1 | ############################################################################## |
---|
2 | # This software was developed by the University of Tennessee as part of the |
---|
3 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | # project funded by the US National Science Foundation. |
---|
5 | # |
---|
6 | # If you use DANSE applications to do scientific research that leads to |
---|
7 | # publication, we ask that you acknowledge the use of the software with the |
---|
8 | # following sentence: |
---|
9 | # |
---|
10 | # This work benefited from DANSE software developed under NSF award DMR-0520547 |
---|
11 | # |
---|
12 | # Copyright 2008-2011, University of Tennessee |
---|
13 | ############################################################################## |
---|
14 | |
---|
15 | """ |
---|
16 | Provide functionality for a C extension model |
---|
17 | |
---|
18 | .. WARNING:: |
---|
19 | |
---|
20 | THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
21 | DO NOT MODIFY THIS FILE, MODIFY |
---|
22 | src\sans\models\include\ellipsoid.h |
---|
23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
24 | """ |
---|
25 | |
---|
26 | from sans.models.BaseComponent import BaseComponent |
---|
27 | from sans.models.sans_extension.c_models import CEllipsoidModel |
---|
28 | |
---|
29 | def create_EllipsoidModel(): |
---|
30 | """ |
---|
31 | Create a model instance |
---|
32 | """ |
---|
33 | obj = EllipsoidModel() |
---|
34 | # CEllipsoidModel.__init__(obj) is called by |
---|
35 | # the EllipsoidModel constructor |
---|
36 | return obj |
---|
37 | |
---|
38 | class EllipsoidModel(CEllipsoidModel, BaseComponent): |
---|
39 | """ |
---|
40 | Class that evaluates a EllipsoidModel model. |
---|
41 | This file was auto-generated from src\sans\models\include\ellipsoid.h. |
---|
42 | Refer to that file and the structure it contains |
---|
43 | for details of the model. |
---|
44 | |
---|
45 | List of default parameters: |
---|
46 | |
---|
47 | * radius_a = 20.0 [A] |
---|
48 | * scale = 1.0 |
---|
49 | * radius_b = 400.0 [A] |
---|
50 | * sldEll = 4e-06 [1/A^(2)] |
---|
51 | * sldSolv = 1e-06 [1/A^(2)] |
---|
52 | * background = 0.0 [1/cm] |
---|
53 | * axis_theta = 90.0 [deg] |
---|
54 | * axis_phi = 0.0 [deg] |
---|
55 | |
---|
56 | """ |
---|
57 | |
---|
58 | def __init__(self, multfactor=1): |
---|
59 | """ Initialization """ |
---|
60 | self.__dict__ = {} |
---|
61 | |
---|
62 | # Initialize BaseComponent first, then sphere |
---|
63 | BaseComponent.__init__(self) |
---|
64 | #apply(CEllipsoidModel.__init__, (self,)) |
---|
65 | |
---|
66 | CEllipsoidModel.__init__(self) |
---|
67 | self.is_multifunc = False |
---|
68 | |
---|
69 | ## Name of the model |
---|
70 | self.name = "EllipsoidModel" |
---|
71 | ## Model description |
---|
72 | self.description = """ |
---|
73 | "P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(sld_ell |
---|
74 | - sld_solvent)*V*[sin(q*r(Ra,Rb,alpha)) |
---|
75 | -q*r*cos(qr(Ra,Rb,alpha))] |
---|
76 | /[qr(Ra,Rb,alpha)]^(3)" |
---|
77 | |
---|
78 | r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2) |
---|
79 | + Ra^(2)*(cos(alpha))^(2)]^(1/2) |
---|
80 | |
---|
81 | scatter_sld: SLD of the scatter |
---|
82 | solvent_sld: SLD of the solvent |
---|
83 | sldEll: SLD of ellipsoid |
---|
84 | sldSolv: SLD of solvent |
---|
85 | V: volune of the Eliipsoid |
---|
86 | Ra: radius along the rotation axis |
---|
87 | of the Ellipsoid |
---|
88 | Rb: radius perpendicular to the |
---|
89 | rotation axis of the ellipsoid |
---|
90 | """ |
---|
91 | |
---|
92 | ## Parameter details [units, min, max] |
---|
93 | self.details = {} |
---|
94 | self.details['radius_a'] = ['[A]', None, None] |
---|
95 | self.details['scale'] = ['', None, None] |
---|
96 | self.details['radius_b'] = ['[A]', None, None] |
---|
97 | self.details['sldEll'] = ['[1/A^(2)]', None, None] |
---|
98 | self.details['sldSolv'] = ['[1/A^(2)]', None, None] |
---|
99 | self.details['background'] = ['[1/cm]', None, None] |
---|
100 | self.details['axis_theta'] = ['[deg]', None, None] |
---|
101 | self.details['axis_phi'] = ['[deg]', None, None] |
---|
102 | |
---|
103 | ## fittable parameters |
---|
104 | self.fixed = ['axis_phi.width', |
---|
105 | 'axis_theta.width', |
---|
106 | 'radius_a.width', |
---|
107 | 'radius_b.width', |
---|
108 | 'length.width', |
---|
109 | 'r_minor.width'] |
---|
110 | |
---|
111 | ## non-fittable parameters |
---|
112 | self.non_fittable = [] |
---|
113 | |
---|
114 | ## parameters with orientation |
---|
115 | self.orientation_params = ['axis_phi.width', |
---|
116 | 'axis_theta.width', |
---|
117 | 'axis_phi', |
---|
118 | 'axis_theta'] |
---|
119 | |
---|
120 | ## parameters with magnetism |
---|
121 | self.magnetic_params = [] |
---|
122 | |
---|
123 | self.category = None |
---|
124 | self.multiplicity_info = None |
---|
125 | |
---|
126 | def __setstate__(self, state): |
---|
127 | """ |
---|
128 | restore the state of a model from pickle |
---|
129 | """ |
---|
130 | self.__dict__, self.params, self.dispersion = state |
---|
131 | |
---|
132 | def __reduce_ex__(self, proto): |
---|
133 | """ |
---|
134 | Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of |
---|
135 | c model. |
---|
136 | """ |
---|
137 | state = (self.__dict__, self.params, self.dispersion) |
---|
138 | return (create_EllipsoidModel, tuple(), state, None, None) |
---|
139 | |
---|
140 | def clone(self): |
---|
141 | """ Return a identical copy of self """ |
---|
142 | return self._clone(EllipsoidModel()) |
---|
143 | |
---|
144 | def run(self, x=0.0): |
---|
145 | """ |
---|
146 | Evaluate the model |
---|
147 | |
---|
148 | :param x: input q, or [q,phi] |
---|
149 | |
---|
150 | :return: scattering function P(q) |
---|
151 | |
---|
152 | """ |
---|
153 | return CEllipsoidModel.run(self, x) |
---|
154 | |
---|
155 | def runXY(self, x=0.0): |
---|
156 | """ |
---|
157 | Evaluate the model in cartesian coordinates |
---|
158 | |
---|
159 | :param x: input q, or [qx, qy] |
---|
160 | |
---|
161 | :return: scattering function P(q) |
---|
162 | |
---|
163 | """ |
---|
164 | return CEllipsoidModel.runXY(self, x) |
---|
165 | |
---|
166 | def evalDistribution(self, x): |
---|
167 | """ |
---|
168 | Evaluate the model in cartesian coordinates |
---|
169 | |
---|
170 | :param x: input q[], or [qx[], qy[]] |
---|
171 | |
---|
172 | :return: scattering function P(q[]) |
---|
173 | |
---|
174 | """ |
---|
175 | return CEllipsoidModel.evalDistribution(self, x) |
---|
176 | |
---|
177 | def calculate_ER(self): |
---|
178 | """ |
---|
179 | Calculate the effective radius for P(q)*S(q) |
---|
180 | |
---|
181 | :return: the value of the effective radius |
---|
182 | |
---|
183 | """ |
---|
184 | return CEllipsoidModel.calculate_ER(self) |
---|
185 | |
---|
186 | def calculate_VR(self): |
---|
187 | """ |
---|
188 | Calculate the volf ratio for P(q)*S(q) |
---|
189 | |
---|
190 | :return: the value of the volf ratio |
---|
191 | |
---|
192 | """ |
---|
193 | return CEllipsoidModel.calculate_VR(self) |
---|
194 | |
---|
195 | def set_dispersion(self, parameter, dispersion): |
---|
196 | """ |
---|
197 | Set the dispersion object for a model parameter |
---|
198 | |
---|
199 | :param parameter: name of the parameter [string] |
---|
200 | :param dispersion: dispersion object of type DispersionModel |
---|
201 | |
---|
202 | """ |
---|
203 | return CEllipsoidModel.set_dispersion(self, |
---|
204 | parameter, dispersion.cdisp) |
---|
205 | |
---|
206 | |
---|
207 | # End of file |
---|
208 | |
---|