1 | |
---|
2 | import copy |
---|
3 | #import logging |
---|
4 | import sys |
---|
5 | import numpy |
---|
6 | import math |
---|
7 | import park |
---|
8 | from sans.dataloader.data_info import Data1D |
---|
9 | from sans.dataloader.data_info import Data2D |
---|
10 | _SMALLVALUE = 1.0e-10 |
---|
11 | |
---|
12 | class SansParameter(park.Parameter): |
---|
13 | """ |
---|
14 | SANS model parameters for use in the PARK fitting service. |
---|
15 | The parameter attribute value is redirected to the underlying |
---|
16 | parameter value in the SANS model. |
---|
17 | """ |
---|
18 | def __init__(self, name, model, data): |
---|
19 | """ |
---|
20 | :param name: the name of the model parameter |
---|
21 | :param model: the sans model to wrap as a park model |
---|
22 | """ |
---|
23 | park.Parameter.__init__(self, name) |
---|
24 | self._model, self._name = model, name |
---|
25 | self.data = data |
---|
26 | self.model = model |
---|
27 | #set the value for the parameter of the given name |
---|
28 | self.set(model.getParam(name)) |
---|
29 | |
---|
30 | def _getvalue(self): |
---|
31 | """ |
---|
32 | override the _getvalue of park parameter |
---|
33 | |
---|
34 | :return value the parameter associates with self.name |
---|
35 | |
---|
36 | """ |
---|
37 | return self._model.getParam(self.name) |
---|
38 | |
---|
39 | def _setvalue(self, value): |
---|
40 | """ |
---|
41 | override the _setvalue pf park parameter |
---|
42 | |
---|
43 | :param value: the value to set on a given parameter |
---|
44 | |
---|
45 | """ |
---|
46 | self._model.setParam(self.name, value) |
---|
47 | |
---|
48 | value = property(_getvalue, _setvalue) |
---|
49 | |
---|
50 | def _getrange(self): |
---|
51 | """ |
---|
52 | Override _getrange of park parameter |
---|
53 | return the range of parameter |
---|
54 | """ |
---|
55 | #if not self.name in self._model.getDispParamList(): |
---|
56 | lo, hi = self._model.details[self.name][1:3] |
---|
57 | if lo is None: lo = -numpy.inf |
---|
58 | if hi is None: hi = numpy.inf |
---|
59 | if lo > hi: |
---|
60 | raise ValueError, "wrong fit range for parameters" |
---|
61 | |
---|
62 | return lo, hi |
---|
63 | |
---|
64 | def get_name(self): |
---|
65 | """ |
---|
66 | """ |
---|
67 | return self._getname() |
---|
68 | |
---|
69 | def _setrange(self, r): |
---|
70 | """ |
---|
71 | override _setrange of park parameter |
---|
72 | |
---|
73 | :param r: the value of the range to set |
---|
74 | |
---|
75 | """ |
---|
76 | self._model.details[self.name][1:3] = r |
---|
77 | range = property(_getrange, _setrange) |
---|
78 | |
---|
79 | |
---|
80 | class Model(park.Model): |
---|
81 | """ |
---|
82 | PARK wrapper for SANS models. |
---|
83 | """ |
---|
84 | def __init__(self, sans_model, sans_data=None, **kw): |
---|
85 | """ |
---|
86 | :param sans_model: the sans model to wrap using park interface |
---|
87 | |
---|
88 | """ |
---|
89 | park.Model.__init__(self, **kw) |
---|
90 | self.model = sans_model |
---|
91 | self.name = sans_model.name |
---|
92 | self.data = sans_data |
---|
93 | #list of parameters names |
---|
94 | self.sansp = sans_model.getParamList() |
---|
95 | #list of park parameter |
---|
96 | self.parkp = [SansParameter(p, sans_model, sans_data) for p in self.sansp] |
---|
97 | #list of parameter set |
---|
98 | self.parameterset = park.ParameterSet(sans_model.name, pars=self.parkp) |
---|
99 | self.pars = [] |
---|
100 | |
---|
101 | def get_params(self, fitparams): |
---|
102 | """ |
---|
103 | return a list of value of paramter to fit |
---|
104 | |
---|
105 | :param fitparams: list of paramaters name to fit |
---|
106 | |
---|
107 | """ |
---|
108 | list_params = [] |
---|
109 | self.pars = [] |
---|
110 | self.pars = fitparams |
---|
111 | for item in fitparams: |
---|
112 | for element in self.parkp: |
---|
113 | if element.name == str(item): |
---|
114 | list_params.append(element.value) |
---|
115 | return list_params |
---|
116 | |
---|
117 | def set_params(self, paramlist, params): |
---|
118 | """ |
---|
119 | Set value for parameters to fit |
---|
120 | |
---|
121 | :param params: list of value for parameters to fit |
---|
122 | |
---|
123 | """ |
---|
124 | try: |
---|
125 | for i in range(len(self.parkp)): |
---|
126 | for j in range(len(paramlist)): |
---|
127 | if self.parkp[i].name == paramlist[j]: |
---|
128 | self.parkp[i].value = params[j] |
---|
129 | self.model.setParam(self.parkp[i].name, params[j]) |
---|
130 | except: |
---|
131 | raise |
---|
132 | |
---|
133 | def eval(self, x): |
---|
134 | """ |
---|
135 | Override eval method of park model. |
---|
136 | |
---|
137 | :param x: the x value used to compute a function |
---|
138 | """ |
---|
139 | try: |
---|
140 | return self.model.evalDistribution(x) |
---|
141 | except: |
---|
142 | raise |
---|
143 | |
---|
144 | def eval_derivs(self, x, pars=[]): |
---|
145 | """ |
---|
146 | Evaluate the model and derivatives wrt pars at x. |
---|
147 | |
---|
148 | pars is a list of the names of the parameters for which derivatives |
---|
149 | are desired. |
---|
150 | |
---|
151 | This method needs to be specialized in the model to evaluate the |
---|
152 | model function. Alternatively, the model can implement is own |
---|
153 | version of residuals which calculates the residuals directly |
---|
154 | instead of calling eval. |
---|
155 | """ |
---|
156 | return [] |
---|
157 | |
---|
158 | |
---|
159 | class FitData1D(Data1D): |
---|
160 | """ |
---|
161 | Wrapper class for SANS data |
---|
162 | FitData1D inherits from DataLoader.data_info.Data1D. Implements |
---|
163 | a way to get residuals from data. |
---|
164 | """ |
---|
165 | def __init__(self, x, y, dx=None, dy=None, smearer=None, data=None): |
---|
166 | """ |
---|
167 | :param smearer: is an object of class QSmearer or SlitSmearer |
---|
168 | that will smear the theory data (slit smearing or resolution |
---|
169 | smearing) when set. |
---|
170 | |
---|
171 | The proper way to set the smearing object would be to |
---|
172 | do the following: :: |
---|
173 | |
---|
174 | from sans.models.qsmearing import smear_selection |
---|
175 | smearer = smear_selection(some_data) |
---|
176 | fitdata1d = FitData1D( x= [1,3,..,], |
---|
177 | y= [3,4,..,8], |
---|
178 | dx=None, |
---|
179 | dy=[1,2...], smearer= smearer) |
---|
180 | |
---|
181 | :Note: that some_data _HAS_ to be of |
---|
182 | class DataLoader.data_info.Data1D |
---|
183 | Setting it back to None will turn smearing off. |
---|
184 | |
---|
185 | """ |
---|
186 | Data1D.__init__(self, x=x, y=y, dx=dx, dy=dy) |
---|
187 | self.sans_data = data |
---|
188 | self.smearer = smearer |
---|
189 | self._first_unsmeared_bin = None |
---|
190 | self._last_unsmeared_bin = None |
---|
191 | # Check error bar; if no error bar found, set it constant(=1) |
---|
192 | # TODO: Should provide an option for users to set it like percent, |
---|
193 | # constant, or dy data |
---|
194 | if dy == None or dy == [] or dy.all() == 0: |
---|
195 | self.dy = numpy.ones(len(y)) |
---|
196 | else: |
---|
197 | self.dy = numpy.asarray(dy).copy() |
---|
198 | |
---|
199 | ## Min Q-value |
---|
200 | #Skip the Q=0 point, especially when y(q=0)=None at x[0]. |
---|
201 | if min(self.x) == 0.0 and self.x[0] == 0 and\ |
---|
202 | not numpy.isfinite(self.y[0]): |
---|
203 | self.qmin = min(self.x[self.x != 0]) |
---|
204 | else: |
---|
205 | self.qmin = min(self.x) |
---|
206 | ## Max Q-value |
---|
207 | self.qmax = max(self.x) |
---|
208 | |
---|
209 | # Range used for input to smearing |
---|
210 | self._qmin_unsmeared = self.qmin |
---|
211 | self._qmax_unsmeared = self.qmax |
---|
212 | # Identify the bin range for the unsmeared and smeared spaces |
---|
213 | self.idx = (self.x >= self.qmin) & (self.x <= self.qmax) |
---|
214 | self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \ |
---|
215 | & (self.x <= self._qmax_unsmeared) |
---|
216 | |
---|
217 | def set_fit_range(self, qmin=None, qmax=None): |
---|
218 | """ to set the fit range""" |
---|
219 | # Skip Q=0 point, (especially for y(q=0)=None at x[0]). |
---|
220 | # ToDo: Find better way to do it. |
---|
221 | if qmin == 0.0 and not numpy.isfinite(self.y[qmin]): |
---|
222 | self.qmin = min(self.x[self.x != 0]) |
---|
223 | elif qmin != None: |
---|
224 | self.qmin = qmin |
---|
225 | if qmax != None: |
---|
226 | self.qmax = qmax |
---|
227 | # Determine the range needed in unsmeared-Q to cover |
---|
228 | # the smeared Q range |
---|
229 | self._qmin_unsmeared = self.qmin |
---|
230 | self._qmax_unsmeared = self.qmax |
---|
231 | |
---|
232 | self._first_unsmeared_bin = 0 |
---|
233 | self._last_unsmeared_bin = len(self.x) - 1 |
---|
234 | |
---|
235 | if self.smearer != None: |
---|
236 | self._first_unsmeared_bin, self._last_unsmeared_bin = \ |
---|
237 | self.smearer.get_bin_range(self.qmin, self.qmax) |
---|
238 | self._qmin_unsmeared = self.x[self._first_unsmeared_bin] |
---|
239 | self._qmax_unsmeared = self.x[self._last_unsmeared_bin] |
---|
240 | |
---|
241 | # Identify the bin range for the unsmeared and smeared spaces |
---|
242 | self.idx = (self.x >= self.qmin) & (self.x <= self.qmax) |
---|
243 | ## zero error can not participate for fitting |
---|
244 | self.idx = self.idx & (self.dy != 0) |
---|
245 | self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \ |
---|
246 | & (self.x <= self._qmax_unsmeared) |
---|
247 | |
---|
248 | def get_fit_range(self): |
---|
249 | """ |
---|
250 | Return the range of data.x to fit |
---|
251 | """ |
---|
252 | return self.qmin, self.qmax |
---|
253 | |
---|
254 | def residuals(self, fn): |
---|
255 | """ |
---|
256 | Compute residuals. |
---|
257 | |
---|
258 | If self.smearer has been set, use if to smear |
---|
259 | the data before computing chi squared. |
---|
260 | |
---|
261 | :param fn: function that return model value |
---|
262 | |
---|
263 | :return: residuals |
---|
264 | """ |
---|
265 | # Compute theory data f(x) |
---|
266 | fx = numpy.zeros(len(self.x)) |
---|
267 | fx[self.idx_unsmeared] = fn(self.x[self.idx_unsmeared]) |
---|
268 | |
---|
269 | ## Smear theory data |
---|
270 | if self.smearer is not None: |
---|
271 | fx = self.smearer(fx, self._first_unsmeared_bin, |
---|
272 | self._last_unsmeared_bin) |
---|
273 | ## Sanity check |
---|
274 | if numpy.size(self.dy) != numpy.size(fx): |
---|
275 | msg = "FitData1D: invalid error array " |
---|
276 | msg += "%d <> %d" % (numpy.shape(self.dy), numpy.size(fx)) |
---|
277 | raise RuntimeError, msg |
---|
278 | return (self.y[self.idx] - fx[self.idx]) / self.dy[self.idx], fx[self.idx] |
---|
279 | |
---|
280 | def residuals_deriv(self, model, pars=[]): |
---|
281 | """ |
---|
282 | :return: residuals derivatives . |
---|
283 | |
---|
284 | :note: in this case just return empty array |
---|
285 | """ |
---|
286 | return [] |
---|
287 | |
---|
288 | |
---|
289 | class FitData2D(Data2D): |
---|
290 | """ |
---|
291 | Wrapper class for SANS data |
---|
292 | """ |
---|
293 | def __init__(self, sans_data2d, data=None, err_data=None): |
---|
294 | Data2D.__init__(self, data=data, err_data=err_data) |
---|
295 | """ |
---|
296 | Data can be initital with a data (sans plottable) |
---|
297 | or with vectors. |
---|
298 | """ |
---|
299 | self.res_err_image = [] |
---|
300 | self.idx = [] |
---|
301 | self.qmin = None |
---|
302 | self.qmax = None |
---|
303 | self.smearer = None |
---|
304 | self.radius = 0 |
---|
305 | self.res_err_data = [] |
---|
306 | self.sans_data = sans_data2d |
---|
307 | self.set_data(sans_data2d) |
---|
308 | |
---|
309 | def set_data(self, sans_data2d, qmin=None, qmax=None): |
---|
310 | """ |
---|
311 | Determine the correct qx_data and qy_data within range to fit |
---|
312 | """ |
---|
313 | self.data = sans_data2d.data |
---|
314 | self.err_data = sans_data2d.err_data |
---|
315 | self.qx_data = sans_data2d.qx_data |
---|
316 | self.qy_data = sans_data2d.qy_data |
---|
317 | self.mask = sans_data2d.mask |
---|
318 | |
---|
319 | x_max = max(math.fabs(sans_data2d.xmin), math.fabs(sans_data2d.xmax)) |
---|
320 | y_max = max(math.fabs(sans_data2d.ymin), math.fabs(sans_data2d.ymax)) |
---|
321 | |
---|
322 | ## fitting range |
---|
323 | if qmin == None: |
---|
324 | self.qmin = 1e-16 |
---|
325 | if qmax == None: |
---|
326 | self.qmax = math.sqrt(x_max * x_max + y_max * y_max) |
---|
327 | ## new error image for fitting purpose |
---|
328 | if self.err_data == None or self.err_data == []: |
---|
329 | self.res_err_data = numpy.ones(len(self.data)) |
---|
330 | else: |
---|
331 | self.res_err_data = copy.deepcopy(self.err_data) |
---|
332 | #self.res_err_data[self.res_err_data==0]=1 |
---|
333 | |
---|
334 | self.radius = numpy.sqrt(self.qx_data**2 + self.qy_data**2) |
---|
335 | |
---|
336 | # Note: mask = True: for MASK while mask = False for NOT to mask |
---|
337 | self.idx = ((self.qmin <= self.radius) &\ |
---|
338 | (self.radius <= self.qmax)) |
---|
339 | self.idx = (self.idx) & (self.mask) |
---|
340 | self.idx = (self.idx) & (numpy.isfinite(self.data)) |
---|
341 | |
---|
342 | def set_smearer(self, smearer): |
---|
343 | """ |
---|
344 | Set smearer |
---|
345 | """ |
---|
346 | if smearer == None: |
---|
347 | return |
---|
348 | self.smearer = smearer |
---|
349 | self.smearer.set_index(self.idx) |
---|
350 | self.smearer.get_data() |
---|
351 | |
---|
352 | def set_fit_range(self, qmin=None, qmax=None): |
---|
353 | """ |
---|
354 | To set the fit range |
---|
355 | """ |
---|
356 | if qmin == 0.0: |
---|
357 | self.qmin = 1e-16 |
---|
358 | elif qmin != None: |
---|
359 | self.qmin = qmin |
---|
360 | if qmax != None: |
---|
361 | self.qmax = qmax |
---|
362 | self.radius = numpy.sqrt(self.qx_data**2 + self.qy_data**2) |
---|
363 | self.idx = ((self.qmin <= self.radius) &\ |
---|
364 | (self.radius <= self.qmax)) |
---|
365 | self.idx = (self.idx) & (self.mask) |
---|
366 | self.idx = (self.idx) & (numpy.isfinite(self.data)) |
---|
367 | self.idx = (self.idx) & (self.res_err_data != 0) |
---|
368 | |
---|
369 | def get_fit_range(self): |
---|
370 | """ |
---|
371 | return the range of data.x to fit |
---|
372 | """ |
---|
373 | return self.qmin, self.qmax |
---|
374 | |
---|
375 | def residuals(self, fn): |
---|
376 | """ |
---|
377 | return the residuals |
---|
378 | """ |
---|
379 | if self.smearer != None: |
---|
380 | fn.set_index(self.idx) |
---|
381 | # Get necessary data from self.data and set the data for smearing |
---|
382 | fn.get_data() |
---|
383 | |
---|
384 | gn = fn.get_value() |
---|
385 | else: |
---|
386 | gn = fn([self.qx_data[self.idx], |
---|
387 | self.qy_data[self.idx]]) |
---|
388 | # use only the data point within ROI range |
---|
389 | res = (self.data[self.idx] - gn) / self.res_err_data[self.idx] |
---|
390 | |
---|
391 | return res, gn |
---|
392 | |
---|
393 | def residuals_deriv(self, model, pars=[]): |
---|
394 | """ |
---|
395 | :return: residuals derivatives . |
---|
396 | |
---|
397 | :note: in this case just return empty array |
---|
398 | |
---|
399 | """ |
---|
400 | return [] |
---|
401 | |
---|
402 | |
---|
403 | class FitAbort(Exception): |
---|
404 | """ |
---|
405 | Exception raise to stop the fit |
---|
406 | """ |
---|
407 | #pass |
---|
408 | #print"Creating fit abort Exception" |
---|
409 | |
---|
410 | |
---|
411 | class SansAssembly: |
---|
412 | """ |
---|
413 | Sans Assembly class a class wrapper to be call in optimizer.leastsq method |
---|
414 | """ |
---|
415 | def __init__(self, paramlist, model=None, data=None, fitresult=None, |
---|
416 | handler=None, curr_thread=None, msg_q=None): |
---|
417 | """ |
---|
418 | :param Model: the model wrapper fro sans -model |
---|
419 | :param Data: the data wrapper for sans data |
---|
420 | |
---|
421 | """ |
---|
422 | self.model = model |
---|
423 | self.data = data |
---|
424 | self.paramlist = paramlist |
---|
425 | self.msg_q = msg_q |
---|
426 | self.curr_thread = curr_thread |
---|
427 | self.handler = handler |
---|
428 | self.fitresult = fitresult |
---|
429 | self.res = [] |
---|
430 | self.true_res = [] |
---|
431 | self.func_name = "Functor" |
---|
432 | self.theory = None |
---|
433 | |
---|
434 | def chisq(self): |
---|
435 | """ |
---|
436 | Calculates chi^2 |
---|
437 | |
---|
438 | :param params: list of parameter values |
---|
439 | |
---|
440 | :return: chi^2 |
---|
441 | |
---|
442 | """ |
---|
443 | total = 0 |
---|
444 | for item in self.true_res: |
---|
445 | total += item * item |
---|
446 | if len(self.true_res) == 0: |
---|
447 | return None |
---|
448 | return total / len(self.true_res) |
---|
449 | |
---|
450 | def __call__(self, params): |
---|
451 | """ |
---|
452 | Compute residuals |
---|
453 | :param params: value of parameters to fit |
---|
454 | """ |
---|
455 | #import thread |
---|
456 | self.model.set_params(self.paramlist, params) |
---|
457 | #print "params", params |
---|
458 | self.true_res, theory = self.data.residuals(self.model.eval) |
---|
459 | self.theory = copy.deepcopy(theory) |
---|
460 | # check parameters range |
---|
461 | if self.check_param_range(): |
---|
462 | # if the param value is outside of the bound |
---|
463 | # just silent return res = inf |
---|
464 | return self.res |
---|
465 | self.res = self.true_res |
---|
466 | |
---|
467 | if self.fitresult is not None: |
---|
468 | self.fitresult.set_model(model=self.model) |
---|
469 | self.fitresult.residuals = self.true_res |
---|
470 | self.fitresult.iterations += 1 |
---|
471 | self.fitresult.theory = theory |
---|
472 | |
---|
473 | #fitness = self.chisq(params=params) |
---|
474 | fitness = self.chisq() |
---|
475 | self.fitresult.pvec = params |
---|
476 | self.fitresult.set_fitness(fitness=fitness) |
---|
477 | if self.msg_q is not None: |
---|
478 | self.msg_q.put(self.fitresult) |
---|
479 | |
---|
480 | if self.handler is not None: |
---|
481 | self.handler.set_result(result=self.fitresult) |
---|
482 | self.handler.update_fit() |
---|
483 | |
---|
484 | if self.curr_thread != None: |
---|
485 | try: |
---|
486 | self.curr_thread.isquit() |
---|
487 | except: |
---|
488 | #msg = "Fitting: Terminated... Note: Forcing to stop " |
---|
489 | #msg += "fitting may cause a 'Functor error message' " |
---|
490 | #msg += "being recorded in the log file....." |
---|
491 | #self.handler.stop(msg) |
---|
492 | raise |
---|
493 | |
---|
494 | return self.res |
---|
495 | |
---|
496 | def check_param_range(self): |
---|
497 | """ |
---|
498 | Check the lower and upper bound of the parameter value |
---|
499 | and set res to the inf if the value is outside of the |
---|
500 | range |
---|
501 | :limitation: the initial values must be within range. |
---|
502 | """ |
---|
503 | |
---|
504 | #time.sleep(0.01) |
---|
505 | is_outofbound = False |
---|
506 | # loop through the fit parameters |
---|
507 | for p in self.model.parameterset: |
---|
508 | param_name = p.get_name() |
---|
509 | if param_name in self.paramlist: |
---|
510 | |
---|
511 | # if the range was defined, check the range |
---|
512 | if numpy.isfinite(p.range[0]): |
---|
513 | if p.value == 0: |
---|
514 | # This value works on Scipy |
---|
515 | # Do not change numbers below |
---|
516 | value = _SMALLVALUE |
---|
517 | else: |
---|
518 | value = p.value |
---|
519 | # For leastsq, it needs a bit step back from the boundary |
---|
520 | val = p.range[0] - value * _SMALLVALUE |
---|
521 | if p.value < val: |
---|
522 | self.res *= 1e+6 |
---|
523 | |
---|
524 | is_outofbound = True |
---|
525 | break |
---|
526 | if numpy.isfinite(p.range[1]): |
---|
527 | # This value works on Scipy |
---|
528 | # Do not change numbers below |
---|
529 | if p.value == 0: |
---|
530 | value = _SMALLVALUE |
---|
531 | else: |
---|
532 | value = p.value |
---|
533 | # For leastsq, it needs a bit step back from the boundary |
---|
534 | val = p.range[1] + value * _SMALLVALUE |
---|
535 | if p.value > val: |
---|
536 | self.res *= 1e+6 |
---|
537 | is_outofbound = True |
---|
538 | break |
---|
539 | |
---|
540 | return is_outofbound |
---|
541 | |
---|
542 | |
---|
543 | class FitEngine: |
---|
544 | def __init__(self): |
---|
545 | """ |
---|
546 | Base class for scipy and park fit engine |
---|
547 | """ |
---|
548 | #List of parameter names to fit |
---|
549 | self.param_list = [] |
---|
550 | #Dictionnary of fitArrange element (fit problems) |
---|
551 | self.fit_arrange_dict = {} |
---|
552 | self.fitter_id = None |
---|
553 | |
---|
554 | def set_model(self, model, id, pars=[], constraints=[], data=None): |
---|
555 | """ |
---|
556 | set a model on a given in the fit engine. |
---|
557 | |
---|
558 | :param model: sans.models type |
---|
559 | :param id: is the key of the fitArrange dictionary where model is saved as a value |
---|
560 | :param pars: the list of parameters to fit |
---|
561 | :param constraints: list of |
---|
562 | tuple (name of parameter, value of parameters) |
---|
563 | the value of parameter must be a string to constraint 2 different |
---|
564 | parameters. |
---|
565 | Example: |
---|
566 | we want to fit 2 model M1 and M2 both have parameters A and B. |
---|
567 | constraints can be ``constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,]`` |
---|
568 | |
---|
569 | |
---|
570 | :note: pars must contains only name of existing model's parameters |
---|
571 | |
---|
572 | """ |
---|
573 | if model == None: |
---|
574 | raise ValueError, "AbstractFitEngine: Need to set model to fit" |
---|
575 | |
---|
576 | new_model = model |
---|
577 | if not issubclass(model.__class__, Model): |
---|
578 | new_model = Model(model, data) |
---|
579 | |
---|
580 | if len(constraints) > 0: |
---|
581 | for constraint in constraints: |
---|
582 | name, value = constraint |
---|
583 | try: |
---|
584 | new_model.parameterset[str(name)].set(str(value)) |
---|
585 | except: |
---|
586 | msg = "Fit Engine: Error occurs when setting the constraint" |
---|
587 | msg += " %s for parameter %s " % (value, name) |
---|
588 | raise ValueError, msg |
---|
589 | |
---|
590 | if len(pars) > 0: |
---|
591 | temp = [] |
---|
592 | for item in pars: |
---|
593 | if item in new_model.model.getParamList(): |
---|
594 | temp.append(item) |
---|
595 | self.param_list.append(item) |
---|
596 | else: |
---|
597 | |
---|
598 | msg = "wrong parameter %s used " % str(item) |
---|
599 | msg += "to set model %s. Choose " % str(new_model.model.name) |
---|
600 | msg += "parameter name within %s" % \ |
---|
601 | str(new_model.model.getParamList()) |
---|
602 | raise ValueError, msg |
---|
603 | |
---|
604 | #A fitArrange is already created but contains data_list only at id |
---|
605 | if self.fit_arrange_dict.has_key(id): |
---|
606 | self.fit_arrange_dict[id].set_model(new_model) |
---|
607 | self.fit_arrange_dict[id].pars = pars |
---|
608 | else: |
---|
609 | #no fitArrange object has been create with this id |
---|
610 | fitproblem = FitArrange() |
---|
611 | fitproblem.set_model(new_model) |
---|
612 | fitproblem.pars = pars |
---|
613 | self.fit_arrange_dict[id] = fitproblem |
---|
614 | vals = [] |
---|
615 | for name in pars: |
---|
616 | vals.append(new_model.model.getParam(name)) |
---|
617 | self.fit_arrange_dict[id].vals = vals |
---|
618 | else: |
---|
619 | raise ValueError, "park_integration:missing parameters" |
---|
620 | |
---|
621 | def set_data(self, data, id, smearer=None, qmin=None, qmax=None): |
---|
622 | """ |
---|
623 | Receives plottable, creates a list of data to fit,set data |
---|
624 | in a FitArrange object and adds that object in a dictionary |
---|
625 | with key id. |
---|
626 | |
---|
627 | :param data: data added |
---|
628 | :param id: unique key corresponding to a fitArrange object with data |
---|
629 | """ |
---|
630 | if data.__class__.__name__ == 'Data2D': |
---|
631 | fitdata = FitData2D(sans_data2d=data, data=data.data, |
---|
632 | err_data=data.err_data) |
---|
633 | else: |
---|
634 | fitdata = FitData1D(x=data.x, y=data.y, |
---|
635 | dx=data.dx, dy=data.dy, smearer=smearer) |
---|
636 | fitdata.sans_data = data |
---|
637 | |
---|
638 | fitdata.set_fit_range(qmin=qmin, qmax=qmax) |
---|
639 | #A fitArrange is already created but contains model only at id |
---|
640 | if id in self.fit_arrange_dict: |
---|
641 | self.fit_arrange_dict[id].add_data(fitdata) |
---|
642 | else: |
---|
643 | #no fitArrange object has been create with this id |
---|
644 | fitproblem = FitArrange() |
---|
645 | fitproblem.add_data(fitdata) |
---|
646 | self.fit_arrange_dict[id] = fitproblem |
---|
647 | |
---|
648 | def get_model(self, id): |
---|
649 | """ |
---|
650 | :param id: id is key in the dictionary containing the model to return |
---|
651 | |
---|
652 | :return: a model at this id or None if no FitArrange element was |
---|
653 | created with this id |
---|
654 | """ |
---|
655 | if id in self.fit_arrange_dict: |
---|
656 | return self.fit_arrange_dict[id].get_model() |
---|
657 | else: |
---|
658 | return None |
---|
659 | |
---|
660 | def remove_fit_problem(self, id): |
---|
661 | """remove fitarrange in id""" |
---|
662 | if id in self.fit_arrange_dict: |
---|
663 | del self.fit_arrange_dict[id] |
---|
664 | |
---|
665 | def select_problem_for_fit(self, id, value): |
---|
666 | """ |
---|
667 | select a couple of model and data at the id position in dictionary |
---|
668 | and set in self.selected value to value |
---|
669 | |
---|
670 | :param value: the value to allow fitting. |
---|
671 | can only have the value one or zero |
---|
672 | """ |
---|
673 | if id in self.fit_arrange_dict: |
---|
674 | self.fit_arrange_dict[id].set_to_fit(value) |
---|
675 | |
---|
676 | def get_problem_to_fit(self, id): |
---|
677 | """ |
---|
678 | return the self.selected value of the fit problem of id |
---|
679 | |
---|
680 | :param id: the id of the problem |
---|
681 | """ |
---|
682 | if id in self.fit_arrange_dict: |
---|
683 | self.fit_arrange_dict[id].get_to_fit() |
---|
684 | |
---|
685 | |
---|
686 | class FitArrange: |
---|
687 | def __init__(self): |
---|
688 | """ |
---|
689 | Class FitArrange contains a set of data for a given model |
---|
690 | to perform the Fit.FitArrange must contain exactly one model |
---|
691 | and at least one data for the fit to be performed. |
---|
692 | |
---|
693 | model: the model selected by the user |
---|
694 | Ldata: a list of data what the user wants to fit |
---|
695 | |
---|
696 | """ |
---|
697 | self.model = None |
---|
698 | self.data_list = [] |
---|
699 | self.pars = [] |
---|
700 | self.vals = [] |
---|
701 | self.selected = 0 |
---|
702 | |
---|
703 | def set_model(self, model): |
---|
704 | """ |
---|
705 | set_model save a copy of the model |
---|
706 | |
---|
707 | :param model: the model being set |
---|
708 | """ |
---|
709 | self.model = model |
---|
710 | |
---|
711 | def add_data(self, data): |
---|
712 | """ |
---|
713 | add_data fill a self.data_list with data to fit |
---|
714 | |
---|
715 | :param data: Data to add in the list |
---|
716 | """ |
---|
717 | if not data in self.data_list: |
---|
718 | self.data_list.append(data) |
---|
719 | |
---|
720 | def get_model(self): |
---|
721 | """ |
---|
722 | :return: saved model |
---|
723 | """ |
---|
724 | return self.model |
---|
725 | |
---|
726 | def get_data(self): |
---|
727 | """ |
---|
728 | :return: list of data data_list |
---|
729 | """ |
---|
730 | return self.data_list[0] |
---|
731 | |
---|
732 | def remove_data(self, data): |
---|
733 | """ |
---|
734 | Remove one element from the list |
---|
735 | |
---|
736 | :param data: Data to remove from data_list |
---|
737 | """ |
---|
738 | if data in self.data_list: |
---|
739 | self.data_list.remove(data) |
---|
740 | |
---|
741 | def set_to_fit(self, value=0): |
---|
742 | """ |
---|
743 | set self.selected to 0 or 1 for other values raise an exception |
---|
744 | |
---|
745 | :param value: integer between 0 or 1 |
---|
746 | """ |
---|
747 | self.selected = value |
---|
748 | |
---|
749 | def get_to_fit(self): |
---|
750 | """ |
---|
751 | return self.selected value |
---|
752 | """ |
---|
753 | return self.selected |
---|
754 | |
---|
755 | |
---|
756 | IS_MAC = True |
---|
757 | if sys.platform.count("win32") > 0: |
---|
758 | IS_MAC = False |
---|
759 | |
---|
760 | |
---|
761 | class FResult(object): |
---|
762 | """ |
---|
763 | Storing fit result |
---|
764 | """ |
---|
765 | def __init__(self, model=None, param_list=None, data=None): |
---|
766 | self.calls = None |
---|
767 | self.pars = [] |
---|
768 | self.fitness = None |
---|
769 | self.chisqr = None |
---|
770 | self.pvec = [] |
---|
771 | self.cov = [] |
---|
772 | self.info = None |
---|
773 | self.mesg = None |
---|
774 | self.success = None |
---|
775 | self.stderr = None |
---|
776 | self.residuals = [] |
---|
777 | self.index = [] |
---|
778 | self.parameters = None |
---|
779 | self.is_mac = IS_MAC |
---|
780 | self.model = model |
---|
781 | self.data = data |
---|
782 | self.theory = [] |
---|
783 | self.param_list = param_list |
---|
784 | self.iterations = 0 |
---|
785 | self.inputs = [] |
---|
786 | self.fitter_id = None |
---|
787 | if self.model is not None and self.data is not None: |
---|
788 | self.inputs = [(self.model, self.data)] |
---|
789 | |
---|
790 | def set_model(self, model): |
---|
791 | """ |
---|
792 | """ |
---|
793 | self.model = model |
---|
794 | |
---|
795 | def set_fitness(self, fitness): |
---|
796 | """ |
---|
797 | """ |
---|
798 | self.fitness = fitness |
---|
799 | |
---|
800 | def __str__(self): |
---|
801 | """ |
---|
802 | """ |
---|
803 | if self.pvec == None and self.model is None and self.param_list is None: |
---|
804 | return "No results" |
---|
805 | n = len(self.model.parameterset) |
---|
806 | |
---|
807 | result_param = zip(xrange(n), self.model.parameterset) |
---|
808 | msg1 = ["[Iteration #: %s ]" % self.iterations] |
---|
809 | msg3 = ["=== goodness of fit: %s ===" % (str(self.fitness))] |
---|
810 | if not self.is_mac: |
---|
811 | msg2 = ["P%-3d %s......|.....%s" % \ |
---|
812 | (p[0], p[1], p[1].value)\ |
---|
813 | for p in result_param if p[1].name in self.param_list] |
---|
814 | msg = msg1 + msg3 + msg2 |
---|
815 | else: |
---|
816 | msg = msg1 + msg3 |
---|
817 | msg = "\n".join(msg) |
---|
818 | return msg |
---|
819 | |
---|
820 | def print_summary(self): |
---|
821 | """ |
---|
822 | """ |
---|
823 | print self |
---|