1 | # A sample of an experimental model function for Sum(Pmodel1,Pmodel2) |
---|
2 | import copy |
---|
3 | from sans.models.pluginmodel import Model1DPlugin |
---|
4 | # User can change the name of the model (only with single functional model) |
---|
5 | from sans.models.CylinderModel import CylinderModel as P1 |
---|
6 | from sans.models.PolymerExclVolume import PolymerExclVolume as P2 |
---|
7 | |
---|
8 | |
---|
9 | class Model(Model1DPlugin): |
---|
10 | """ |
---|
11 | Use for p1(Q)+p2(Q); |
---|
12 | Note: P(Q) refers to 'form factor' model. |
---|
13 | """ |
---|
14 | name = "" |
---|
15 | def __init__(self): |
---|
16 | Model1DPlugin.__init__(self, name='') |
---|
17 | """ |
---|
18 | :param p_model1: a form factor, P(Q) |
---|
19 | :param p_model2: another form factor, P(Q) |
---|
20 | """ |
---|
21 | p_model1 = P1() |
---|
22 | p_model2 = P2() |
---|
23 | ## Setting model name model description |
---|
24 | self.description="" |
---|
25 | self.name = "Sum[" + "P1(Cyl)" +", "+ "P2(PEV)" + "]" |
---|
26 | self.description = p_model1.name+"\n" |
---|
27 | self.description += p_model2.name+"\n" |
---|
28 | self.fill_description(p_model1, p_model2) |
---|
29 | |
---|
30 | ## Define parameters |
---|
31 | self.params = {} |
---|
32 | |
---|
33 | ## Parameter details [units, min, max] |
---|
34 | self.details = {} |
---|
35 | |
---|
36 | # non-fittable parameters |
---|
37 | self.non_fittable = p_model1.non_fittable |
---|
38 | self.non_fittable += p_model2.non_fittable |
---|
39 | |
---|
40 | ##models |
---|
41 | self.p_model1= p_model1 |
---|
42 | self.p_model2= p_model2 |
---|
43 | |
---|
44 | |
---|
45 | ## dispersion |
---|
46 | self._set_dispersion() |
---|
47 | ## Define parameters |
---|
48 | self._set_params() |
---|
49 | ## New parameter:Scaling factor |
---|
50 | self.params['scale_factor'] = 1 |
---|
51 | |
---|
52 | ## Parameter details [units, min, max] |
---|
53 | self._set_details() |
---|
54 | self.details['scale_factor'] = ['', None, None] |
---|
55 | |
---|
56 | |
---|
57 | #list of parameter that can be fitted |
---|
58 | self._set_fixed_params() |
---|
59 | ## parameters with orientation |
---|
60 | for item in self.p_model1.orientation_params: |
---|
61 | new_item = "p1_" + item |
---|
62 | if not new_item in self.orientation_params: |
---|
63 | self.orientation_params.append(new_item) |
---|
64 | |
---|
65 | for item in self.p_model2.orientation_params: |
---|
66 | new_item = "p2_" + item |
---|
67 | if not new_item in self.orientation_params: |
---|
68 | self.orientation_params.append(new_item) |
---|
69 | # get multiplicity if model provide it, else 1. |
---|
70 | try: |
---|
71 | multiplicity1 = p_model1.multiplicity |
---|
72 | try: |
---|
73 | multiplicity2 = p_model2.multiplicity |
---|
74 | except: |
---|
75 | multiplicity2 = 1 |
---|
76 | except: |
---|
77 | multiplicity1 = 1 |
---|
78 | multiplicity2 = 1 |
---|
79 | ## functional multiplicity of the model |
---|
80 | self.multiplicity1 = multiplicity1 |
---|
81 | self.multiplicity2 = multiplicity2 |
---|
82 | self.multiplicity_info = [] |
---|
83 | |
---|
84 | def _clone(self, obj): |
---|
85 | """ |
---|
86 | Internal utility function to copy the internal |
---|
87 | data members to a fresh copy. |
---|
88 | """ |
---|
89 | obj.params = copy.deepcopy(self.params) |
---|
90 | obj.description = copy.deepcopy(self.description) |
---|
91 | obj.details = copy.deepcopy(self.details) |
---|
92 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
93 | obj.p_model1 = self.p_model1.clone() |
---|
94 | obj.p_model2 = self.p_model2.clone() |
---|
95 | #obj = copy.deepcopy(self) |
---|
96 | return obj |
---|
97 | |
---|
98 | |
---|
99 | def _set_dispersion(self): |
---|
100 | """ |
---|
101 | combined the two models dispersions |
---|
102 | Polydispersion should not be applied to s_model |
---|
103 | """ |
---|
104 | ##set dispersion only from p_model |
---|
105 | for name , value in self.p_model1.dispersion.iteritems(): |
---|
106 | #if name.lower() not in self.p_model1.orientation_params: |
---|
107 | new_name = "p1_" + name |
---|
108 | self.dispersion[new_name]= value |
---|
109 | for name , value in self.p_model2.dispersion.iteritems(): |
---|
110 | #if name.lower() not in self.p_model2.orientation_params: |
---|
111 | new_name = "p2_" + name |
---|
112 | self.dispersion[new_name]= value |
---|
113 | |
---|
114 | def function(self, x=0.0): |
---|
115 | """ |
---|
116 | """ |
---|
117 | return 0 |
---|
118 | |
---|
119 | def getProfile(self): |
---|
120 | """ |
---|
121 | Get SLD profile of p_model if exists |
---|
122 | |
---|
123 | : return: (r, beta) where r is a list of radius of the transition points |
---|
124 | beta is a list of the corresponding SLD values |
---|
125 | : Note: This works only for func_shell# = 2 (exp function) |
---|
126 | and is not supporting for p2 |
---|
127 | """ |
---|
128 | try: |
---|
129 | x,y = self.p_model1.getProfile() |
---|
130 | except: |
---|
131 | x = None |
---|
132 | y = None |
---|
133 | |
---|
134 | return x, y |
---|
135 | |
---|
136 | def _set_params(self): |
---|
137 | """ |
---|
138 | Concatenate the parameters of the two models to create |
---|
139 | this model parameters |
---|
140 | """ |
---|
141 | |
---|
142 | for name , value in self.p_model1.params.iteritems(): |
---|
143 | # No 2D-supported |
---|
144 | #if name not in self.p_model1.orientation_params: |
---|
145 | new_name = "p1_" + name |
---|
146 | self.params[new_name]= value |
---|
147 | |
---|
148 | for name , value in self.p_model2.params.iteritems(): |
---|
149 | # No 2D-supported |
---|
150 | #if name not in self.p_model2.orientation_params: |
---|
151 | new_name = "p2_" + name |
---|
152 | self.params[new_name]= value |
---|
153 | |
---|
154 | # Set "scale" as initializing |
---|
155 | self._set_scale_factor() |
---|
156 | |
---|
157 | |
---|
158 | def _set_details(self): |
---|
159 | """ |
---|
160 | Concatenate details of the two models to create |
---|
161 | this model details |
---|
162 | """ |
---|
163 | for name ,detail in self.p_model1.details.iteritems(): |
---|
164 | new_name = "p1_" + name |
---|
165 | #if new_name not in self.orientation_params: |
---|
166 | self.details[new_name]= detail |
---|
167 | |
---|
168 | for name ,detail in self.p_model2.details.iteritems(): |
---|
169 | new_name = "p2_" + name |
---|
170 | #if new_name not in self.orientation_params: |
---|
171 | self.details[new_name]= detail |
---|
172 | |
---|
173 | def _set_scale_factor(self): |
---|
174 | """ |
---|
175 | Not implemented |
---|
176 | """ |
---|
177 | pass |
---|
178 | |
---|
179 | |
---|
180 | def setParam(self, name, value): |
---|
181 | """ |
---|
182 | Set the value of a model parameter |
---|
183 | |
---|
184 | :param name: name of the parameter |
---|
185 | :param value: value of the parameter |
---|
186 | """ |
---|
187 | # set param to p1+p2 model |
---|
188 | self._setParamHelper(name, value) |
---|
189 | |
---|
190 | ## setParam to p model |
---|
191 | model_pre = name.split('_', 1)[0] |
---|
192 | new_name = name.split('_', 1)[1] |
---|
193 | if model_pre == "p1": |
---|
194 | if new_name in self.p_model1.getParamList(): |
---|
195 | self.p_model1.setParam(new_name, value) |
---|
196 | elif model_pre == "p2": |
---|
197 | if new_name in self.p_model2.getParamList(): |
---|
198 | self.p_model2.setParam(new_name, value) |
---|
199 | elif name.lower() == 'scale_factor': |
---|
200 | self.params['scale_factor'] = value |
---|
201 | else: |
---|
202 | raise ValueError, "Model does not contain parameter %s" % name |
---|
203 | |
---|
204 | def getParam(self, name): |
---|
205 | """ |
---|
206 | Set the value of a model parameter |
---|
207 | |
---|
208 | :param name: name of the parameter |
---|
209 | |
---|
210 | """ |
---|
211 | # Look for dispersion parameters |
---|
212 | toks = name.split('.') |
---|
213 | if len(toks)==2: |
---|
214 | for item in self.dispersion.keys(): |
---|
215 | # 2D not supported |
---|
216 | if item.lower()==toks[0].lower():# and \ |
---|
217 | #item.lower() not in self.orientation_params \ |
---|
218 | #and toks[0].lower() not in self.orientation_params: |
---|
219 | for par in self.dispersion[item]: |
---|
220 | if par.lower() == toks[1].lower(): |
---|
221 | return self.dispersion[item][par] |
---|
222 | else: |
---|
223 | # Look for standard parameter |
---|
224 | for item in self.params.keys(): |
---|
225 | if item.lower()==name.lower():#and \ |
---|
226 | #item.lower() not in self.orientation_params \ |
---|
227 | #and toks[0].lower() not in self.orientation_params: |
---|
228 | return self.params[item] |
---|
229 | return |
---|
230 | #raise ValueError, "Model does not contain parameter %s" % name |
---|
231 | |
---|
232 | def _setParamHelper(self, name, value): |
---|
233 | """ |
---|
234 | Helper function to setparam |
---|
235 | """ |
---|
236 | # Look for dispersion parameters |
---|
237 | toks = name.split('.') |
---|
238 | if len(toks)== 2: |
---|
239 | for item in self.dispersion.keys(): |
---|
240 | if item.lower()== toks[0].lower():# and \ |
---|
241 | #item.lower() not in self.orientation_params: |
---|
242 | for par in self.dispersion[item]: |
---|
243 | if par.lower() == toks[1].lower():#and \ |
---|
244 | #item.lower() not in self.orientation_params: |
---|
245 | self.dispersion[item][par] = value |
---|
246 | return |
---|
247 | else: |
---|
248 | # Look for standard parameter |
---|
249 | for item in self.params.keys(): |
---|
250 | if item.lower()== name.lower():#and \ |
---|
251 | #item.lower() not in self.orientation_params: |
---|
252 | self.params[item] = value |
---|
253 | return |
---|
254 | |
---|
255 | raise ValueError, "Model does not contain parameter %s" % name |
---|
256 | |
---|
257 | |
---|
258 | def _set_fixed_params(self): |
---|
259 | """ |
---|
260 | fill the self.fixed list with the p_model fixed list |
---|
261 | """ |
---|
262 | for item in self.p_model1.fixed: |
---|
263 | new_item = "p1" + item |
---|
264 | self.fixed.append(new_item) |
---|
265 | for item in self.p_model2.fixed: |
---|
266 | new_item = "p2" + item |
---|
267 | self.fixed.append(new_item) |
---|
268 | |
---|
269 | self.fixed.sort() |
---|
270 | |
---|
271 | |
---|
272 | def run(self, x = 0.0): |
---|
273 | """ |
---|
274 | Evaluate the model |
---|
275 | |
---|
276 | :param x: input q-value (float or [float, float] as [r, theta]) |
---|
277 | :return: (scattering function value) |
---|
278 | """ |
---|
279 | self._set_scale_factor() |
---|
280 | return self.params['scale_factor'] * \ |
---|
281 | (self.p_model1.run(x) + self.p_model2.run(x)) |
---|
282 | |
---|
283 | def runXY(self, x = 0.0): |
---|
284 | """ |
---|
285 | Evaluate the model |
---|
286 | |
---|
287 | :param x: input q-value (float or [float, float] as [qx, qy]) |
---|
288 | :return: scattering function value |
---|
289 | """ |
---|
290 | self._set_scale_factor() |
---|
291 | return self.params['scale_factor'] * \ |
---|
292 | (self.p_model1.runXY(x) + self.p_model2.runXY(x)) |
---|
293 | |
---|
294 | ## Now (May27,10) directly uses the model eval function |
---|
295 | ## instead of the for-loop in Base Component. |
---|
296 | def evalDistribution(self, x = []): |
---|
297 | """ |
---|
298 | Evaluate the model in cartesian coordinates |
---|
299 | |
---|
300 | :param x: input q[], or [qx[], qy[]] |
---|
301 | :return: scattering function P(q[]) |
---|
302 | """ |
---|
303 | self._set_scale_factor() |
---|
304 | return self.params['scale_factor'] * \ |
---|
305 | (self.p_model1.evalDistribution(x) + \ |
---|
306 | self.p_model2.evalDistribution(x)) |
---|
307 | |
---|
308 | def set_dispersion(self, parameter, dispersion): |
---|
309 | """ |
---|
310 | Set the dispersion object for a model parameter |
---|
311 | |
---|
312 | :param parameter: name of the parameter [string] |
---|
313 | :dispersion: dispersion object of type DispersionModel |
---|
314 | """ |
---|
315 | value= None |
---|
316 | new_pre = parameter.split("_", 1)[0] |
---|
317 | new_parameter = parameter.split("_", 1)[1] |
---|
318 | try: |
---|
319 | if new_pre == 'p1' and \ |
---|
320 | new_parameter in self.p_model1.dispersion.keys(): |
---|
321 | value= self.p_model1.set_dispersion(new_parameter, dispersion) |
---|
322 | if new_pre == 'p2' and \ |
---|
323 | new_parameter in self.p_model2.dispersion.keys(): |
---|
324 | value= self.p_model2.set_dispersion(new_parameter, dispersion) |
---|
325 | self._set_dispersion() |
---|
326 | return value |
---|
327 | except: |
---|
328 | raise |
---|
329 | |
---|
330 | def fill_description(self, p_model1, p_model2): |
---|
331 | """ |
---|
332 | Fill the description for P(Q)+P(Q) |
---|
333 | """ |
---|
334 | description = "" |
---|
335 | description +="This model gives the summation of %s and %s.\n"% \ |
---|
336 | ( p_model1.name, p_model2.name ) |
---|
337 | self.description += description |
---|
338 | |
---|
339 | if __name__ == "__main__": |
---|
340 | m1= Model() |
---|
341 | m1.setParam("p1_scale", 25) |
---|
342 | m1.setParam("p1_length", 1000) |
---|
343 | m1.setParam("p2_scale", 100) |
---|
344 | m1.setParam("p2_rg", 100) |
---|
345 | out1 = m1.runXY(0.01) |
---|
346 | |
---|
347 | m2= Model() |
---|
348 | m2.p_model1.setParam("scale", 25) |
---|
349 | m2.p_model1.setParam("length", 1000) |
---|
350 | m2.p_model2.setParam("scale", 100) |
---|
351 | m2.p_model2.setParam("rg", 100) |
---|
352 | out2 = m2.p_model1.runXY(0.01) + m2.p_model2.runXY(0.01) |
---|
353 | print out1, " = ", out2 |
---|
354 | |
---|
355 | |
---|