source: sasview/src/sans/dataloader/manipulations.py @ f8063bf

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since f8063bf was 5777106, checked in by Mathieu Doucet <doucetm@…>, 11 years ago

Moving things around. Will definitely not build.

  • Property mode set to 100644
File size: 40.2 KB
Line 
1"""
2Data manipulations for 2D data sets.
3Using the meta data information, various types of averaging
4are performed in Q-space
5"""
6#####################################################################
7#This software was developed by the University of Tennessee as part of the
8#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
9#project funded by the US National Science Foundation.
10#See the license text in license.txt
11#copyright 2008, University of Tennessee
12######################################################################
13
14#TODO: copy the meta data from the 2D object to the resulting 1D object
15import math
16import numpy
17
18#from data_info import plottable_2D
19from data_info import Data1D
20
21
22def get_q(dx, dy, det_dist, wavelength):
23    """
24    :param dx: x-distance from beam center [mm]
25    :param dy: y-distance from beam center [mm]
26   
27    :return: q-value at the given position
28    """
29    # Distance from beam center in the plane of detector
30    plane_dist = math.sqrt(dx*dx + dy*dy)
31    # Half of the scattering angle
32    theta = 0.5 * math.atan(plane_dist/det_dist)
33    return (4.0 * math.pi/wavelength) * math.sin(theta)
34
35
36def get_q_compo(dx, dy, det_dist, wavelength, compo=None):
37    """
38    This reduces tiny error at very large q.
39    Implementation of this func is not started yet.<--ToDo
40    """
41    if dy == 0:
42        if dx >= 0:
43            angle_xy = 0
44        else:
45            angle_xy = math.pi
46    else:
47        angle_xy = math.atan(dx/dy)
48       
49    if compo == "x":
50        out = get_q(dx, dy, det_dist, wavelength) * math.cos(angle_xy)
51    elif compo == "y":
52        out = get_q(dx, dy, det_dist, wavelength) * math.sin(angle_xy)
53    else:
54        out = get_q(dx, dy, det_dist, wavelength)
55    return out
56
57
58def flip_phi(phi):
59    """
60    Correct phi to within the 0 <= to <= 2pi range
61   
62    :return: phi in >=0 and <=2Pi
63    """
64    Pi = math.pi
65    if phi < 0:
66        phi_out = phi + (2 * Pi)
67    elif phi > (2 * Pi):
68        phi_out = phi - (2 * Pi)
69    else:
70        phi_out = phi
71    return phi_out
72
73
74def reader2D_converter(data2d=None):
75    """
76    convert old 2d format opened by IhorReader or danse_reader
77    to new Data2D format
78   
79    :param data2d: 2d array of Data2D object
80   
81    :return: 1d arrays of Data2D object
82   
83    """
84    if data2d.data == None or data2d.x_bins == None or data2d.y_bins == None:
85        raise ValueError, "Can't convert this data: data=None..."
86   
87    from sans.dataloader.data_info import Data2D
88
89    new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins), 1))
90    new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins), 1))
91    new_y = new_y.swapaxes(0, 1)
92
93    new_data = data2d.data.flatten()
94    qx_data = new_x.flatten()
95    qy_data = new_y.flatten()
96    q_data = numpy.sqrt(qx_data*qx_data + qy_data*qy_data)
97    if data2d.err_data == None or numpy.any(data2d.err_data <= 0):
98        new_err_data = numpy.sqrt(numpy.abs(new_data))
99    else:
100        new_err_data = data2d.err_data.flatten()
101    mask = numpy.ones(len(new_data), dtype=bool)
102
103    #TODO: make sense of the following two lines...
104    output = Data2D()
105    output = data2d
106    output.data = new_data
107    output.err_data = new_err_data
108    output.qx_data = qx_data
109    output.qy_data = qy_data
110    output.q_data = q_data
111    output.mask = mask
112
113    return output
114
115
116class _Slab(object):
117    """
118    Compute average I(Q) for a region of interest
119    """
120    def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0,
121                 y_max=0.0, bin_width=0.001):
122        # Minimum Qx value [A-1]
123        self.x_min = x_min
124        # Maximum Qx value [A-1]
125        self.x_max = x_max
126        # Minimum Qy value [A-1]
127        self.y_min = y_min
128        # Maximum Qy value [A-1]
129        self.y_max = y_max
130        # Bin width (step size) [A-1]
131        self.bin_width = bin_width
132        # If True, I(|Q|) will be return, otherwise,
133        # negative q-values are allowed
134        self.fold = False
135       
136    def __call__(self, data2D):
137        return NotImplemented
138       
139    def _avg(self, data2D, maj):
140        """
141        Compute average I(Q_maj) for a region of interest.
142        The major axis is defined as the axis of Q_maj.
143        The minor axis is the axis that we average over.
144         
145        :param data2D: Data2D object
146        :param maj_min: min value on the major axis
147       
148        :return: Data1D object
149        """
150        if len(data2D.detector) != 1:
151            msg = "_Slab._avg: invalid number of "
152            msg += " detectors: %g" % len(data2D.detector)
153            raise RuntimeError, msg
154       
155        # Get data
156        data = data2D.data[numpy.isfinite(data2D.data)]
157        q_data = data2D.q_data[numpy.isfinite(data2D.data)]
158        err_data = data2D.err_data[numpy.isfinite(data2D.data)]
159        qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]
160        qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]
161             
162        # Build array of Q intervals
163        if maj == 'x':
164            if self.fold:
165                x_min = 0
166            else:
167                x_min = self.x_min
168            nbins = int(math.ceil((self.x_max - x_min) / self.bin_width))
169            qbins = self.bin_width * numpy.arange(nbins) + x_min
170        elif maj == 'y':
171            if self.fold:
172                y_min = 0
173            else:
174                y_min = self.y_min
175            nbins = int(math.ceil((self.y_max - y_min)/self.bin_width))
176            qbins = self.bin_width * numpy.arange(nbins) + y_min
177        else:
178            raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj)
179                               
180        x = numpy.zeros(nbins)
181        y = numpy.zeros(nbins)
182        err_y = numpy.zeros(nbins)
183        y_counts = numpy.zeros(nbins)
184
185        # Average pixelsize in q space
186        for npts in range(len(data)):
187            # default frac
188            frac_x = 0
189            frac_y = 0
190            # get ROI
191            if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]:
192                frac_x = 1
193            if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]:
194                frac_y = 1
195            frac = frac_x * frac_y
196           
197            if frac == 0:
198                continue
199            # binning: find axis of q
200            if maj == 'x':
201                q_value = qx_data[npts]
202                min = x_min
203            if maj == 'y':
204                q_value = qy_data[npts]
205                min = y_min
206            if self.fold and q_value < 0:
207                q_value = -q_value
208            # bin
209            i_q = int(math.ceil((q_value - min) / self.bin_width)) - 1
210           
211            # skip outside of max bins
212            if i_q < 0 or i_q >= nbins:
213                continue
214           
215            #TODO: find better definition of x[i_q] based on q_data
216            x[i_q] += frac * q_value  # min + (i_q + 1) * self.bin_width / 2.0
217            y[i_q] += frac * data[npts]
218           
219            if err_data == None or err_data[npts] == 0.0:
220                if data[npts] < 0:
221                    data[npts] = -data[npts]
222                err_y[i_q] += frac * frac * data[npts]
223            else:
224                err_y[i_q] += frac * frac * err_data[npts] * err_data[npts]
225            y_counts[i_q] += frac
226               
227        # Average the sums
228        for n in range(nbins):
229            err_y[n] = math.sqrt(err_y[n])
230         
231        err_y = err_y / y_counts
232        y = y / y_counts
233        x = x / y_counts
234        idx = (numpy.isfinite(y) & numpy.isfinite(x))
235       
236        if not idx.any(): 
237            msg = "Average Error: No points inside ROI to average..."
238            raise ValueError, msg
239        #elif len(y[idx])!= nbins:
240        #    msg = "empty bin(s) due to tight binning..."
241        #    print "resulted",nbins- len(y[idx]), msg
242        return Data1D(x=x[idx], y=y[idx], dy=err_y[idx])
243       
244       
245class SlabY(_Slab):
246    """
247    Compute average I(Qy) for a region of interest
248    """
249    def __call__(self, data2D):
250        """
251        Compute average I(Qy) for a region of interest
252         
253        :param data2D: Data2D object
254       
255        :return: Data1D object
256        """
257        return self._avg(data2D, 'y')
258       
259       
260class SlabX(_Slab):
261    """
262    Compute average I(Qx) for a region of interest
263    """
264    def __call__(self, data2D):
265        """
266        Compute average I(Qx) for a region of interest
267         
268        :param data2D: Data2D object
269       
270        :return: Data1D object
271       
272        """
273        return self._avg(data2D, 'x')
274
275
276class Boxsum(object):
277    """
278    Perform the sum of counts in a 2D region of interest.
279    """
280    def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):
281        # Minimum Qx value [A-1]
282        self.x_min = x_min
283        # Maximum Qx value [A-1]
284        self.x_max = x_max
285        # Minimum Qy value [A-1]
286        self.y_min = y_min
287        # Maximum Qy value [A-1]
288        self.y_max = y_max
289
290    def __call__(self, data2D):
291        """
292        Perform the sum in the region of interest
293         
294        :param data2D: Data2D object
295       
296        :return: number of counts, error on number of counts,
297            number of points summed
298       
299        """
300        y, err_y, y_counts = self._sum(data2D)
301       
302        # Average the sums
303        counts = 0 if y_counts == 0 else y
304        error = 0 if y_counts == 0 else math.sqrt(err_y)
305       
306        # Added y_counts to return, SMK & PDB, 04/03/2013
307        return counts, error, y_counts
308       
309    def _sum(self, data2D):
310        """
311        Perform the sum in the region of interest
312       
313        :param data2D: Data2D object
314       
315        :return: number of counts,
316            error on number of counts, number of entries summed
317       
318        """
319        if len(data2D.detector) != 1:
320            msg = "Circular averaging: invalid number "
321            msg += "of detectors: %g" % len(data2D.detector)
322            raise RuntimeError, msg
323        # Get data
324        data = data2D.data[numpy.isfinite(data2D.data)]
325        q_data = data2D.q_data[numpy.isfinite(data2D.data)]
326        err_data = data2D.err_data[numpy.isfinite(data2D.data)]
327        qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]
328        qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]
329   
330        y = 0.0
331        err_y = 0.0
332        y_counts = 0.0
333
334        # Average pixelsize in q space
335        for npts in range(len(data)):
336            # default frac
337            frac_x = 0
338            frac_y = 0
339           
340            # get min and max at each points
341            qx = qx_data[npts]
342            qy = qy_data[npts]
343           
344            # get the ROI
345            if self.x_min <= qx and self.x_max > qx:
346                frac_x = 1
347            if self.y_min <= qy and self.y_max > qy:
348                frac_y = 1
349            #Find the fraction along each directions
350            frac = frac_x * frac_y
351            if frac == 0:
352                continue
353            y += frac * data[npts]
354            if err_data == None or err_data[npts] == 0.0:
355                if data[npts] < 0:
356                    data[npts] = -data[npts]
357                err_y += frac * frac * data[npts]
358            else:
359                err_y += frac * frac * err_data[npts] * err_data[npts]
360            y_counts += frac
361        return y, err_y, y_counts
362
363
364class Boxavg(Boxsum):
365    """
366    Perform the average of counts in a 2D region of interest.
367    """
368    def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):
369        super(Boxavg, self).__init__(x_min=x_min, x_max=x_max,
370                                      y_min=y_min, y_max=y_max)
371
372    def __call__(self, data2D):
373        """
374        Perform the sum in the region of interest
375         
376        :param data2D: Data2D object
377       
378        :return: average counts, error on average counts
379       
380        """
381        y, err_y, y_counts = self._sum(data2D)
382       
383        # Average the sums
384        counts = 0 if y_counts == 0 else y / y_counts
385        error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts
386       
387        return counts, error
388       
389       
390def get_pixel_fraction_square(x, xmin, xmax):
391    """
392    Return the fraction of the length
393    from xmin to x.::
394   
395     
396           A            B
397       +-----------+---------+
398       xmin        x         xmax
399     
400    :param x: x-value
401    :param xmin: minimum x for the length considered
402    :param xmax: minimum x for the length considered
403   
404    :return: (x-xmin)/(xmax-xmin) when xmin < x < xmax
405   
406    """
407    if x <= xmin:
408        return 0.0
409    if x > xmin and x < xmax:
410        return (x - xmin) / (xmax - xmin)
411    else:
412        return 1.0
413
414
415class CircularAverage(object):
416    """
417    Perform circular averaging on 2D data
418   
419    The data returned is the distribution of counts
420    as a function of Q
421    """
422    def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005):
423        # Minimum radius included in the average [A-1]
424        self.r_min = r_min
425        # Maximum radius included in the average [A-1]
426        self.r_max = r_max
427        # Bin width (step size) [A-1]
428        self.bin_width = bin_width
429
430    def __call__(self, data2D, ismask=False):
431        """
432        Perform circular averaging on the data
433       
434        :param data2D: Data2D object
435       
436        :return: Data1D object
437        """
438        # Get data W/ finite values
439        data = data2D.data[numpy.isfinite(data2D.data)]
440        q_data = data2D.q_data[numpy.isfinite(data2D.data)]
441        qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]
442        err_data = data2D.err_data[numpy.isfinite(data2D.data)]
443        mask_data = data2D.mask[numpy.isfinite(data2D.data)]
444       
445        dq_data = None
446       
447        # Get the dq for resolution averaging
448        if data2D.dqx_data != None and data2D.dqy_data != None:
449            # The pinholes and det. pix contribution present
450            # in both direction of the 2D which must be subtracted when
451            # converting to 1D: dq_overlap should calculated ideally at
452            # q = 0. Note This method works on only pinhole geometry.
453            # Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average.
454            z_max = max(data2D.q_data)
455            z_min = min(data2D.q_data)
456            x_max = data2D.dqx_data[data2D.q_data[z_max]]
457            x_min = data2D.dqx_data[data2D.q_data[z_min]]
458            y_max = data2D.dqy_data[data2D.q_data[z_max]]
459            y_min = data2D.dqy_data[data2D.q_data[z_min]]
460            # Find qdx at q = 0
461            dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min)
462            # when extrapolation goes wrong
463            if dq_overlap_x > min(data2D.dqx_data):
464                dq_overlap_x = min(data2D.dqx_data)
465            dq_overlap_x *= dq_overlap_x
466            # Find qdx at q = 0
467            dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min)
468            # when extrapolation goes wrong
469            if dq_overlap_y > min(data2D.dqy_data):
470                dq_overlap_y = min(data2D.dqy_data)
471            # get dq at q=0.
472            dq_overlap_y *= dq_overlap_y
473
474            dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0)
475            # Final protection of dq
476            if dq_overlap < 0:
477                dq_overlap = y_min
478            dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)]
479            dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap
480            # def; dqx_data = dq_r dqy_data = dq_phi
481            # Convert dq 2D to 1D here
482            dqx = dqx_data * dqx_data
483            dqy = dqy_data * dqy_data
484            dq_data = numpy.add(dqx, dqy)
485            dq_data = numpy.sqrt(dq_data)
486           
487        #q_data_max = numpy.max(q_data)
488        if len(data2D.q_data) == None:
489            msg = "Circular averaging: invalid q_data: %g" % data2D.q_data
490            raise RuntimeError, msg
491
492        # Build array of Q intervals
493        nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width))
494        qbins = self.bin_width * numpy.arange(nbins) + self.r_min
495
496        x = numpy.zeros(nbins)
497        y = numpy.zeros(nbins)
498        err_y = numpy.zeros(nbins)
499        err_x = numpy.zeros(nbins)
500        y_counts = numpy.zeros(nbins)
501
502        for npt in range(len(data)):
503           
504            if ismask and not mask_data[npt]:
505                continue
506           
507            frac = 0
508           
509            # q-value at the pixel (j,i)
510            q_value = q_data[npt]
511            data_n = data[npt]
512           
513            ## No need to calculate the frac when all data are within range
514            if self.r_min >= self.r_max:
515                raise ValueError, "Limit Error: min > max"
516           
517            if self.r_min <= q_value and q_value <= self.r_max:
518                frac = 1
519            if frac == 0:
520                continue 
521            i_q = int(math.floor((q_value - self.r_min) / self.bin_width))
522
523            # Take care of the edge case at phi = 2pi.
524            if i_q == nbins:
525                i_q = nbins - 1
526            y[i_q] += frac * data_n
527            # Take dqs from data to get the q_average
528            x[i_q] += frac * q_value
529            if err_data == None or err_data[npt] == 0.0:
530                if data_n < 0:
531                    data_n = -data_n
532                err_y[i_q] += frac * frac * data_n
533            else:
534                err_y[i_q] += frac * frac * err_data[npt] * err_data[npt]
535            if dq_data != None:
536                # To be consistent with dq calculation in 1d reduction,
537                # we need just the averages (not quadratures) because
538                # it should not depend on the number of the q points
539                # in the qr bins.
540                err_x[i_q] += frac * dq_data[npt]
541            else:
542                err_x = None
543            y_counts[i_q] += frac
544       
545        # Average the sums
546        for n in range(nbins):
547            if err_y[n] < 0:
548                err_y[n] = -err_y[n]
549            err_y[n] = math.sqrt(err_y[n])
550            #if err_x != None:
551            #    err_x[n] = math.sqrt(err_x[n])
552           
553        err_y = err_y / y_counts
554        err_y[err_y == 0] = numpy.average(err_y)
555        y = y / y_counts
556        x = x / y_counts
557        idx = (numpy.isfinite(y)) & (numpy.isfinite(x))
558       
559        if err_x != None:
560            d_x = err_x[idx] / y_counts[idx]
561        else:
562            d_x = None
563
564        if not idx.any():
565            msg = "Average Error: No points inside ROI to average..."
566            raise ValueError, msg
567       
568        return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x)
569   
570
571class Ring(object):
572    """
573    Defines a ring on a 2D data set.
574    The ring is defined by r_min, r_max, and
575    the position of the center of the ring.
576   
577    The data returned is the distribution of counts
578    around the ring as a function of phi.
579   
580    Phi_min and phi_max should be defined between 0 and 2*pi
581    in anti-clockwise starting from the x- axis on the left-hand side
582    """
583    #Todo: remove center.
584    def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=20):
585        # Minimum radius
586        self.r_min = r_min
587        # Maximum radius
588        self.r_max = r_max
589        # Center of the ring in x
590        self.center_x = center_x
591        # Center of the ring in y
592        self.center_y = center_y
593        # Number of angular bins
594        self.nbins_phi = nbins
595       
596    def __call__(self, data2D):
597        """
598        Apply the ring to the data set.
599        Returns the angular distribution for a given q range
600       
601        :param data2D: Data2D object
602       
603        :return: Data1D object
604        """
605        if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]:
606            raise RuntimeError, "Ring averaging only take plottable_2D objects"
607       
608        Pi = math.pi
609 
610        # Get data
611        data = data2D.data[numpy.isfinite(data2D.data)]
612        q_data = data2D.q_data[numpy.isfinite(data2D.data)]
613        err_data = data2D.err_data[numpy.isfinite(data2D.data)]
614        qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]
615        qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]
616       
617        q_data_max = numpy.max(q_data)
618       
619        # Set space for 1d outputs
620        phi_bins   = numpy.zeros(self.nbins_phi)
621        phi_counts = numpy.zeros(self.nbins_phi)
622        phi_values = numpy.zeros(self.nbins_phi)
623        phi_err    = numpy.zeros(self.nbins_phi)
624       
625        for npt in range(len(data)):
626            frac = 0
627            # q-value at the point (npt)
628            q_value = q_data[npt]
629            data_n = data[npt]
630                       
631            # phi-value at the point (npt)
632            phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi
633           
634            if self.r_min <= q_value and q_value <= self.r_max:
635                frac = 1
636            if frac == 0:
637                continue
638            # binning           
639            i_phi = int(math.floor((self.nbins_phi) * phi_value / (2 * Pi)))
640           
641            # Take care of the edge case at phi = 2pi.
642            if i_phi == self.nbins_phi:
643                i_phi =  self.nbins_phi - 1
644            phi_bins[i_phi] += frac * data[npt]
645           
646            if err_data == None or err_data[npt] == 0.0:
647                if data_n < 0:
648                    data_n = -data_n
649                phi_err[i_phi] += frac * frac * math.fabs(data_n)
650            else:
651                phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt]
652            phi_counts[i_phi] += frac
653                         
654        for i in range(self.nbins_phi):
655            phi_bins[i] = phi_bins[i] / phi_counts[i]
656            phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i]
657            phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i + 0.5)
658           
659        idx = (numpy.isfinite(phi_bins))
660
661        if not idx.any():
662            msg = "Average Error: No points inside ROI to average..."
663            raise ValueError, msg
664        #elif len(phi_bins[idx])!= self.nbins_phi:
665        #    print "resulted",self.nbins_phi- len(phi_bins[idx])
666        #,"empty bin(s) due to tight binning..."
667        return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx])
668   
669   
670def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11):
671    """
672    Returns the fraction of the pixel defined by
673    the four corners (q_00, q_01, q_10, q_11) that
674    has q < qmax.::
675   
676                q_01                q_11
677        y=1         +--------------+
678                    |              |
679                    |              |
680                    |              |
681        y=0         +--------------+
682                q_00                q_10
683       
684                    x=0            x=1
685   
686    """
687    # y side for x = minx
688    x_0 = get_intercept(qmax, q_00, q_01)
689    # y side for x = maxx
690    x_1 = get_intercept(qmax, q_10, q_11)
691   
692    # x side for y = miny
693    y_0 = get_intercept(qmax, q_00, q_10)
694    # x side for y = maxy
695    y_1 = get_intercept(qmax, q_01, q_11)
696   
697    # surface fraction for a 1x1 pixel
698    frac_max = 0
699   
700    if x_0 and x_1:
701        frac_max = (x_0 + x_1) / 2.0
702    elif y_0 and y_1:
703        frac_max = (y_0 + y_1) / 2.0
704    elif x_0 and y_0:
705        if q_00 < q_10:
706            frac_max = x_0 * y_0 / 2.0
707        else:
708            frac_max = 1.0 - x_0 * y_0 / 2.0
709    elif x_0 and y_1:
710        if q_00 < q_10:
711            frac_max = x_0 * y_1 / 2.0
712        else:
713            frac_max = 1.0 - x_0 * y_1 / 2.0
714    elif x_1 and y_0:
715        if q_00 > q_10:
716            frac_max = x_1 * y_0 / 2.0
717        else:
718            frac_max = 1.0 - x_1 * y_0 / 2.0
719    elif x_1 and y_1:
720        if q_00 < q_10:
721            frac_max = 1.0 - (1.0 - x_1) * (1.0 - y_1) / 2.0
722        else:
723            frac_max = (1.0 - x_1) * (1.0 - y_1) / 2.0
724           
725    # If we make it here, there is no intercept between
726    # this pixel and the constant-q ring. We only need
727    # to know if we have to include it or exclude it.
728    elif (q_00 + q_01 + q_10 + q_11) / 4.0 <  qmax:
729        frac_max = 1.0
730
731    return frac_max
732             
733             
734def get_intercept(q, q_0, q_1):
735    """
736    Returns the fraction of the side at which the
737    q-value intercept the pixel, None otherwise.
738    The values returned is the fraction ON THE SIDE
739    OF THE LOWEST Q. ::
740   
741   
742            A           B
743        +-----------+--------+    <--- pixel size
744        0                    1
745        Q_0 -------- Q ----- Q_1   <--- equivalent Q range
746        if Q_1 > Q_0, A is returned
747        if Q_1 < Q_0, B is returned
748        if Q is outside the range of [Q_0, Q_1], None is returned
749         
750    """
751    if q_1 > q_0:
752        if (q > q_0 and q <= q_1):
753            return (q - q_0) / (q_1 - q_0)
754    else:
755        if (q > q_1 and q <= q_0):
756            return (q - q_1) / (q_0 - q_1)
757    return None
758     
759     
760class _Sector:
761    """
762    Defines a sector region on a 2D data set.
763    The sector is defined by r_min, r_max, phi_min, phi_max,
764    and the position of the center of the ring
765    where phi_min and phi_max are defined by the right
766    and left lines wrt central line
767    and phi_max could be less than phi_min.
768   
769    Phi is defined between 0 and 2*pi in anti-clockwise
770    starting from the x- axis on the left-hand side
771    """
772    def __init__(self, r_min, r_max, phi_min=0, phi_max=2*math.pi, nbins=20):
773        self.r_min = r_min
774        self.r_max = r_max
775        self.phi_min = phi_min
776        self.phi_max = phi_max
777        self.nbins = nbins
778       
779    def _agv(self, data2D, run='phi'):
780        """
781        Perform sector averaging.
782       
783        :param data2D: Data2D object
784        :param run:  define the varying parameter ('phi' , 'q' , or 'q2')
785       
786        :return: Data1D object
787        """
788        if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]:
789            raise RuntimeError, "Ring averaging only take plottable_2D objects"
790        Pi = math.pi
791
792        # Get the all data & info
793        data = data2D.data[numpy.isfinite(data2D.data)]
794        q_data = data2D.q_data[numpy.isfinite(data2D.data)]
795        err_data = data2D.err_data[numpy.isfinite(data2D.data)]
796        qx_data = data2D.qx_data[numpy.isfinite(data2D.data)]
797        qy_data = data2D.qy_data[numpy.isfinite(data2D.data)]
798        dq_data = None
799           
800        # Get the dq for resolution averaging
801        if data2D.dqx_data != None and data2D.dqy_data != None:
802            # The pinholes and det. pix contribution present
803            # in both direction of the 2D which must be subtracted when
804            # converting to 1D: dq_overlap should calculated ideally at
805            # q = 0.
806            # Extrapolate dqy(perp) at q = 0
807            z_max = max(data2D.q_data)
808            z_min = min(data2D.q_data)
809            x_max = data2D.dqx_data[data2D.q_data[z_max]]
810            x_min = data2D.dqx_data[data2D.q_data[z_min]]
811            y_max = data2D.dqy_data[data2D.q_data[z_max]]
812            y_min = data2D.dqy_data[data2D.q_data[z_min]]
813            # Find qdx at q = 0
814            dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min)
815            # when extrapolation goes wrong
816            if dq_overlap_x > min(data2D.dqx_data):
817                dq_overlap_x = min(data2D.dqx_data)
818            dq_overlap_x *= dq_overlap_x
819            # Find qdx at q = 0
820            dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min)
821            # when extrapolation goes wrong
822            if dq_overlap_y > min(data2D.dqy_data):
823                dq_overlap_y = min(data2D.dqy_data)
824            # get dq at q=0.
825            dq_overlap_y *= dq_overlap_y
826
827            dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0)
828            if dq_overlap < 0:
829                dq_overlap = y_min
830            dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)]
831            dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap
832            # def; dqx_data = dq_r dqy_data = dq_phi
833            # Convert dq 2D to 1D here
834            dqx = dqx_data * dqx_data
835            dqy = dqy_data * dqy_data
836            dq_data = numpy.add(dqx, dqy)
837            dq_data = numpy.sqrt(dq_data)
838           
839        #set space for 1d outputs
840        x        = numpy.zeros(self.nbins)
841        y        = numpy.zeros(self.nbins)
842        y_err    = numpy.zeros(self.nbins)
843        x_err    = numpy.zeros(self.nbins)
844        y_counts = numpy.zeros(self.nbins)
845                     
846        # Get the min and max into the region: 0 <= phi < 2Pi
847        phi_min = flip_phi(self.phi_min)
848        phi_max = flip_phi(self.phi_max)
849       
850        q_data_max = numpy.max(q_data)
851                     
852        for n in range(len(data)):
853            frac = 0
854           
855            # q-value at the pixel (j,i)
856            q_value = q_data[n]
857            data_n = data[n]
858           
859            # Is pixel within range?
860            is_in = False
861           
862            # phi-value of the pixel (j,i)
863            phi_value = math.atan2(qy_data[n], qx_data[n]) + Pi
864           
865            ## No need to calculate the frac when all data are within range
866            if self.r_min <= q_value and q_value <= self.r_max:
867                frac = 1
868            if frac == 0:
869                continue
870            #In case of two ROIs (symmetric major and minor regions)(for 'q2')
871            if run.lower() == 'q2':
872                ## For minor sector wing
873                # Calculate the minor wing phis
874                phi_min_minor = flip_phi(phi_min - Pi)
875                phi_max_minor = flip_phi(phi_max - Pi)
876                # Check if phis of the minor ring is within 0 to 2pi
877                if phi_min_minor > phi_max_minor:
878                    is_in = (phi_value > phi_min_minor or \
879                              phi_value < phi_max_minor)
880                else:
881                    is_in = (phi_value > phi_min_minor and \
882                              phi_value < phi_max_minor)
883
884            #For all cases(i.e.,for 'q', 'q2', and 'phi')
885            #Find pixels within ROI
886            if phi_min > phi_max:
887                is_in = is_in or (phi_value > phi_min or \
888                                   phi_value < phi_max)
889            else:
890                is_in = is_in or (phi_value >= phi_min  and \
891                                    phi_value < phi_max)
892           
893            if not is_in:
894                frac = 0
895            if frac == 0:
896                continue
897            # Check which type of averaging we need
898            if run.lower() == 'phi':
899                temp_x = (self.nbins) * (phi_value - self.phi_min)
900                temp_y = (self.phi_max - self.phi_min)
901                i_bin = int(math.floor(temp_x / temp_y))
902            else:
903                temp_x = (self.nbins) * (q_value - self.r_min)
904                temp_y = (self.r_max - self.r_min)
905                i_bin = int(math.floor(temp_x / temp_y))
906
907            # Take care of the edge case at phi = 2pi.
908            if i_bin == self.nbins:
909                i_bin = self.nbins - 1
910               
911            ## Get the total y
912            y[i_bin] += frac * data_n
913            x[i_bin] += frac * q_value
914            if err_data[n] == None or err_data[n] == 0.0:
915                if data_n < 0:
916                    data_n = -data_n
917                y_err[i_bin] += frac * frac * data_n
918            else:
919                y_err[i_bin] += frac * frac * err_data[n] * err_data[n]
920               
921            if dq_data != None:
922                # To be consistent with dq calculation in 1d reduction,
923                # we need just the averages (not quadratures) because
924                # it should not depend on the number of the q points
925                # in the qr bins.
926                x_err[i_bin] += frac * dq_data[n]
927            else:
928                x_err = None
929            y_counts[i_bin] += frac
930   
931        # Organize the results
932        for i in range(self.nbins):
933            y[i] = y[i] / y_counts[i]
934            y_err[i] = math.sqrt(y_err[i]) / y_counts[i]
935
936            # The type of averaging: phi,q2, or q
937            # Calculate x[i]should be at the center of the bin
938            if run.lower() == 'phi':
939                x[i] = (self.phi_max - self.phi_min) / self.nbins * \
940                    (1.0 * i + 0.5) + self.phi_min
941            else:
942                # We take the center of ring area, not radius.
943                # This is more accurate than taking the radial center of ring.
944                #delta_r = (self.r_max - self.r_min) / self.nbins
945                #r_inner = self.r_min + delta_r * i
946                #r_outer = r_inner + delta_r
947                #x[i] = math.sqrt((r_inner * r_inner + r_outer * r_outer) / 2)
948                x[i] = x[i] / y_counts[i]
949        y_err[y_err == 0] = numpy.average(y_err)
950        idx = (numpy.isfinite(y) & numpy.isfinite(y_err))
951        if x_err != None:
952            d_x = x_err[idx] / y_counts[idx]
953        else:
954            d_x = None
955        if not idx.any():
956            msg = "Average Error: No points inside sector of ROI to average..."
957            raise ValueError, msg
958        #elif len(y[idx])!= self.nbins:
959        #    print "resulted",self.nbins- len(y[idx]),
960        #"empty bin(s) due to tight binning..."
961        return Data1D(x=x[idx], y=y[idx], dy=y_err[idx], dx=d_x)
962               
963               
964class SectorPhi(_Sector):
965    """
966    Sector average as a function of phi.
967    I(phi) is return and the data is averaged over Q.
968   
969    A sector is defined by r_min, r_max, phi_min, phi_max.
970    The number of bin in phi also has to be defined.
971    """
972    def __call__(self, data2D):
973        """
974        Perform sector average and return I(phi).
975       
976        :param data2D: Data2D object
977        :return: Data1D object
978        """
979        return self._agv(data2D, 'phi')
980   
981   
982class SectorQ(_Sector):
983    """
984    Sector average as a function of Q for both symatric wings.
985    I(Q) is return and the data is averaged over phi.
986   
987    A sector is defined by r_min, r_max, phi_min, phi_max.
988    r_min, r_max, phi_min, phi_max >0.
989    The number of bin in Q also has to be defined.
990    """
991    def __call__(self, data2D):
992        """
993        Perform sector average and return I(Q).
994       
995        :param data2D: Data2D object
996       
997        :return: Data1D object
998        """
999        return self._agv(data2D, 'q2')
1000
1001
1002class Ringcut(object):
1003    """
1004    Defines a ring on a 2D data set.
1005    The ring is defined by r_min, r_max, and
1006    the position of the center of the ring.
1007   
1008    The data returned is the region inside the ring
1009   
1010    Phi_min and phi_max should be defined between 0 and 2*pi
1011    in anti-clockwise starting from the x- axis on the left-hand side
1012    """
1013    def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0):
1014        # Minimum radius
1015        self.r_min = r_min
1016        # Maximum radius
1017        self.r_max = r_max
1018        # Center of the ring in x
1019        self.center_x = center_x
1020        # Center of the ring in y
1021        self.center_y = center_y
1022
1023    def __call__(self, data2D):
1024        """
1025        Apply the ring to the data set.
1026        Returns the angular distribution for a given q range
1027       
1028        :param data2D: Data2D object
1029       
1030        :return: index array in the range
1031        """
1032        if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]:
1033            raise RuntimeError, "Ring cut only take plottable_2D objects"
1034
1035        # Get data
1036        qx_data = data2D.qx_data
1037        qy_data = data2D.qy_data
1038        mask = data2D.mask
1039        q_data = numpy.sqrt(qx_data * qx_data + qy_data * qy_data)
1040
1041        # check whether or not the data point is inside ROI
1042        out = (self.r_min <= q_data) & (self.r_max >= q_data)
1043
1044        return (out)
1045       
1046
1047class Boxcut(object):
1048    """
1049    Find a rectangular 2D region of interest.
1050    """
1051    def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0):
1052        # Minimum Qx value [A-1]
1053        self.x_min = x_min
1054        # Maximum Qx value [A-1]
1055        self.x_max = x_max
1056        # Minimum Qy value [A-1]
1057        self.y_min = y_min
1058        # Maximum Qy value [A-1]
1059        self.y_max = y_max
1060
1061    def __call__(self, data2D):
1062        """
1063       Find a rectangular 2D region of interest.
1064         
1065       :param data2D: Data2D object
1066       :return: mask, 1d array (len = len(data))
1067           with Trues where the data points are inside ROI, otherwise False
1068        """
1069        mask = self._find(data2D)
1070       
1071        return mask
1072       
1073    def _find(self, data2D):
1074        """
1075        Find a rectangular 2D region of interest.
1076       
1077        :param data2D: Data2D object
1078       
1079        :return: out, 1d array (length = len(data))
1080           with Trues where the data points are inside ROI, otherwise Falses
1081        """
1082        if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]:
1083            raise RuntimeError, "Boxcut take only plottable_2D objects"
1084        # Get qx_ and qy_data
1085        qx_data = data2D.qx_data
1086        qy_data = data2D.qy_data
1087        mask = data2D.mask
1088       
1089        # check whether or not the data point is inside ROI
1090        outx = (self.x_min <= qx_data) & (self.x_max > qx_data)
1091        outy = (self.y_min <= qy_data) & (self.y_max > qy_data)
1092
1093        return (outx & outy)
1094
1095
1096class Sectorcut(object):
1097    """
1098    Defines a sector (major + minor) region on a 2D data set.
1099    The sector is defined by phi_min, phi_max,
1100    where phi_min and phi_max are defined by the right
1101    and left lines wrt central line.
1102   
1103    Phi_min and phi_max are given in units of radian
1104    and (phi_max-phi_min) should not be larger than pi
1105    """
1106    def __init__(self, phi_min=0, phi_max=math.pi):
1107        self.phi_min = phi_min
1108        self.phi_max = phi_max
1109             
1110    def __call__(self, data2D):
1111        """
1112        Find a rectangular 2D region of interest.
1113       
1114        :param data2D: Data2D object
1115       
1116        :return: mask, 1d array (len = len(data))
1117       
1118        with Trues where the data points are inside ROI, otherwise False
1119        """
1120        mask = self._find(data2D)
1121       
1122        return mask
1123       
1124    def _find(self, data2D):
1125        """
1126        Find a rectangular 2D region of interest.
1127       
1128        :param data2D: Data2D object
1129       
1130        :return: out, 1d array (length = len(data))
1131       
1132        with Trues where the data points are inside ROI, otherwise Falses
1133        """
1134        if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]:
1135            raise RuntimeError, "Sectorcut take only plottable_2D objects"
1136        Pi = math.pi
1137        # Get data
1138        qx_data = data2D.qx_data
1139        qy_data = data2D.qy_data
1140        phi_data = numpy.zeros(len(qx_data))
1141
1142        # get phi from data
1143        phi_data = numpy.arctan2(qy_data, qx_data)
1144       
1145        # Get the min and max into the region: -pi <= phi < Pi
1146        phi_min_major = flip_phi(self.phi_min + Pi) - Pi
1147        phi_max_major = flip_phi(self.phi_max + Pi) - Pi
1148        # check for major sector
1149        if phi_min_major > phi_max_major:
1150            out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data)
1151        else:
1152            out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data)
1153         
1154        # minor sector
1155        # Get the min and max into the region: -pi <= phi < Pi
1156        phi_min_minor = flip_phi(self.phi_min) - Pi
1157        phi_max_minor = flip_phi(self.phi_max) - Pi
1158             
1159        # check for minor sector
1160        if phi_min_minor > phi_max_minor:
1161            out_minor = (phi_min_minor <= phi_data) + \
1162                            (phi_max_minor >= phi_data)
1163        else:
1164            out_minor = (phi_min_minor <= phi_data) & \
1165                            (phi_max_minor >= phi_data)
1166        out = out_major + out_minor
1167       
1168        return out
Note: See TracBrowser for help on using the repository browser.