1 | ############################################################################## |
---|
2 | # This software was developed by the University of Tennessee as part of the |
---|
3 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | # project funded by the US National Science Foundation. |
---|
5 | # |
---|
6 | # If you use DANSE applications to do scientific research that leads to |
---|
7 | # publication, we ask that you acknowledge the use of the software with the |
---|
8 | # following sentence: |
---|
9 | # |
---|
10 | # This work benefited from DANSE software developed under NSF award DMR-0520547 |
---|
11 | # |
---|
12 | # Copyright 2008-2011, University of Tennessee |
---|
13 | ############################################################################## |
---|
14 | |
---|
15 | """ |
---|
16 | Provide functionality for a C extension model |
---|
17 | |
---|
18 | .. WARNING:: |
---|
19 | |
---|
20 | THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
21 | DO NOT MODIFY THIS FILE, MODIFY |
---|
22 | src\sans\models\include\refl_adv.h |
---|
23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
24 | """ |
---|
25 | |
---|
26 | from sans.models.BaseComponent import BaseComponent |
---|
27 | from sans.models.sans_extension.c_models import CReflAdvModel |
---|
28 | |
---|
29 | def create_ReflAdvModel(): |
---|
30 | """ |
---|
31 | Create a model instance |
---|
32 | """ |
---|
33 | obj = ReflAdvModel() |
---|
34 | # CReflAdvModel.__init__(obj) is called by |
---|
35 | # the ReflAdvModel constructor |
---|
36 | return obj |
---|
37 | |
---|
38 | class ReflAdvModel(CReflAdvModel, BaseComponent): |
---|
39 | """ |
---|
40 | Class that evaluates a ReflAdvModel model. |
---|
41 | This file was auto-generated from src\sans\models\include\refl_adv.h. |
---|
42 | Refer to that file and the structure it contains |
---|
43 | for details of the model. |
---|
44 | |
---|
45 | List of default parameters: |
---|
46 | |
---|
47 | * n_layers = 1.0 |
---|
48 | * scale = 1.0 |
---|
49 | * thick_inter0 = 50.0 [A] |
---|
50 | * func_inter0 = 0.0 |
---|
51 | * sld_bottom0 = 2.07e-06 [1/A^(2)] |
---|
52 | * sld_medium = 1e-06 [1/A^(2)] |
---|
53 | * background = 0.0 |
---|
54 | * sld_flat1 = 4e-06 [1/A^(2)] |
---|
55 | * sld_flat2 = 3.5e-06 [1/A^(2)] |
---|
56 | * sld_flat3 = 4e-06 [1/A^(2)] |
---|
57 | * sld_flat4 = 3.5e-06 [1/A^(2)] |
---|
58 | * sld_flat5 = 4e-06 [1/A^(2)] |
---|
59 | * sld_flat6 = 3.5e-06 [1/A^(2)] |
---|
60 | * sld_flat7 = 4e-06 [1/A^(2)] |
---|
61 | * sld_flat8 = 3.5e-06 [1/A^(2)] |
---|
62 | * sld_flat9 = 4e-06 [1/A^(2)] |
---|
63 | * sld_flat10 = 3.5e-06 [1/A^(2)] |
---|
64 | * thick_inter1 = 50.0 [A] |
---|
65 | * thick_inter2 = 50.0 [A] |
---|
66 | * thick_inter3 = 50.0 [A] |
---|
67 | * thick_inter4 = 50.0 [A] |
---|
68 | * thick_inter5 = 50.0 [A] |
---|
69 | * thick_inter6 = 50.0 [A] |
---|
70 | * thick_inter7 = 50.0 [A] |
---|
71 | * thick_inter8 = 50.0 [A] |
---|
72 | * thick_inter9 = 50.0 [A] |
---|
73 | * thick_inter10 = 50.0 [A] |
---|
74 | * thick_flat1 = 100.0 [A] |
---|
75 | * thick_flat2 = 100.0 [A] |
---|
76 | * thick_flat3 = 100.0 [A] |
---|
77 | * thick_flat4 = 100.0 [A] |
---|
78 | * thick_flat5 = 100.0 [A] |
---|
79 | * thick_flat6 = 100.0 [A] |
---|
80 | * thick_flat7 = 100.0 [A] |
---|
81 | * thick_flat8 = 100.0 [A] |
---|
82 | * thick_flat9 = 100.0 [A] |
---|
83 | * thick_flat10 = 100.0 [A] |
---|
84 | * func_inter1 = 0.0 |
---|
85 | * func_inter2 = 0.0 |
---|
86 | * func_inter3 = 0.0 |
---|
87 | * func_inter4 = 0.0 |
---|
88 | * func_inter5 = 0.0 |
---|
89 | * func_inter6 = 0.0 |
---|
90 | * func_inter7 = 0.0 |
---|
91 | * func_inter8 = 0.0 |
---|
92 | * func_inter9 = 0.0 |
---|
93 | * func_inter10 = 0.0 |
---|
94 | * sldIM_flat1 = 0.0 [1/A^(2)] |
---|
95 | * sldIM_flat2 = 0.0 [1/A^(2)] |
---|
96 | * sldIM_flat3 = 0.0 [1/A^(2)] |
---|
97 | * sldIM_flat4 = 0.0 [1/A^(2)] |
---|
98 | * sldIM_flat5 = 0.0 [1/A^(2)] |
---|
99 | * sldIM_flat6 = 0.0 [1/A^(2)] |
---|
100 | * sldIM_flat7 = 0.0 [1/A^(2)] |
---|
101 | * sldIM_flat8 = 0.0 [1/A^(2)] |
---|
102 | * sldIM_flat9 = 0.0 [1/A^(2)] |
---|
103 | * sldIM_flat10 = 0.0 [1/A^(2)] |
---|
104 | * nu_inter1 = 2.5 |
---|
105 | * nu_inter2 = 2.5 |
---|
106 | * nu_inter3 = 2.5 |
---|
107 | * nu_inter4 = 2.5 |
---|
108 | * nu_inter5 = 2.5 |
---|
109 | * nu_inter6 = 2.5 |
---|
110 | * nu_inter7 = 2.5 |
---|
111 | * nu_inter8 = 2.5 |
---|
112 | * nu_inter9 = 2.5 |
---|
113 | * nu_inter10 = 2.5 |
---|
114 | * sldIM_sub0 = 0.0 |
---|
115 | * sldIM_medium = 0.0 |
---|
116 | * npts_inter = 21.0 |
---|
117 | * nu_inter0 = 2.5 |
---|
118 | |
---|
119 | """ |
---|
120 | |
---|
121 | def __init__(self, multfactor=1): |
---|
122 | """ Initialization """ |
---|
123 | self.__dict__ = {} |
---|
124 | |
---|
125 | # Initialize BaseComponent first, then sphere |
---|
126 | BaseComponent.__init__(self) |
---|
127 | #apply(CReflAdvModel.__init__, (self,)) |
---|
128 | |
---|
129 | CReflAdvModel.__init__(self) |
---|
130 | self.is_multifunc = False |
---|
131 | |
---|
132 | ## Name of the model |
---|
133 | self.name = "ReflAdvModel" |
---|
134 | ## Model description |
---|
135 | self.description = """ |
---|
136 | Calculate neutron reflectivity using the Parratt iterative formula |
---|
137 | Parameters: |
---|
138 | background:background |
---|
139 | scale: scale factor |
---|
140 | sld_bottom0: the SLD of the substrate |
---|
141 | sld_medium: the SLD of the incident medium |
---|
142 | or superstrate |
---|
143 | sld_flatN: the SLD of the flat region of |
---|
144 | the N'th layer |
---|
145 | thick_flatN: the thickness of the flat |
---|
146 | region of the N'th layer |
---|
147 | func_interN: the function used to describe |
---|
148 | the interface of the N'th layer |
---|
149 | nu_interN: the coefficient for the func_interN |
---|
150 | thick_interN: the thickness of the interface |
---|
151 | of the N'th layer |
---|
152 | Note: the layer number starts to increase |
---|
153 | from the bottom (substrate) to the top. |
---|
154 | """ |
---|
155 | |
---|
156 | ## Parameter details [units, min, max] |
---|
157 | self.details = {} |
---|
158 | self.details['n_layers'] = ['', None, None] |
---|
159 | self.details['scale'] = ['', None, None] |
---|
160 | self.details['thick_inter0'] = ['[A]', None, None] |
---|
161 | self.details['func_inter0'] = ['', None, None] |
---|
162 | self.details['sld_bottom0'] = ['[1/A^(2)]', None, None] |
---|
163 | self.details['sld_medium'] = ['[1/A^(2)]', None, None] |
---|
164 | self.details['background'] = ['', None, None] |
---|
165 | self.details['sld_flat1'] = ['[1/A^(2)]', None, None] |
---|
166 | self.details['sld_flat2'] = ['[1/A^(2)]', None, None] |
---|
167 | self.details['sld_flat3'] = ['[1/A^(2)]', None, None] |
---|
168 | self.details['sld_flat4'] = ['[1/A^(2)]', None, None] |
---|
169 | self.details['sld_flat5'] = ['[1/A^(2)]', None, None] |
---|
170 | self.details['sld_flat6'] = ['[1/A^(2)]', None, None] |
---|
171 | self.details['sld_flat7'] = ['[1/A^(2)]', None, None] |
---|
172 | self.details['sld_flat8'] = ['[1/A^(2)]', None, None] |
---|
173 | self.details['sld_flat9'] = ['[1/A^(2)]', None, None] |
---|
174 | self.details['sld_flat10'] = ['[1/A^(2)]', None, None] |
---|
175 | self.details['thick_inter1'] = ['[A]', None, None] |
---|
176 | self.details['thick_inter2'] = ['[A]', None, None] |
---|
177 | self.details['thick_inter3'] = ['[A]', None, None] |
---|
178 | self.details['thick_inter4'] = ['[A]', None, None] |
---|
179 | self.details['thick_inter5'] = ['[A]', None, None] |
---|
180 | self.details['thick_inter6'] = ['[A]', None, None] |
---|
181 | self.details['thick_inter7'] = ['[A]', None, None] |
---|
182 | self.details['thick_inter8'] = ['[A]', None, None] |
---|
183 | self.details['thick_inter9'] = ['[A]', None, None] |
---|
184 | self.details['thick_inter10'] = ['[A]', None, None] |
---|
185 | self.details['thick_flat1'] = ['[A]', None, None] |
---|
186 | self.details['thick_flat2'] = ['[A]', None, None] |
---|
187 | self.details['thick_flat3'] = ['[A]', None, None] |
---|
188 | self.details['thick_flat4'] = ['[A]', None, None] |
---|
189 | self.details['thick_flat5'] = ['[A]', None, None] |
---|
190 | self.details['thick_flat6'] = ['[A]', None, None] |
---|
191 | self.details['thick_flat7'] = ['[A]', None, None] |
---|
192 | self.details['thick_flat8'] = ['[A]', None, None] |
---|
193 | self.details['thick_flat9'] = ['[A]', None, None] |
---|
194 | self.details['thick_flat10'] = ['[A]', None, None] |
---|
195 | self.details['func_inter1'] = ['', None, None] |
---|
196 | self.details['func_inter2'] = ['', None, None] |
---|
197 | self.details['func_inter3'] = ['', None, None] |
---|
198 | self.details['func_inter4'] = ['', None, None] |
---|
199 | self.details['func_inter5'] = ['', None, None] |
---|
200 | self.details['func_inter6'] = ['', None, None] |
---|
201 | self.details['func_inter7'] = ['', None, None] |
---|
202 | self.details['func_inter8'] = ['', None, None] |
---|
203 | self.details['func_inter9'] = ['', None, None] |
---|
204 | self.details['func_inter10'] = ['', None, None] |
---|
205 | self.details['sldIM_flat1'] = ['[1/A^(2)]', None, None] |
---|
206 | self.details['sldIM_flat2'] = ['[1/A^(2)]', None, None] |
---|
207 | self.details['sldIM_flat3'] = ['[1/A^(2)]', None, None] |
---|
208 | self.details['sldIM_flat4'] = ['[1/A^(2)]', None, None] |
---|
209 | self.details['sldIM_flat5'] = ['[1/A^(2)]', None, None] |
---|
210 | self.details['sldIM_flat6'] = ['[1/A^(2)]', None, None] |
---|
211 | self.details['sldIM_flat7'] = ['[1/A^(2)]', None, None] |
---|
212 | self.details['sldIM_flat8'] = ['[1/A^(2)]', None, None] |
---|
213 | self.details['sldIM_flat9'] = ['[1/A^(2)]', None, None] |
---|
214 | self.details['sldIM_flat10'] = ['[1/A^(2)]', None, None] |
---|
215 | self.details['nu_inter1'] = ['', None, None] |
---|
216 | self.details['nu_inter2'] = ['', None, None] |
---|
217 | self.details['nu_inter3'] = ['', None, None] |
---|
218 | self.details['nu_inter4'] = ['', None, None] |
---|
219 | self.details['nu_inter5'] = ['', None, None] |
---|
220 | self.details['nu_inter6'] = ['', None, None] |
---|
221 | self.details['nu_inter7'] = ['', None, None] |
---|
222 | self.details['nu_inter8'] = ['', None, None] |
---|
223 | self.details['nu_inter9'] = ['', None, None] |
---|
224 | self.details['nu_inter10'] = ['', None, None] |
---|
225 | self.details['sldIM_sub0'] = ['', None, None] |
---|
226 | self.details['sldIM_medium'] = ['', None, None] |
---|
227 | self.details['npts_inter'] = ['', None, None] |
---|
228 | self.details['nu_inter0'] = ['', None, None] |
---|
229 | |
---|
230 | ## fittable parameters |
---|
231 | self.fixed = [] |
---|
232 | |
---|
233 | ## non-fittable parameters |
---|
234 | self.non_fittable = ['n_layers', |
---|
235 | 'func_inter0', |
---|
236 | 'func_inter1', |
---|
237 | 'func_inter2', |
---|
238 | 'func_inter3', |
---|
239 | 'func_inter4', |
---|
240 | 'func_inter5', |
---|
241 | 'func_inter5', |
---|
242 | 'func_inter7', |
---|
243 | 'func_inter8', |
---|
244 | 'func_inter9', |
---|
245 | 'func_inter10'] |
---|
246 | |
---|
247 | ## parameters with orientation |
---|
248 | self.orientation_params = [] |
---|
249 | |
---|
250 | ## parameters with magnetism |
---|
251 | self.magnetic_params = [] |
---|
252 | |
---|
253 | self.category = None |
---|
254 | self.multiplicity_info = None |
---|
255 | |
---|
256 | def __setstate__(self, state): |
---|
257 | """ |
---|
258 | restore the state of a model from pickle |
---|
259 | """ |
---|
260 | self.__dict__, self.params, self.dispersion = state |
---|
261 | |
---|
262 | def __reduce_ex__(self, proto): |
---|
263 | """ |
---|
264 | Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of |
---|
265 | c model. |
---|
266 | """ |
---|
267 | state = (self.__dict__, self.params, self.dispersion) |
---|
268 | return (create_ReflAdvModel, tuple(), state, None, None) |
---|
269 | |
---|
270 | def clone(self): |
---|
271 | """ Return a identical copy of self """ |
---|
272 | return self._clone(ReflAdvModel()) |
---|
273 | |
---|
274 | def run(self, x=0.0): |
---|
275 | """ |
---|
276 | Evaluate the model |
---|
277 | |
---|
278 | :param x: input q, or [q,phi] |
---|
279 | |
---|
280 | :return: scattering function P(q) |
---|
281 | |
---|
282 | """ |
---|
283 | return CReflAdvModel.run(self, x) |
---|
284 | |
---|
285 | def runXY(self, x=0.0): |
---|
286 | """ |
---|
287 | Evaluate the model in cartesian coordinates |
---|
288 | |
---|
289 | :param x: input q, or [qx, qy] |
---|
290 | |
---|
291 | :return: scattering function P(q) |
---|
292 | |
---|
293 | """ |
---|
294 | return CReflAdvModel.runXY(self, x) |
---|
295 | |
---|
296 | def evalDistribution(self, x): |
---|
297 | """ |
---|
298 | Evaluate the model in cartesian coordinates |
---|
299 | |
---|
300 | :param x: input q[], or [qx[], qy[]] |
---|
301 | |
---|
302 | :return: scattering function P(q[]) |
---|
303 | |
---|
304 | """ |
---|
305 | return CReflAdvModel.evalDistribution(self, x) |
---|
306 | |
---|
307 | def calculate_ER(self): |
---|
308 | """ |
---|
309 | Calculate the effective radius for P(q)*S(q) |
---|
310 | |
---|
311 | :return: the value of the effective radius |
---|
312 | |
---|
313 | """ |
---|
314 | return CReflAdvModel.calculate_ER(self) |
---|
315 | |
---|
316 | def calculate_VR(self): |
---|
317 | """ |
---|
318 | Calculate the volf ratio for P(q)*S(q) |
---|
319 | |
---|
320 | :return: the value of the volf ratio |
---|
321 | |
---|
322 | """ |
---|
323 | return CReflAdvModel.calculate_VR(self) |
---|
324 | |
---|
325 | def set_dispersion(self, parameter, dispersion): |
---|
326 | """ |
---|
327 | Set the dispersion object for a model parameter |
---|
328 | |
---|
329 | :param parameter: name of the parameter [string] |
---|
330 | :param dispersion: dispersion object of type DispersionModel |
---|
331 | |
---|
332 | """ |
---|
333 | return CReflAdvModel.set_dispersion(self, |
---|
334 | parameter, dispersion.cdisp) |
---|
335 | |
---|
336 | |
---|
337 | # End of file |
---|
338 | |
---|