1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | Class to validate a given 2D model by averaging it |
---|
4 | and comparing to 1D prediction. |
---|
5 | |
---|
6 | The equation used for averaging is: |
---|
7 | |
---|
8 | (integral dphi from 0 to 2pi)(integral dtheta from 0 to pi) |
---|
9 | p(theta, phi) I(q) sin(theta) dtheta |
---|
10 | |
---|
11 | = (1/N_phi) (1/N_theta) (pi/2) (sum over N_phi) (sum over N_theta) |
---|
12 | p(theta_i, phi_i) I(q) sin(theta_i) |
---|
13 | |
---|
14 | where p(theta, phi) is the probability distribution normalized to 4pi. |
---|
15 | In the current case, we put p(theta, phi) = 1. |
---|
16 | |
---|
17 | The normalization factor results from: |
---|
18 | 2pi/N_phi for the phi sum |
---|
19 | x pi/N_theta for the theta sum |
---|
20 | x 1/(4pi) because p is normalized to 4pi |
---|
21 | -------------- |
---|
22 | = (1/N_phi) (1/N_theta) (pi/2) |
---|
23 | |
---|
24 | Note: Ellipsoid |
---|
25 | Averaging the 2D ellipsoid scattering intensity give a slightly |
---|
26 | different output than the 1D function from the IGOR library |
---|
27 | at hight Q (Q>0.3). This is due to the way the IGOR library |
---|
28 | averages, taking only 76 points in alpha, the angle between |
---|
29 | the axis of the ellipsoid and the q vector. |
---|
30 | |
---|
31 | Note: Core-shell and sphere models are symmetric around |
---|
32 | all axes and don't need to be tested in the following way. |
---|
33 | """ |
---|
34 | import sys, math |
---|
35 | from sans.models.SphereModel import SphereModel |
---|
36 | from sans.models.CylinderModel import CylinderModel |
---|
37 | from sans.models.EllipsoidModel import EllipsoidModel |
---|
38 | from sans.models.CoreShellCylinderModel import CoreShellCylinderModel |
---|
39 | |
---|
40 | |
---|
41 | class Validate2D: |
---|
42 | """ |
---|
43 | Class to validate a given 2D model by averaging it |
---|
44 | and comparing to 1D prediction. |
---|
45 | """ |
---|
46 | |
---|
47 | def __init__(self): |
---|
48 | """ Initialization """ |
---|
49 | # Precision for the result comparison |
---|
50 | self.precision = 0.000001 |
---|
51 | # Flag for end result |
---|
52 | self.passed = True |
---|
53 | |
---|
54 | def __call__(self, model_class=CylinderModel, points = 101): |
---|
55 | """ |
---|
56 | Perform test and produce output file |
---|
57 | @param model_class: python class of the model to test |
---|
58 | """ |
---|
59 | print "Averaging %s" % model_class.__name__ |
---|
60 | passed = True |
---|
61 | |
---|
62 | npts =points |
---|
63 | model = model_class() |
---|
64 | #model.setParam('scale', 1.0) |
---|
65 | #model.setParam('contrast', 1.0) |
---|
66 | |
---|
67 | theta_label = 'cyl_theta' |
---|
68 | if not model.params.has_key(theta_label): |
---|
69 | theta_label = 'axis_theta' |
---|
70 | |
---|
71 | phi_label = 'cyl_phi' |
---|
72 | if not model.params.has_key(phi_label): |
---|
73 | phi_label = 'axis_phi' |
---|
74 | |
---|
75 | output_f = open("%s_avg.txt" % model.__class__.__name__,'w') |
---|
76 | output_f.write("<q_average> <2d_average> <1d_average>\n") |
---|
77 | |
---|
78 | for i_q in range(1, 30): |
---|
79 | q = 0.025*i_q |
---|
80 | sum = 0.0 |
---|
81 | for i_theta in range(npts): |
---|
82 | theta = 180.0/npts*i_theta |
---|
83 | |
---|
84 | model.setParam(theta_label, theta) |
---|
85 | |
---|
86 | for j in range(npts): |
---|
87 | model.setParam(phi_label, 180.0 * 2.0 / npts * j) |
---|
88 | if str(model.run([q, 0])).count("INF")>0: |
---|
89 | print "ERROR", q, theta, 180.0 * 2.0 / npts * j |
---|
90 | sum += math.sin(theta*math.pi/180.0)*model.run([q, 0]) |
---|
91 | #sum += model.run([q, 0]) |
---|
92 | |
---|
93 | value = sum/npts/npts*180.0/2.0 |
---|
94 | ana = model.run(q) |
---|
95 | if q<0.3 and (value-ana)/ana>0.05: |
---|
96 | passed = False |
---|
97 | output_f.write("%10g %10g %10g\n" % (q, value, ana)) |
---|
98 | print "Q=%g: %10g %10g %10g %10g" % (q, value, ana, value-ana, value/ana) |
---|
99 | |
---|
100 | output_f.close() |
---|
101 | return passed |
---|
102 | |
---|
103 | def average(self, model_class=CylinderModel, points = 101): |
---|
104 | """ |
---|
105 | Perform test and produce output file |
---|
106 | @param model_class: python class of the model to test |
---|
107 | """ |
---|
108 | print "Averaging %s" % model_class.__name__ |
---|
109 | passed = True |
---|
110 | |
---|
111 | npts =points |
---|
112 | model = model_class() |
---|
113 | model.setParam('scale', 1.0) |
---|
114 | model.setParam('contrast', 1.0) |
---|
115 | |
---|
116 | theta_label = 'cyl_theta' |
---|
117 | if not model.params.has_key(theta_label): |
---|
118 | theta_label = 'axis_theta' |
---|
119 | |
---|
120 | phi_label = 'cyl_phi' |
---|
121 | if not model.params.has_key(phi_label): |
---|
122 | phi_label = 'axis_phi' |
---|
123 | |
---|
124 | output_f = open("%s_avg.txt" % model.__class__.__name__,'w') |
---|
125 | output_f.write("<q_average> <2d_average> <1d_average>\n") |
---|
126 | |
---|
127 | for i_q in range(1, 30): |
---|
128 | q = 0.025*i_q |
---|
129 | sum = 0.0 |
---|
130 | theta = 90.0 |
---|
131 | |
---|
132 | model.setParam(theta_label, theta) |
---|
133 | |
---|
134 | for j in range(npts): |
---|
135 | model.setParam(phi_label, 180.0 / 2.0 / npts * j) |
---|
136 | if str(model.run([q, 0])).count("INF")>0: |
---|
137 | print "ERROR", q, theta, 180.0 * 2.0 / npts * j |
---|
138 | #sum += math.sin(theta*math.pi/180.0)*model.run([q, 0]) |
---|
139 | sum += math.sin(math.pi / 2.0 / npts * j)*model.run([q, 0]) |
---|
140 | #sum += model.run([q, 0]) |
---|
141 | |
---|
142 | value = sum/npts |
---|
143 | ana = model.run(q) |
---|
144 | if q<0.3 and (value-ana)/ana>0.05: |
---|
145 | passed = False |
---|
146 | output_f.write("%10g %10g %10g\n" % (q, value, ana)) |
---|
147 | print "Q=%g: %10g %10g %10g %10g" % (q, value, ana, value-ana, value/ana) |
---|
148 | |
---|
149 | output_f.close() |
---|
150 | return passed |
---|
151 | |
---|
152 | def test_non_oriented(self, model_class=SphereModel, points = 101): |
---|
153 | """ |
---|
154 | Perform test and produce output file |
---|
155 | @param model_class: python class of the model to test |
---|
156 | """ |
---|
157 | print "Averaging %s" % model_class.__name__ |
---|
158 | passed = True |
---|
159 | |
---|
160 | npts =points |
---|
161 | model = model_class() |
---|
162 | #model.setParam('scale', 1.0) |
---|
163 | #model.setParam('contrast', 1.0) |
---|
164 | |
---|
165 | output_f = open("%s_avg.txt" % model.__class__.__name__,'w') |
---|
166 | output_f.write("<q_average> <2d_average> <1d_average>\n") |
---|
167 | |
---|
168 | for i_q in range(1, 30): |
---|
169 | q = 0.025*i_q |
---|
170 | sum = 0.0 |
---|
171 | for i_theta in range(npts): |
---|
172 | theta = 180.0/npts*i_theta |
---|
173 | |
---|
174 | for j in range(npts): |
---|
175 | if str(model.run([q, 0])).count("INF")>0: |
---|
176 | print "ERROR", q, theta, 180.0 * 2.0 / npts * j |
---|
177 | sum += math.sin(theta*math.pi/180.0)*model.run([q, 0]) |
---|
178 | |
---|
179 | value = sum/npts/npts*180.0/2.0 |
---|
180 | ana = model.run(q) |
---|
181 | if q<0.3 and (value-ana)/ana>0.05: |
---|
182 | passed = False |
---|
183 | output_f.write("%10g %10g %10g\n" % (q, value, ana)) |
---|
184 | print "Q=%g: %10g %10g %10g %10g" % (q, value, ana, value-ana, value/ana) |
---|
185 | |
---|
186 | output_f.close() |
---|
187 | return passed |
---|
188 | |
---|
189 | |
---|
190 | if __name__ == '__main__': |
---|
191 | validator = Validate2D() |
---|
192 | cyl_passed = validator(CylinderModel, points=201) |
---|
193 | ell_passed = validator(EllipsoidModel, points=501) |
---|
194 | cylcorehsell_passed = validator(CoreShellCylinderModel, points=201) |
---|
195 | sph_passed = validator.test_non_oriented(SphereModel, points=211) |
---|
196 | |
---|
197 | print "" |
---|
198 | print "Model Passed" |
---|
199 | print "Cylinder %s" % cyl_passed |
---|
200 | print "Ellipsoid %s" % ell_passed |
---|
201 | print "Core-shell cyl %s" % cylcorehsell_passed |
---|
202 | print "Sphere %s" % sph_passed |
---|
203 | |
---|
204 | |
---|
205 | |
---|
206 | |
---|