1 | """ |
---|
2 | Unit tests for non shape based model (Task 8.2.1) |
---|
3 | These tests are part of the requirements |
---|
4 | """ |
---|
5 | |
---|
6 | import unittest, time, math |
---|
7 | from scipy.special import erf,gammaln |
---|
8 | |
---|
9 | # Disable "missing docstring" complaint |
---|
10 | # pylint: disable-msg=C0111 |
---|
11 | # Disable "too many methods" complaint |
---|
12 | # pylint: disable-msg=R0904 |
---|
13 | # Disable "could be a function" complaint |
---|
14 | # pylint: disable-msg=R0201 |
---|
15 | |
---|
16 | import scipy |
---|
17 | class TestGuinier(unittest.TestCase): |
---|
18 | """ |
---|
19 | Unit tests for Guinier function |
---|
20 | |
---|
21 | F(x) = exp[ [A] + [B]*Q**2 ] |
---|
22 | |
---|
23 | The model has two parameters: A and B |
---|
24 | """ |
---|
25 | def _func(self, a, b, x): |
---|
26 | return a*math.exp(-(b*x)**2/3.0) |
---|
27 | |
---|
28 | def setUp(self): |
---|
29 | from sans.models.GuinierModel import GuinierModel |
---|
30 | self.model= GuinierModel() |
---|
31 | |
---|
32 | def test1D(self): |
---|
33 | self.model.setParam('scale', 2.0) |
---|
34 | self.model.setParam('rg', 1.0) |
---|
35 | |
---|
36 | self.assertEqual(self.model.run(0.0), 2.0) |
---|
37 | self.assertEqual(self.model.run(2.0), 2.0*math.exp(-(1.0*2.0)**2/3.0)) |
---|
38 | self.assertEqual(self.model.runXY(2.0), 2.0*math.exp(-(1.0*2.0)**2/3.0)) |
---|
39 | |
---|
40 | def test2D(self): |
---|
41 | self.model.setParam('scale', 2.0) |
---|
42 | self.model.setParam('rg', 1.0) |
---|
43 | |
---|
44 | #value = self._func(2.0, 1.0, 1.0)*self._func(2.0, 1.0, 2.0) |
---|
45 | value = self._func(2.0, 1.0, math.sqrt(5.0)) |
---|
46 | #self.assertEqual(self.model.runXY([0.0,0.0]), 2.0*2.0) |
---|
47 | self.assertEqual(self.model.runXY([0.0,0.0]), 2.0) |
---|
48 | self.assertEqual(self.model.runXY([1.0,2.0]), value) |
---|
49 | |
---|
50 | def test2Dphi(self): |
---|
51 | self.model.setParam('scale', 2.0) |
---|
52 | self.model.setParam('rg', 1.0) |
---|
53 | |
---|
54 | x = 1.0 |
---|
55 | y = 2.0 |
---|
56 | r = math.sqrt(x**2 + y**2) |
---|
57 | phi = math.atan2(y, x) |
---|
58 | |
---|
59 | #value = self._func(2.0, 1.0, x)*self._func(2.0, 1.0, y) |
---|
60 | value = self._func(2.0, 1.0, r) |
---|
61 | |
---|
62 | #self.assertEqual(self.model.run([r, phi]), value) |
---|
63 | self.assertAlmostEquals(self.model.run([r, phi]), value,1) |
---|
64 | |
---|
65 | |
---|
66 | class TestPorod(unittest.TestCase): |
---|
67 | """ |
---|
68 | Unit tests for Porod function |
---|
69 | |
---|
70 | F(x) = C/Q**4 |
---|
71 | |
---|
72 | The model has one parameter: C |
---|
73 | """ |
---|
74 | def _func(self, c, x): |
---|
75 | return c/(x**4) |
---|
76 | |
---|
77 | def setUp(self): |
---|
78 | from sans.models.PorodModel import PorodModel |
---|
79 | self.model= PorodModel() |
---|
80 | self.model.setParam('scale', 2.0) |
---|
81 | |
---|
82 | def test1D(self): |
---|
83 | value = self._func(2.0, 3.0) |
---|
84 | self.assertEqual(self.model.run(3.0), value) |
---|
85 | self.assertEqual(self.model.runXY(3.0), value) |
---|
86 | |
---|
87 | def test2D(self): |
---|
88 | #value = self._func(2.0, 1.0)*self._func(2.0, 2.0) |
---|
89 | value = self._func(2.0, math.sqrt(5.0)) |
---|
90 | self.assertEqual(self.model.runXY([1.0,2.0]), value) |
---|
91 | |
---|
92 | def test2Dphi(self): |
---|
93 | x = 1.0 |
---|
94 | y = 2.0 |
---|
95 | r = math.sqrt(x**2 + y**2) |
---|
96 | phi = math.atan2(y, x) |
---|
97 | |
---|
98 | #value = self._func(2.0, 1.0)*self._func(2.0, 2.0) |
---|
99 | value = self._func(2.0, r) |
---|
100 | self.assertAlmostEquals(self.model.run([r, phi]), value,1) |
---|
101 | |
---|
102 | class TestDebye(unittest.TestCase): |
---|
103 | """ |
---|
104 | Unit tests for Debye function |
---|
105 | |
---|
106 | F(x) = 2( exp(-x)+x -1 )/x**2 |
---|
107 | |
---|
108 | The model has three parameters: |
---|
109 | Rg = radius of gyration |
---|
110 | scale = scale factor |
---|
111 | bkd = Constant background |
---|
112 | """ |
---|
113 | def _func(self, Rg, scale, bkg, x): |
---|
114 | y = (Rg * x)**2 |
---|
115 | return scale * (2*(math.exp(-y) + y -1)/y**2) + bkg |
---|
116 | |
---|
117 | def setUp(self): |
---|
118 | from sans.models.DebyeModel import DebyeModel |
---|
119 | self.model= DebyeModel() |
---|
120 | self.model.setParam('Rg', 50.0) |
---|
121 | self.model.setParam('scale',1.0) |
---|
122 | self.model.setParam('background',0.001) |
---|
123 | |
---|
124 | def test1D(self): |
---|
125 | value = self._func(50.0, 1.0, 0.001, 2.0) |
---|
126 | self.assertEqual(self.model.run(2.0), value) |
---|
127 | self.assertEqual(self.model.runXY(2.0), value) |
---|
128 | |
---|
129 | # User enter zero as a value of x |
---|
130 | # An exceptio is raised |
---|
131 | self.assertRaises(ZeroDivisionError, self.model.run, 0.0) |
---|
132 | |
---|
133 | def test2D(self): |
---|
134 | #value = self._func(50.0, 1.0, 0.001, 1.0)*self._func(50.0, 1.0, 0.001, 2.0) |
---|
135 | value = self._func(50.0, 1.0, 0.001, math.sqrt(5.0)) |
---|
136 | self.assertEqual(self.model.runXY([1.0,2.0]), value) |
---|
137 | |
---|
138 | def test2Dphi(self): |
---|
139 | x = 1.0 |
---|
140 | y = 2.0 |
---|
141 | r = math.sqrt(x**2 + y**2) |
---|
142 | phi = math.atan2(y, x) |
---|
143 | |
---|
144 | value = self._func(50.0, 1.0, 0.001, 1.0)*self._func(50.0, 1.0, 0.001, 2.0) |
---|
145 | self.assertAlmostEquals(self.model.run([r, phi]), value,1) |
---|
146 | |
---|
147 | |
---|
148 | class TestLorentz(unittest.TestCase): |
---|
149 | """ |
---|
150 | Unit tests for Lorentz function |
---|
151 | |
---|
152 | F(x) = scale/( 1 + (x*L)^2 ) + bkd |
---|
153 | |
---|
154 | The model has three parameters: |
---|
155 | L = screen Length |
---|
156 | scale = scale factor |
---|
157 | bkd = incoherent background |
---|
158 | """ |
---|
159 | def _func(self, I0 , L, bgd, qval): |
---|
160 | return I0/(1.0 + (qval*L)*(qval*L)) + bgd |
---|
161 | |
---|
162 | def setUp(self): |
---|
163 | from sans.models.LorentzModel import LorentzModel |
---|
164 | self.model= LorentzModel() |
---|
165 | |
---|
166 | def test1D(self): |
---|
167 | self.model.setParam('scale', 100.0) |
---|
168 | self.model.setParam('Length', 50.0) |
---|
169 | self.model.setParam('background', 1.0) |
---|
170 | |
---|
171 | self.assertEqual(self.model.run(0.0), 101.0) |
---|
172 | self.assertEqual(self.model.run(2.0), self._func(100.0, 50.0, 1.0, 2.0)) |
---|
173 | self.assertEqual(self.model.runXY(2.0), self._func(100.0, 50.0, 1.0, 2.0)) |
---|
174 | |
---|
175 | def test2D(self): |
---|
176 | self.model.setParam('scale', 100.0) |
---|
177 | self.model.setParam('Length', 50.0) |
---|
178 | self.model.setParam('background', 1.0) |
---|
179 | |
---|
180 | #value = self._func(100.0, 50.0, 1.0, 1.0)*self._func(100.0, 50.0, 1.0, 2.0) |
---|
181 | value = self._func(100.0, 50.0, 1.0, math.sqrt(5.0)) |
---|
182 | self.assertEqual(self.model.runXY([1.0,2.0]), value) |
---|
183 | |
---|
184 | def test2Dphi(self): |
---|
185 | self.model.setParam('scale', 100.0) |
---|
186 | self.model.setParam('Length', 50.0) |
---|
187 | self.model.setParam('background', 1.0) |
---|
188 | |
---|
189 | x = 1.0 |
---|
190 | y = 2.0 |
---|
191 | r = math.sqrt(x**2 + y**2) |
---|
192 | phi = math.atan2(y, x) |
---|
193 | |
---|
194 | value = self._func(100.0, 50.0, 1.0, x)*self._func(100.0, 50.0, 1.0, y) |
---|
195 | self.assertAlmostEquals(self.model.run([r, phi]), value,1) |
---|
196 | |
---|
197 | class TestDAB(unittest.TestCase): |
---|
198 | """ |
---|
199 | Unit tests for DAB function |
---|
200 | |
---|
201 | F(x) = scale/( 1 + (x*L)^2 )^(2) + bkd |
---|
202 | |
---|
203 | The model has three parameters: |
---|
204 | L = Correlation Length |
---|
205 | scale = scale factor |
---|
206 | bkd = incoherent background |
---|
207 | """ |
---|
208 | def _func(self, Izero, range, incoh, qval): |
---|
209 | return Izero/pow((1.0 + (qval*range)*(qval*range)),2) + incoh |
---|
210 | |
---|
211 | def setUp(self): |
---|
212 | from sans.models.DABModel import DABModel |
---|
213 | self.model= DABModel() |
---|
214 | self.scale = 10.0 |
---|
215 | self.length = 40.0 |
---|
216 | self.back = 1.0 |
---|
217 | |
---|
218 | self.model.setParam('scale', self.scale) |
---|
219 | self.model.setParam('Length', self.length) |
---|
220 | self.model.setParam('background', self.back) |
---|
221 | |
---|
222 | def test1D(self): |
---|
223 | |
---|
224 | self.assertEqual(self.model.run(0.0), self.scale+self.back) |
---|
225 | self.assertEqual(self.model.run(2.0), self._func(self.scale, self.length, self.back, 2.0)) |
---|
226 | self.assertEqual(self.model.runXY(2.0), self._func(self.scale, self.length, self.back, 2.0)) |
---|
227 | |
---|
228 | def test2D(self): |
---|
229 | #value = self._func(self.scale, self.length, self.back, 1.0)*self._func(self.scale, self.length, self.back, 2.0) |
---|
230 | value = self._func(self.scale, self.length, self.back, math.sqrt(5.0)) |
---|
231 | self.assertEqual(self.model.runXY([1.0,2.0]), value) |
---|
232 | |
---|
233 | def test2Dphi(self): |
---|
234 | x = 1.0 |
---|
235 | y = 2.0 |
---|
236 | r = math.sqrt(x**2 + y**2) |
---|
237 | phi = math.atan2(y, x) |
---|
238 | |
---|
239 | value = self._func(self.scale, self.length, self.back, x)*self._func(self.scale, self.length, self.back, y) |
---|
240 | self.assertAlmostEquals(self.model.run([r, phi]), value,1) |
---|
241 | |
---|
242 | class TestPowerLaw(unittest.TestCase): |
---|
243 | """ |
---|
244 | Unit tests for PowerLaw function |
---|
245 | |
---|
246 | F(x) = scale* (x)^(m) + bkd |
---|
247 | |
---|
248 | The model has three parameters: |
---|
249 | m = power |
---|
250 | scale = scale factor |
---|
251 | bkd = incoherent background |
---|
252 | """ |
---|
253 | def _func(self, a, m, bgd, qval): |
---|
254 | return a*math.pow(qval,-m) + bgd |
---|
255 | |
---|
256 | |
---|
257 | def setUp(self): |
---|
258 | from sans.models.PowerLawModel import PowerLawModel |
---|
259 | self.model= PowerLawModel() |
---|
260 | |
---|
261 | def test1D(self): |
---|
262 | self.model.setParam('scale', math.exp(-6)) |
---|
263 | self.model.setParam('m', 4.0) |
---|
264 | self.model.setParam('background', 1.0) |
---|
265 | |
---|
266 | #self.assertEqual(self.model.run(0.0), 1.0) |
---|
267 | self.assertEqual(self.model.run(2.0), self._func(math.exp(-6), 4.0, 1.0, 2.0)) |
---|
268 | self.assertEqual(self.model.runXY(2.0), self._func(math.exp(-6), 4.0, 1.0, 2.0)) |
---|
269 | |
---|
270 | def testlimit(self): |
---|
271 | self.model.setParam('scale', math.exp(-6)) |
---|
272 | self.model.setParam('m', -4.0) |
---|
273 | self.model.setParam('background', 1.0) |
---|
274 | |
---|
275 | self.assertEqual(self.model.run(0.0), 1.0) |
---|
276 | |
---|
277 | def test2D(self): |
---|
278 | self.model.setParam('scale', math.exp(-6)) |
---|
279 | self.model.setParam('m', 4.0) |
---|
280 | self.model.setParam('background', 1.0) |
---|
281 | |
---|
282 | #value = self._func(math.exp(-6), 4.0, 1.0, 1.0)\ |
---|
283 | #*self._func(math.exp(-6), 4.0, 1.0, 2.0) |
---|
284 | value = self._func(math.exp(-6), 4.0, 1.0, math.sqrt(5.0)) |
---|
285 | |
---|
286 | self.assertEqual(self.model.runXY([1.0,2.0]), value) |
---|
287 | |
---|
288 | def test2Dphi(self): |
---|
289 | self.model.setParam('scale', math.exp(-6)) |
---|
290 | self.model.setParam('m', 4.0) |
---|
291 | self.model.setParam('background', 1.0) |
---|
292 | |
---|
293 | x = 1.0 |
---|
294 | y = 2.0 |
---|
295 | r = math.sqrt(x**2 + y**2) |
---|
296 | phi = math.atan2(y, x) |
---|
297 | |
---|
298 | value = self._func(math.exp(-6), 4.0, 1.0, x)\ |
---|
299 | *self._func(math.exp(-6), 4.0, 1.0, y) |
---|
300 | self.assertAlmostEquals(self.model.run([r, phi]), value,1) |
---|
301 | |
---|
302 | class TestTeubnerStrey(unittest.TestCase): |
---|
303 | """ |
---|
304 | Unit tests for PowerLaw function |
---|
305 | |
---|
306 | F(x) = 1/( scale + c1*(x)^(2)+ c2*(x)^(4)) + bkd |
---|
307 | |
---|
308 | The model has Four parameters: |
---|
309 | scale = scale factor |
---|
310 | c1 = constant |
---|
311 | c2 = constant |
---|
312 | bkd = incoherent background |
---|
313 | """ |
---|
314 | def _func(self, scale, c1, c2, bck, q): |
---|
315 | |
---|
316 | q2 = q*q; |
---|
317 | q4 = q2*q2; |
---|
318 | |
---|
319 | return 1.0/(scale + c1*q2+c2*q4) + bck |
---|
320 | |
---|
321 | def setUp(self): |
---|
322 | from sans.models.TeubnerStreyModel import TeubnerStreyModel |
---|
323 | self.model= TeubnerStreyModel() |
---|
324 | |
---|
325 | def test1D(self): |
---|
326 | |
---|
327 | self.model.setParam('c1', -30.0) |
---|
328 | self.model.setParam('c2', 5000.0) |
---|
329 | self.model.setParam('scale', 0.1) |
---|
330 | self.model.setParam('background', 0.1) |
---|
331 | #self.assertEqual(1/(math.sqrt(4)), math.pow(4,-1/2)) |
---|
332 | #self.assertEqual(self.model.TeubnerStreyLengths(),False ) |
---|
333 | |
---|
334 | self.assertEqual(self.model.run(0.0), 10.1) |
---|
335 | self.assertEqual(self.model.run(2.0), self._func(0.1,-30.0,5000.0,0.1,2.0)) |
---|
336 | self.assertEqual(self.model.runXY(2.0), self._func(0.1,-30.0,5000.0,0.1,2.0)) |
---|
337 | |
---|
338 | def test2D(self): |
---|
339 | self.model.setParam('c1', -30.0) |
---|
340 | self.model.setParam('c2', 5000.0) |
---|
341 | self.model.setParam('scale', 0.1) |
---|
342 | self.model.setParam('background', 0.1) |
---|
343 | #value = self._func(0.1,-30.0,5000.0,0.1, 1.0)\ |
---|
344 | #*self._func(0.1,-30.0,5000.0,0.1, 2.0) |
---|
345 | value = self._func(0.1,-30.0,5000.0,0.1, math.sqrt(5.0)) |
---|
346 | |
---|
347 | self.assertEqual(self.model.runXY([1.0,2.0]), value) |
---|
348 | |
---|
349 | def test2Dphi(self): |
---|
350 | self.model.setParam('c1', -30.0) |
---|
351 | self.model.setParam('c2', 5000.0) |
---|
352 | self.model.setParam('scale', 0.1) |
---|
353 | self.model.setParam('background', 0.1) |
---|
354 | |
---|
355 | x = 1.0 |
---|
356 | y = 2.0 |
---|
357 | r = math.sqrt(x**2 + y**2) |
---|
358 | phi = math.atan2(y, x) |
---|
359 | |
---|
360 | #value = self._func(0.1,-30.0,5000.0,0.1, x)\ |
---|
361 | #*self._func(0.1,-30.0,5000.0,0.1, y) |
---|
362 | value = self._func(0.1,-30.0,5000.0,0.1, r) |
---|
363 | self.assertAlmostEquals(self.model.run([r, phi]), value,1) |
---|
364 | |
---|
365 | class TestBEPolyelectrolyte(unittest.TestCase): |
---|
366 | """ |
---|
367 | Unit tests for BEPolyelectrolyte function |
---|
368 | |
---|
369 | F(x) = K*1/(4*pi()*Lb*(alpha)^(2)*(q^(2)+k2)/(1+(r02)^(2))*(q^(2)+k2)\ |
---|
370 | *(q^(2)-(12*h*C/b^(2))) |
---|
371 | |
---|
372 | The model has Eight parameters: |
---|
373 | K = Constrast factor of the polymer |
---|
374 | Lb = Bjerrum length |
---|
375 | H = virial parameter |
---|
376 | B = monomer length |
---|
377 | Cs = Concentration of monovalent salt |
---|
378 | alpha = ionazation degree |
---|
379 | C = polymer molar concentration |
---|
380 | bkd = background |
---|
381 | """ |
---|
382 | def _func(self, K, Lb, H, B, Cs, alpha, C, bkd, r02, k2, x): |
---|
383 | return (K /( (4*math.pi *Lb*(alpha**2)*(x**2 +k2)) *( (1 +(r02**2)) \ |
---|
384 | *((x**2) + k2)*((x**2) -(12 * H * C/(B**2))) )))+ bkd |
---|
385 | |
---|
386 | def setUp(self): |
---|
387 | from sans.models.BEPolyelectrolyte import BEPolyelectrolyte |
---|
388 | self.model= BEPolyelectrolyte() |
---|
389 | |
---|
390 | self.K = 10.0 |
---|
391 | self.Lb = 6.5 |
---|
392 | self.h = 11 |
---|
393 | self.b = 13 |
---|
394 | self.Cs = 0.1 |
---|
395 | self.alpha = 0.05 |
---|
396 | self.C = .7 |
---|
397 | self.Bkd =0.01 |
---|
398 | |
---|
399 | self.model.setParam('K', self.K) |
---|
400 | self.model.setParam('Lb', self.Lb) |
---|
401 | self.model.setParam('H', self.h) |
---|
402 | self.model.setParam('B', self.b) |
---|
403 | self.model.setParam('Cs',self.Cs) |
---|
404 | self.model.setParam('alpha', self.alpha) |
---|
405 | self.model.setParam('C', self.C) |
---|
406 | self.model.setParam('background', self.Bkd) |
---|
407 | |
---|
408 | def _func(self, q): |
---|
409 | |
---|
410 | Ca = self.C *6.022136e-4 |
---|
411 | Csa = self.Cs * 6.022136e-4 |
---|
412 | k2= 4*math.pi*self.Lb*(2*self.Cs+self.alpha*Ca) |
---|
413 | |
---|
414 | r02 = 1./self.alpha / Ca**0.5*( self.b / (48*math.pi*self.Lb)**0.5 ) |
---|
415 | q2 = q**2 |
---|
416 | Sq = self.K*1./(4*math.pi*self.Lb*self.alpha**2) * (q2 + k2) / (1+(r02**2) * (q2+k2) * (q2- (12*self.h*Ca/self.b**2)) ) + self.Bkd |
---|
417 | return Sq |
---|
418 | |
---|
419 | def test1D(self): |
---|
420 | |
---|
421 | |
---|
422 | q = 0.001 |
---|
423 | |
---|
424 | self.assertEqual(self.model.run(q), self._func(q)) |
---|
425 | self.assertEqual(self.model.runXY(q), self._func(q)) |
---|
426 | |
---|
427 | def test2D(self): |
---|
428 | #self.assertAlmostEquals(self.model.runXY([1.0,2.0]), self._func(1.0)*self._func(2.0), 8) |
---|
429 | self.assertAlmostEquals(self.model.runXY([1.0,2.0]), self._func(math.sqrt(1.0+2.0**2)), 8) |
---|
430 | |
---|
431 | def test2Dphi(self): |
---|
432 | |
---|
433 | x = 1.0 |
---|
434 | y = 2.0 |
---|
435 | r = math.sqrt(x**2 + y**2) |
---|
436 | phi = math.atan2(y, x) |
---|
437 | |
---|
438 | self.assertAlmostEquals(self.model.run([r, phi]), self._func(r), 8) |
---|
439 | |
---|
440 | class TestFractalModel(unittest.TestCase): |
---|
441 | """ |
---|
442 | Unit tests for Number Density Fractal function |
---|
443 | F(x)= P(x)*S(x) + bkd |
---|
444 | The model has Seven parameters: |
---|
445 | scale = Volume fraction |
---|
446 | Radius = Block radius |
---|
447 | Fdim = Fractal dimension |
---|
448 | L = correlation Length |
---|
449 | SDLB = SDL block |
---|
450 | SDLS = SDL solvent |
---|
451 | bkd = background |
---|
452 | """ |
---|
453 | def setUp(self): |
---|
454 | from sans.models.FractalModel import FractalModel |
---|
455 | self.model= FractalModel() |
---|
456 | self.r0 = 5.0 |
---|
457 | self.sldp = 2.0e-6 |
---|
458 | self.sldm = 6.35e-6 |
---|
459 | self.phi = 0.05 |
---|
460 | self.Df = 2 |
---|
461 | self.corr = 100.0 |
---|
462 | self.bck = 1.0 |
---|
463 | |
---|
464 | self.model.setParam('scale', self.phi) |
---|
465 | self.model.setParam('Radius', self.r0) |
---|
466 | self.model.setParam('fractal_dim',self.Df) |
---|
467 | self.model.setParam('corr_length', self.corr) |
---|
468 | self.model.setParam('block_sld', self.sldp) |
---|
469 | self.model.setParam('solvent_sld', self.sldm) |
---|
470 | self.model.setParam('background', self.bck) |
---|
471 | |
---|
472 | def _func(self, x): |
---|
473 | r0 = self.r0 |
---|
474 | sldp = self.sldp |
---|
475 | sldm = self.sldm |
---|
476 | phi = self.phi |
---|
477 | Df = self.Df |
---|
478 | corr = self.corr |
---|
479 | bck = self.bck |
---|
480 | |
---|
481 | pq = 1.0e8*phi*4.0/3.0*math.pi*r0*r0*r0*(sldp-sldm)*(sldp-sldm)*math.pow((3*(math.sin(x*r0) - x*r0*math.cos(x*r0))/math.pow((x*r0),3)),2); |
---|
482 | |
---|
483 | sq = Df*math.exp(gammaln(Df-1.0))*math.sin((Df-1.0)*math.atan(x*corr)); |
---|
484 | sq /= math.pow((x*r0),Df) * math.pow((1.0 + 1.0/(x*corr)/(x*corr)),((Df-1.0)/2.0)); |
---|
485 | sq += 1.0; |
---|
486 | |
---|
487 | self.assertAlmostEqual(self.model._scatterRanDom(x), pq, 8 ) |
---|
488 | self.assertEqual(self.model._Block(x),sq ) |
---|
489 | |
---|
490 | return sq*pq+bck |
---|
491 | |
---|
492 | def test1D(self): |
---|
493 | x = 0.001 |
---|
494 | |
---|
495 | iq = self._func(x) |
---|
496 | self.assertEqual(self.model.run(x), iq) |
---|
497 | self.assertEqual(self.model.runXY(x), iq) |
---|
498 | |
---|
499 | def test2D(self): |
---|
500 | x = 1.0 |
---|
501 | y = 2.0 |
---|
502 | r = math.sqrt(x**2 + y**2) |
---|
503 | phi = math.atan2(y, x) |
---|
504 | iq_x = self._func(x) |
---|
505 | iq_y = self._func(y) |
---|
506 | |
---|
507 | #self.assertEqual(self.model.run([r, phi]), iq_x*iq_y) |
---|
508 | self.assertEqual(self.model.run([r, phi]), self.model.run(r)) |
---|
509 | #self.assertEqual(self.model.runXY([x,y]), iq_x*iq_y) |
---|
510 | self.assertEqual(self.model.runXY([x,y]), self.model.run(r)) |
---|
511 | |
---|
512 | if __name__ == '__main__': |
---|
513 | unittest.main() |
---|