source: sasview/src/sans/models/BinaryHSModel.py @ 81b524f

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 81b524f was 81b524f, checked in by Jeff Krzywon <jeffery.krzywon@…>, 11 years ago

This branch is now merged with the latest trunk release. I will merge them next.

  • Property mode set to 100644
File size: 6.0 KB
Line 
1##############################################################################
2# This software was developed by the University of Tennessee as part of the
3# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4# project funded by the US National Science Foundation.
5#
6# If you use DANSE applications to do scientific research that leads to
7# publication, we ask that you acknowledge the use of the software with the
8# following sentence:
9#
10# This work benefited from DANSE software developed under NSF award DMR-0520547
11#
12# Copyright 2008-2011, University of Tennessee
13##############################################################################
14
15"""
16Provide functionality for a C extension model
17
18:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19         DO NOT MODIFY THIS FILE, MODIFY
20            src\sans\models\include\binaryHS.h
21         AND RE-RUN THE GENERATOR SCRIPT
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans.models.sans_extension.c_models import CBinaryHSModel
26
27def create_BinaryHSModel():
28    """
29       Create a model instance
30    """
31    obj = BinaryHSModel()
32    # CBinaryHSModel.__init__(obj) is called by
33    # the BinaryHSModel constructor
34    return obj
35
36class BinaryHSModel(CBinaryHSModel, BaseComponent):
37    """
38    Class that evaluates a BinaryHSModel model.
39    This file was auto-generated from src\sans\models\include\binaryHS.h.
40    Refer to that file and the structure it contains
41    for details of the model.
42    List of default parameters:
43         l_radius        = 100.0 [A]
44         s_radius        = 25.0 [A]
45         vol_frac_ls     = 0.1
46         vol_frac_ss     = 0.2
47         ls_sld          = 3.5e-06 [1/A^(2)]
48         ss_sld          = 5e-07 [1/A^(2)]
49         solvent_sld     = 6.36e-06 [1/A^(2)]
50         background      = 0.001 [1/cm]
51
52    """
53       
54    def __init__(self, multfactor=1):
55        """ Initialization """
56        self.__dict__ = {}
57       
58        # Initialize BaseComponent first, then sphere
59        BaseComponent.__init__(self)
60        #apply(CBinaryHSModel.__init__, (self,))
61
62        CBinaryHSModel.__init__(self)
63        self.is_multifunc = False
64                       
65        ## Name of the model
66        self.name = "BinaryHSModel"
67        ## Model description
68        self.description = """
69         Model parameters: l_radius : large radius of binary hard sphere
70                s_radius : small radius of binary hard sphere
71                vol_frac_ls : volume fraction of large spheres
72                vol_frac_ss : volume fraction of small spheres
73                ls_sld: large sphere  scattering length density
74                ss_sld: small sphere scattering length density
75                solvent_sld: solvent scattering length density
76                background: incoherent background
77        """
78       
79        ## Parameter details [units, min, max]
80        self.details = {}
81        self.details['l_radius'] = ['[A]', None, None]
82        self.details['s_radius'] = ['[A]', None, None]
83        self.details['vol_frac_ls'] = ['', None, None]
84        self.details['vol_frac_ss'] = ['', None, None]
85        self.details['ls_sld'] = ['[1/A^(2)]', None, None]
86        self.details['ss_sld'] = ['[1/A^(2)]', None, None]
87        self.details['solvent_sld'] = ['[1/A^(2)]', None, None]
88        self.details['background'] = ['[1/cm]', None, None]
89
90        ## fittable parameters
91        self.fixed = ['l_radius.width',
92                      's_radius.width']
93       
94        ## non-fittable parameters
95        self.non_fittable = []
96       
97        ## parameters with orientation
98        self.orientation_params = []
99
100        ## parameters with magnetism
101        self.magnetic_params = []
102
103        self.category = None
104        self.multiplicity_info = None
105       
106    def __setstate__(self, state):
107        """
108        restore the state of a model from pickle
109        """
110        self.__dict__, self.params, self.dispersion = state
111       
112    def __reduce_ex__(self, proto):
113        """
114        Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
115        c model.
116        """
117        state = (self.__dict__, self.params, self.dispersion)
118        return (create_BinaryHSModel, tuple(), state, None, None)
119       
120    def clone(self):
121        """ Return a identical copy of self """
122        return self._clone(BinaryHSModel())   
123       
124    def run(self, x=0.0):
125        """
126        Evaluate the model
127       
128        :param x: input q, or [q,phi]
129       
130        :return: scattering function P(q)
131       
132        """
133        return CBinaryHSModel.run(self, x)
134   
135    def runXY(self, x=0.0):
136        """
137        Evaluate the model in cartesian coordinates
138       
139        :param x: input q, or [qx, qy]
140       
141        :return: scattering function P(q)
142       
143        """
144        return CBinaryHSModel.runXY(self, x)
145       
146    def evalDistribution(self, x):
147        """
148        Evaluate the model in cartesian coordinates
149       
150        :param x: input q[], or [qx[], qy[]]
151       
152        :return: scattering function P(q[])
153       
154        """
155        return CBinaryHSModel.evalDistribution(self, x)
156       
157    def calculate_ER(self):
158        """
159        Calculate the effective radius for P(q)*S(q)
160       
161        :return: the value of the effective radius
162       
163        """       
164        return CBinaryHSModel.calculate_ER(self)
165       
166    def calculate_VR(self):
167        """
168        Calculate the volf ratio for P(q)*S(q)
169       
170        :return: the value of the volf ratio
171       
172        """       
173        return CBinaryHSModel.calculate_VR(self)
174             
175    def set_dispersion(self, parameter, dispersion):
176        """
177        Set the dispersion object for a model parameter
178       
179        :param parameter: name of the parameter [string]
180        :param dispersion: dispersion object of type DispersionModel
181       
182        """
183        return CBinaryHSModel.set_dispersion(self,
184               parameter, dispersion.cdisp)
185       
186   
187# End of file
188
Note: See TracBrowser for help on using the repository browser.