1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | Provide Line function (y= A + Bx) as a BaseComponent model |
---|
4 | """ |
---|
5 | |
---|
6 | from sans.models.BaseComponent import BaseComponent |
---|
7 | import math |
---|
8 | import numpy |
---|
9 | |
---|
10 | |
---|
11 | class LineModel(BaseComponent): |
---|
12 | """ |
---|
13 | Class that evaluates a linear model. |
---|
14 | |
---|
15 | f(x) = A + Bx |
---|
16 | |
---|
17 | List of default parameters: |
---|
18 | A = 1.0 |
---|
19 | B = 1.0 |
---|
20 | """ |
---|
21 | |
---|
22 | def __init__(self): |
---|
23 | """ Initialization """ |
---|
24 | |
---|
25 | # Initialize BaseComponent first, then sphere |
---|
26 | BaseComponent.__init__(self) |
---|
27 | |
---|
28 | ## Name of the model |
---|
29 | self.name = "LineModel" |
---|
30 | |
---|
31 | ## Define parameters |
---|
32 | self.params = {} |
---|
33 | self.params['A'] = 1.0 |
---|
34 | self.params['B'] = 1.0 |
---|
35 | self.description='f(x) = A + Bx' |
---|
36 | ## Parameter details [units, min, max] |
---|
37 | self.details = {} |
---|
38 | self.details['A'] = ['', None, None] |
---|
39 | self.details['B'] = ['', None, None] |
---|
40 | # fixed paramaters |
---|
41 | self.fixed=[] |
---|
42 | def _line(self, x): |
---|
43 | """ |
---|
44 | Evaluate the function |
---|
45 | @param x: x-value |
---|
46 | @return: function value |
---|
47 | """ |
---|
48 | return self.params['A'] + x *self.params['B'] |
---|
49 | |
---|
50 | def run(self, x = 0.0): |
---|
51 | """ Evaluate the model |
---|
52 | @param x: simple value |
---|
53 | @return: (Line value) |
---|
54 | """ |
---|
55 | if x.__class__.__name__ == 'list': |
---|
56 | return self._line(x[0]*math.cos(x[1]))*self._line(x[0]*math.sin(x[1])) |
---|
57 | elif x.__class__.__name__ == 'tuple': |
---|
58 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
59 | else: |
---|
60 | return self._line(x) |
---|
61 | |
---|
62 | def runXY(self, x = 0.0): |
---|
63 | """ Evaluate the model |
---|
64 | @param x: simple value |
---|
65 | @return: Line value |
---|
66 | """ |
---|
67 | if x.__class__.__name__ == 'list': |
---|
68 | return self._line(x[1]) |
---|
69 | elif x.__class__.__name__ == 'tuple': |
---|
70 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
71 | else: |
---|
72 | return self._line(x) |
---|
73 | |
---|
74 | def evalDistribution(self, qdist): |
---|
75 | """ |
---|
76 | Evaluate a distribution of q-values. |
---|
77 | |
---|
78 | * For 1D, a numpy array is expected as input: |
---|
79 | |
---|
80 | evalDistribution(q) |
---|
81 | |
---|
82 | where q is a numpy array. |
---|
83 | |
---|
84 | |
---|
85 | * For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime], |
---|
86 | where 1D arrays, |
---|
87 | |
---|
88 | :param qdist: ndarray of scalar q-values or list [qx,qy] |
---|
89 | where qx,qy are 1D ndarrays |
---|
90 | |
---|
91 | """ |
---|
92 | if qdist.__class__.__name__ == 'list': |
---|
93 | # Check whether we have a list of ndarrays [qx,qy] |
---|
94 | if len(qdist)!=2 or \ |
---|
95 | qdist[0].__class__.__name__ != 'ndarray' or \ |
---|
96 | qdist[1].__class__.__name__ != 'ndarray': |
---|
97 | raise RuntimeError, "evalDistribution expects a list of 2 ndarrays" |
---|
98 | |
---|
99 | # Extract qx and qy for code clarity |
---|
100 | qx = qdist[0] |
---|
101 | qy = qdist[1] |
---|
102 | #For 2D, Z = A + B * Y, |
---|
103 | # so that it keeps its linearity in y-direction. |
---|
104 | # calculate q_r component for 2D isotropic |
---|
105 | q = qy |
---|
106 | # vectorize the model function runXY |
---|
107 | v_model = numpy.vectorize(self.runXY,otypes=[float]) |
---|
108 | # calculate the scattering |
---|
109 | iq_array = v_model(q) |
---|
110 | |
---|
111 | return iq_array |
---|
112 | |
---|
113 | elif qdist.__class__.__name__ == 'ndarray': |
---|
114 | # We have a simple 1D distribution of q-values |
---|
115 | v_model = numpy.vectorize(self.runXY,otypes=[float]) |
---|
116 | iq_array = v_model(qdist) |
---|
117 | |
---|
118 | return iq_array |
---|
119 | |
---|
120 | else: |
---|
121 | mesg = "evalDistribution is expecting an ndarray of scalar q-values" |
---|
122 | mesg += " or a list [qx,qy] where qx,qy are 2D ndarrays." |
---|
123 | raise RuntimeError, mesg |
---|
124 | |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | if __name__ == "__main__": |
---|
129 | l = LineModel() |
---|
130 | print "hello" |
---|
131 | |
---|
132 | # End of file |
---|