
357    disp_dict = PyDict_GetItemString(self->dispersion, "length");
358    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
359    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
360    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
361    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
362    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
363
364       
365        // Get input and determine whether we have to supply a 1D or 2D return value.
366        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
367            PyErr_SetString(CCoreShellCylinderModelError, 
368                "CCoreShellCylinderModel.run expects a q value.");
369                return NULL;
370        }
371         
372        // Check params
373        if( PyList_Check(pars)==1) {
374               
375                // Length of list should be 2 for I(q,phi)
376            npars = PyList_GET_SIZE(pars); 
377            if(npars!=2) {
378                PyErr_SetString(CCoreShellCylinderModelError, 
379                        "CCoreShellCylinderModel.run expects a double or a list of dimension 2.");
380                return NULL;
381            }
382            // We have a vector q, get the q and phi values at which
383            // to evaluate I(q,phi)
384            q_value = CCoreShellCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
385            phi_value = CCoreShellCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
386            // Skip zero
387            if (q_value==0) {
388                return Py_BuildValue("d",0.0);
389            }
390                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
391
392        } else {
393
394                // We have a scalar q, we will evaluate I(q)
395                q_value = CCoreShellCylinderModel_readDouble(pars);             
396               
397                return Py_BuildValue("d",(*(self->model))(q_value));
398        }       
399}
400/**
401 * Function to call to calculate_ER
402 * @return: effective radius value
403 */
404static PyObject * calculate_ER(CCoreShellCylinderModel *self) {
405
406        // Get parameters
407       
408            // Reader parameter dictionary
409    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
410    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
411    self->model->solvent_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "solvent_sld") );
412    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
413    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
414    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
415    self->model->core_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_sld") );
416    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
417    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
418    self->model->shell_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shell_sld") );
419    // Read in dispersion parameters
420    PyObject* disp_dict;
421    DispersionVisitor* visitor = new DispersionVisitor();
422    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
423    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
424    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
425    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
426    disp_dict = PyDict_GetItemString(self->dispersion, "length");
427    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
428    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
429    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
430    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
431    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
432
433               
434        return Py_BuildValue("d",(*(self->model)).calculate_ER());
435
436}
437/**
438 * Function to call to cal the ratio shell volume/ total volume
439 * @return: the ratio shell volume/ total volume
440 */
441static PyObject * calculate_VR(CCoreShellCylinderModel *self) {
442
443        // Get parameters
444       
445            // Reader parameter dictionary
446    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
447    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
448    self->model->solvent_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "solvent_sld") );
449    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
450    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
451    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
452    self->model->core_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_sld") );
453    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
454    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
455    self->model->shell_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shell_sld") );
456    // Read in dispersion parameters
457    PyObject* disp_dict;
458    DispersionVisitor* visitor = new DispersionVisitor();
459    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
460    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
461    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
462    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
463    disp_dict = PyDict_GetItemString(self->dispersion, "length");
464    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
465    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
466    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
467    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
468    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
469
470               
471        return Py_BuildValue("d",(*(self->model)).calculate_VR());
472
473}
474/**
475 * Function to call to evaluate model in cartesian coordinates
476 * @param args: input q or [qx, qy]]
477 * @return: function value
478 */
479static PyObject * runXY(CCoreShellCylinderModel *self, PyObject *args) {
480        double qx_value, qy_value;
481        PyObject* pars;
482        int npars;
483       
484        // Get parameters
485       
486            // Reader parameter dictionary
487    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
488    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
489    self->model->solvent_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "solvent_sld") );
490    self->model->thickness = PyFloat_AsDouble( PyDict_GetItemString(self->params, "thickness") );
491    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
492    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
493    self->model->core_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "core_sld") );
494    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
495    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
496    self->model->shell_sld = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shell_sld") );
497    // Read in dispersion parameters
498    PyObject* disp_dict;
499    DispersionVisitor* visitor = new DispersionVisitor();
500    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
501    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
502    disp_dict = PyDict_GetItemString(self->dispersion, "thickness");
503    self->model->thickness.dispersion->accept_as_destination(visitor, self->model->thickness.dispersion, disp_dict);
504    disp_dict = PyDict_GetItemString(self->dispersion, "length");
505    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
506    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
507    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
508    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
509    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
510
511       
512        // Get input and determine whether we have to supply a 1D or 2D return value.
513        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
514            PyErr_SetString(CCoreShellCylinderModelError, 
515                "CCoreShellCylinderModel.run expects a q value.");
516                return NULL;
517        }
518         
519        // Check params
520        if( PyList_Check(pars)==1) {
521               
522                // Length of list should be 2 for I(qx, qy))
523            npars = PyList_GET_SIZE(pars); 
524            if(npars!=2) {
525                PyErr_SetString(CCoreShellCylinderModelError, 
526                        "CCoreShellCylinderModel.run expects a double or a list of dimension 2.");
527                return NULL;
528            }
529            // We have a vector q, get the qx and qy values at which
530            // to evaluate I(qx,qy)
531            qx_value = CCoreShellCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
532            qy_value = CCoreShellCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
533            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
534
535        } else {
536
537                // We have a scalar q, we will evaluate I(q)
538                qx_value = CCoreShellCylinderModel_readDouble(pars);           
539               
540                return Py_BuildValue("d",(*(self->model))(qx_value));
541        }       
542}
543
544static PyObject * reset(CCoreShellCylinderModel *self, PyObject *args) {
545   
546
547    return Py_BuildValue("d",0.0);
548}
549
550static PyObject * set_dispersion(CCoreShellCylinderModel *self, PyObject *args) {
551        PyObject * disp;
552        const char * par_name;
553
554        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
555            PyErr_SetString(CCoreShellCylinderModelError,
556                "CCoreShellCylinderModel.set_dispersion expects a DispersionModel object.");
557                return NULL;
558        }
559        void *temp = PyCObject_AsVoidPtr(disp);
560        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
561
562
563        // Ugliness necessary to go from python to C
564            // TODO: refactor this
565    if (!strcmp(par_name, "radius")) {
566        self->model->radius.dispersion = dispersion;
567    } else    if (!strcmp(par_name, "thickness")) {
568        self->model->thickness.dispersion = dispersion;
569    } else    if (!strcmp(par_name, "length")) {
570        self->model->length.dispersion = dispersion;
571    } else    if (!strcmp(par_name, "axis_theta")) {
572        self->model->axis_theta.dispersion = dispersion;
573    } else    if (!strcmp(par_name, "axis_phi")) {
574        self->model->axis_phi.dispersion = dispersion;
575    } else {
576            PyErr_SetString(CCoreShellCylinderModelError,
577                "CCoreShellCylinderModel.set_dispersion expects a valid parameter name.");
578                return NULL;
579        }
580
581        DispersionVisitor* visitor = new DispersionVisitor();
582        PyObject * disp_dict = PyDict_New();
583        dispersion->accept_as_source(visitor, dispersion, disp_dict);
584        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
585    return Py_BuildValue("i",1);
586}
587
588
589static PyMethodDef CCoreShellCylinderModel_methods[] = {
590    {"run",      (PyCFunction)run     , METH_VARARGS,
591      "Evaluate the model at a given Q or Q, phi"},
592    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
593      "Evaluate the model at a given Q or Qx, Qy"},
594    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
595      "Evaluate the model at a given Q or Q, phi"},
596    {"calculate_VR",      (PyCFunction)calculate_VR     , METH_VARARGS,
597      "Evaluate VR"},   
598    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
599      "Evaluate the model at a given Q or Qx, Qy vector "},
600    {"reset",    (PyCFunction)reset   , METH_VARARGS,
601      "Reset pair correlation"},
602    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
603      "Set the dispersion model for a given parameter"},
604   {NULL}
605};
606
607static PyTypeObject CCoreShellCylinderModelType = {
608    PyObject_HEAD_INIT(NULL)
609    0,                         /*ob_size*/
610    "CCoreShellCylinderModel",             /*tp_name*/
611    sizeof(CCoreShellCylinderModel),             /*tp_basicsize*/
612    0,                         /*tp_itemsize*/
613    (destructor)CCoreShellCylinderModel_dealloc, /*tp_dealloc*/
614    0,                         /*tp_print*/
615    0,                         /*tp_getattr*/
616    0,                         /*tp_setattr*/
617    0,                         /*tp_compare*/
618    0,                         /*tp_repr*/
619    0,                         /*tp_as_number*/
620    0,                         /*tp_as_sequence*/
621    0,                         /*tp_as_mapping*/
622    0,                         /*tp_hash */
623    0,                         /*tp_call*/
624    0,                         /*tp_str*/
625    0,                         /*tp_getattro*/
626    0,                         /*tp_setattro*/
627    0,                         /*tp_as_buffer*/
628    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
629    "CCoreShellCylinderModel objects",           /* tp_doc */
630    0,                         /* tp_traverse */
631    0,                         /* tp_clear */
632    0,                         /* tp_richcompare */
633    0,                         /* tp_weaklistoffset */
634    0,                         /* tp_iter */
635    0,                         /* tp_iternext */
636    CCoreShellCylinderModel_methods,             /* tp_methods */
637    CCoreShellCylinderModel_members,             /* tp_members */
638    0,                         /* tp_getset */
639    0,                         /* tp_base */
640    0,                         /* tp_dict */
641    0,                         /* tp_descr_get */
642    0,                         /* tp_descr_set */
643    0,                         /* tp_dictoffset */
644    (initproc)CCoreShellCylinderModel_init,      /* tp_init */
645    0,                         /* tp_alloc */
646    CCoreShellCylinderModel_new,                 /* tp_new */
647};
648
649
650//static PyMethodDef module_methods[] = {
651//    {NULL}
652//};
653
654/**
655 * Function used to add the model class to a module
656 * @param module: module to add the class to
657 */ 
658void addCCoreShellCylinderModel(PyObject *module) {
659        PyObject *d;
660       
661    if (PyType_Ready(&CCoreShellCylinderModelType) < 0)
662        return;
663
664    Py_INCREF(&CCoreShellCylinderModelType);
665    PyModule_AddObject(module, "CCoreShellCylinderModel", (PyObject *)&CCoreShellCylinderModelType);
666   
667    d = PyModule_GetDict(module);
668    static char error_name[] = "CCoreShellCylinderModel.error";
669    CCoreShellCylinderModelError = PyErr_NewException(error_name, NULL, NULL);
670    PyDict_SetItemString(d, "CCoreShellCylinderModelError", CCoreShellCylinderModelError);
671}
672
Note: See TracBrowser for help on using the repository browser.