source: sasview/src/sans/models/EllipsoidModel.py @ 81b524f

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 81b524f was 81b524f, checked in by Jeff Krzywon <jeffery.krzywon@…>, 11 years ago

This branch is now merged with the latest trunk release. I will merge them next.

  • Property mode set to 100644
File size: 6.4 KB
Line 
1##############################################################################
2# This software was developed by the University of Tennessee as part of the
3# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4# project funded by the US National Science Foundation.
5#
6# If you use DANSE applications to do scientific research that leads to
7# publication, we ask that you acknowledge the use of the software with the
8# following sentence:
9#
10# This work benefited from DANSE software developed under NSF award DMR-0520547
11#
12# Copyright 2008-2011, University of Tennessee
13##############################################################################
14
15"""
16Provide functionality for a C extension model
17
18:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19         DO NOT MODIFY THIS FILE, MODIFY
20            src\sans\models\include\ellipsoid.h
21         AND RE-RUN THE GENERATOR SCRIPT
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans.models.sans_extension.c_models import CEllipsoidModel
26
27def create_EllipsoidModel():
28    """
29       Create a model instance
30    """
31    obj = EllipsoidModel()
32    # CEllipsoidModel.__init__(obj) is called by
33    # the EllipsoidModel constructor
34    return obj
35
36class EllipsoidModel(CEllipsoidModel, BaseComponent):
37    """
38    Class that evaluates a EllipsoidModel model.
39    This file was auto-generated from src\sans\models\include\ellipsoid.h.
40    Refer to that file and the structure it contains
41    for details of the model.
42    List of default parameters:
43         radius_a        = 20.0 [A]
44         scale           = 1.0
45         radius_b        = 400.0 [A]
46         sldEll          = 4e-06 [1/A^(2)]
47         sldSolv         = 1e-06 [1/A^(2)]
48         background      = 0.0 [1/cm]
49         axis_theta      = 90.0 [deg]
50         axis_phi        = 0.0 [deg]
51
52    """
53       
54    def __init__(self, multfactor=1):
55        """ Initialization """
56        self.__dict__ = {}
57       
58        # Initialize BaseComponent first, then sphere
59        BaseComponent.__init__(self)
60        #apply(CEllipsoidModel.__init__, (self,))
61
62        CEllipsoidModel.__init__(self)
63        self.is_multifunc = False
64                       
65        ## Name of the model
66        self.name = "EllipsoidModel"
67        ## Model description
68        self.description = """
69        "P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(sld_ell
70                - sld_solvent)*V*[sin(q*r(Ra,Rb,alpha))
71                -q*r*cos(qr(Ra,Rb,alpha))]
72                /[qr(Ra,Rb,alpha)]^(3)"
73               
74                r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2)
75                + Ra^(2)*(cos(alpha))^(2)]^(1/2)
76               
77                scatter_sld: SLD of the scatter
78                solvent_sld: SLD of the solvent
79                sldEll: SLD of ellipsoid
80                sldSolv: SLD of solvent
81                V: volune of the Eliipsoid
82                Ra: radius along the rotation axis
83                of the Ellipsoid
84                Rb: radius perpendicular to the
85                rotation axis of the ellipsoid
86        """
87       
88        ## Parameter details [units, min, max]
89        self.details = {}
90        self.details['radius_a'] = ['[A]', None, None]
91        self.details['scale'] = ['', None, None]
92        self.details['radius_b'] = ['[A]', None, None]
93        self.details['sldEll'] = ['[1/A^(2)]', None, None]
94        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
95        self.details['background'] = ['[1/cm]', None, None]
96        self.details['axis_theta'] = ['[deg]', None, None]
97        self.details['axis_phi'] = ['[deg]', None, None]
98
99        ## fittable parameters
100        self.fixed = ['axis_phi.width',
101                      'axis_theta.width',
102                      'radius_a.width',
103                      'radius_b.width',
104                      'length.width',
105                      'r_minor.width']
106       
107        ## non-fittable parameters
108        self.non_fittable = []
109       
110        ## parameters with orientation
111        self.orientation_params = ['axis_phi.width',
112                                   'axis_theta.width',
113                                   'axis_phi',
114                                   'axis_theta']
115
116        ## parameters with magnetism
117        self.magnetic_params = []
118
119        self.category = None
120        self.multiplicity_info = None
121       
122    def __setstate__(self, state):
123        """
124        restore the state of a model from pickle
125        """
126        self.__dict__, self.params, self.dispersion = state
127       
128    def __reduce_ex__(self, proto):
129        """
130        Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
131        c model.
132        """
133        state = (self.__dict__, self.params, self.dispersion)
134        return (create_EllipsoidModel, tuple(), state, None, None)
135       
136    def clone(self):
137        """ Return a identical copy of self """
138        return self._clone(EllipsoidModel())   
139       
140    def run(self, x=0.0):
141        """
142        Evaluate the model
143       
144        :param x: input q, or [q,phi]
145       
146        :return: scattering function P(q)
147       
148        """
149        return CEllipsoidModel.run(self, x)
150   
151    def runXY(self, x=0.0):
152        """
153        Evaluate the model in cartesian coordinates
154       
155        :param x: input q, or [qx, qy]
156       
157        :return: scattering function P(q)
158       
159        """
160        return CEllipsoidModel.runXY(self, x)
161       
162    def evalDistribution(self, x):
163        """
164        Evaluate the model in cartesian coordinates
165       
166        :param x: input q[], or [qx[], qy[]]
167       
168        :return: scattering function P(q[])
169       
170        """
171        return CEllipsoidModel.evalDistribution(self, x)
172       
173    def calculate_ER(self):
174        """
175        Calculate the effective radius for P(q)*S(q)
176       
177        :return: the value of the effective radius
178       
179        """       
180        return CEllipsoidModel.calculate_ER(self)
181       
182    def calculate_VR(self):
183        """
184        Calculate the volf ratio for P(q)*S(q)
185       
186        :return: the value of the volf ratio
187       
188        """       
189        return CEllipsoidModel.calculate_VR(self)
190             
191    def set_dispersion(self, parameter, dispersion):
192        """
193        Set the dispersion object for a model parameter
194       
195        :param parameter: name of the parameter [string]
196        :param dispersion: dispersion object of type DispersionModel
197       
198        """
199        return CEllipsoidModel.set_dispersion(self,
200               parameter, dispersion.cdisp)
201       
202   
203# End of file
204
Note: See TracBrowser for help on using the repository browser.