1 | """ |
---|
2 | Unit tests for dispersion functionality of |
---|
3 | C++ model classes |
---|
4 | """ |
---|
5 | |
---|
6 | import unittest, math, numpy |
---|
7 | |
---|
8 | class TestCylinder(unittest.TestCase): |
---|
9 | """ |
---|
10 | Testing C++ Cylinder model |
---|
11 | """ |
---|
12 | def setUp(self): |
---|
13 | from sans.models.CylinderModel import CylinderModel |
---|
14 | self.model= CylinderModel() |
---|
15 | |
---|
16 | self.model.setParam('scale', 1.0) |
---|
17 | self.model.setParam('radius', 20.0) |
---|
18 | self.model.setParam('length', 400.0) |
---|
19 | self.model.setParam('contrast', 3.e-6) |
---|
20 | self.model.setParam('background', 0.0) |
---|
21 | self.model.setParam('cyl_theta', 0.0) |
---|
22 | self.model.setParam('cyl_phi', 0.0) |
---|
23 | |
---|
24 | def test_simple(self): |
---|
25 | self.assertAlmostEqual(self.model.run(0.001), 450.355, 3) |
---|
26 | self.assertAlmostEqual(self.model.runXY([0.001,0.001]), 452.299, 3) |
---|
27 | |
---|
28 | def test_constant(self): |
---|
29 | from sans.models.dispersion_models import DispersionModel |
---|
30 | disp = DispersionModel() |
---|
31 | self.model.setParam('scale', 10.0) |
---|
32 | self.model.set_dispersion('radius', disp) |
---|
33 | self.model.dispersion['radius']['width'] = 5.0 |
---|
34 | self.model.dispersion['radius']['npts'] = 100 |
---|
35 | print "constant",self.model.run(0.001), self.model.dispersion |
---|
36 | self.assertAlmostEqual(self.model.run(0.001), 1.021051*4527.47250339, 3) |
---|
37 | self.assertAlmostEqual(self.model.runXY([0.001, 0.001]), 1.021048*4546.997777604715, 2) |
---|
38 | |
---|
39 | def test_gaussian(self): |
---|
40 | from sans.models.dispersion_models import GaussianDispersion |
---|
41 | disp = GaussianDispersion() |
---|
42 | self.model.set_dispersion('radius', disp) |
---|
43 | self.model.dispersion['radius']['width'] = 5.0 |
---|
44 | self.model.dispersion['radius']['npts'] = 100 |
---|
45 | self.model.setParam('scale', 10.0) |
---|
46 | |
---|
47 | self.assertAlmostEqual(self.model.run(0.001), 1.1804794*4723.32213339, 3) |
---|
48 | self.assertAlmostEqual(self.model.runXY([0.001,0.001]), 1.180454*4743.56, 2) |
---|
49 | |
---|
50 | def test_clone(self): |
---|
51 | from sans.models.dispersion_models import GaussianDispersion |
---|
52 | disp = GaussianDispersion() |
---|
53 | self.model.set_dispersion('radius', disp) |
---|
54 | self.model.dispersion['radius']['width'] = 5.0 |
---|
55 | self.model.dispersion['radius']['npts'] = 100 |
---|
56 | self.model.setParam('scale', 10.0) |
---|
57 | |
---|
58 | new_model = self.model.clone() |
---|
59 | print "gaussian",self.model.run(0.001) |
---|
60 | self.assertAlmostEqual(new_model.run(0.001), 1.1804794*4723.32213339, 3) |
---|
61 | self.assertAlmostEqual(new_model.runXY([0.001,0.001]), 1.180454*4743.56, 2) |
---|
62 | |
---|
63 | def test_schulz_zero(self): |
---|
64 | from sans.models.dispersion_models import SchulzDispersion |
---|
65 | disp = SchulzDispersion() |
---|
66 | self.model.set_dispersion('radius', disp) |
---|
67 | self.model.dispersion['radius']['width'] = 5.0 |
---|
68 | #self.model.dispersion['radius']['width'] = 0.0 |
---|
69 | self.model.dispersion['radius']['npts'] = 100 |
---|
70 | #self.model.setParam('scale', 1.0) |
---|
71 | self.model.setParam('scale', 10.0) |
---|
72 | print "schulz",self.model.run(0.001), self.model.dispersion |
---|
73 | self.assertAlmostEqual(self.model.run(0.001), 450.355, 3) |
---|
74 | self.assertAlmostEqual(self.model.runXY([0.001,0.001]), 452.299, 3) |
---|
75 | |
---|
76 | def test_lognormal_zero(self): |
---|
77 | from sans.models.dispersion_models import LogNormalDispersion |
---|
78 | disp = LogNormalDispersion() |
---|
79 | self.model.set_dispersion('radius', disp) |
---|
80 | self.model.dispersion['radius']['width'] = 5.0 |
---|
81 | #self.model.dispersion['radius']['width'] = 0.0 |
---|
82 | self.model.dispersion['radius']['npts'] = 100 |
---|
83 | #self.model.setParam('scale', 1.0) |
---|
84 | self.model.setParam('scale', 10.0) |
---|
85 | print "model dispersion",self.model.dispersion |
---|
86 | print "lognormal",self.model.run(0.001) |
---|
87 | self.assertAlmostEqual(self.model.run(0.001), 450.355, 3) |
---|
88 | self.assertAlmostEqual(self.model.runXY([0.001,0.001]), 452.299, 3) |
---|
89 | |
---|
90 | def test_gaussian_zero(self): |
---|
91 | from sans.models.dispersion_models import GaussianDispersion |
---|
92 | disp = GaussianDispersion() |
---|
93 | self.model.set_dispersion('radius', disp) |
---|
94 | self.model.dispersion['radius']['width'] = 0.0 |
---|
95 | self.model.dispersion['radius']['npts'] = 100 |
---|
96 | self.model.setParam('scale', 1.0) |
---|
97 | |
---|
98 | self.assertAlmostEqual(self.model.run(0.001), 450.355, 3) |
---|
99 | self.assertAlmostEqual(self.model.runXY([0.001,0.001]), 452.299, 3) |
---|
100 | |
---|
101 | def test_array(self): |
---|
102 | """ |
---|
103 | Perform complete rotational average and |
---|
104 | compare to 1D |
---|
105 | """ |
---|
106 | from sans.models.dispersion_models import ArrayDispersion |
---|
107 | disp_ph = ArrayDispersion() |
---|
108 | disp_th = ArrayDispersion() |
---|
109 | |
---|
110 | values_ph = numpy.zeros(100) |
---|
111 | values_th = numpy.zeros(100) |
---|
112 | weights = numpy.zeros(100) |
---|
113 | for i in range(100): |
---|
114 | values_ph[i]=(2.0*math.pi/99.0*i) |
---|
115 | values_th[i]=(math.pi/99.0*i) |
---|
116 | weights[i]=(1.0) |
---|
117 | |
---|
118 | disp_ph.set_weights(values_ph, weights) |
---|
119 | disp_th.set_weights(values_th, weights) |
---|
120 | |
---|
121 | self.model.set_dispersion('cyl_theta', disp_th) |
---|
122 | self.model.set_dispersion('cyl_phi', disp_ph) |
---|
123 | |
---|
124 | val_1d = self.model.run(math.sqrt(0.0002)) |
---|
125 | val_2d = self.model.runXY([0.01,0.01]) |
---|
126 | |
---|
127 | self.assertTrue(math.fabs(val_1d-val_2d)/val_1d < 0.02) |
---|
128 | |
---|
129 | |
---|
130 | if __name__ == '__main__': |
---|
131 | unittest.main() |
---|
132 | |
---|