1 | """ |
---|
2 | Unit tests for specific models |
---|
3 | @author: JHJ Cho / UTK |
---|
4 | """ |
---|
5 | #This test replaces the older utests for multiplicationModel. Aug. 31, 2009. JC |
---|
6 | import unittest, numpy,math |
---|
7 | ### P*S with sphere model |
---|
8 | class TestsphereSuareW(unittest.TestCase): |
---|
9 | """ |
---|
10 | Unit tests for SphereModel(Q) * SquareWellStructure(Q) |
---|
11 | """ |
---|
12 | def setUp(self): |
---|
13 | from sans.models.SphereModel import SphereModel |
---|
14 | from sans.models.SquareWellStructure import SquareWellStructure |
---|
15 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
16 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
17 | |
---|
18 | self.model = SphereModel() |
---|
19 | self.model2 = SquareWellStructure() |
---|
20 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
21 | self.modelD = DiamCylFunc() |
---|
22 | |
---|
23 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
24 | def test_multplication_radius(self): |
---|
25 | """ |
---|
26 | test multiplication model (check the effective radius & the output |
---|
27 | of the multiplication) |
---|
28 | """ |
---|
29 | self.model.setParam("radius", 60) |
---|
30 | modelDrun = 60 |
---|
31 | self.model2.setParam("volfraction", 0.2) |
---|
32 | self.model2.setParam("effect_radius", modelDrun ) |
---|
33 | |
---|
34 | #Compare new method with old method |
---|
35 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
36 | |
---|
37 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
38 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
39 | |
---|
40 | |
---|
41 | def testMultiplicationParam(self): |
---|
42 | """ Test Multiplication (check the setparameters and the run & runXY w/ array dispersion)""" |
---|
43 | ## test details dictionary |
---|
44 | |
---|
45 | ## test parameters list |
---|
46 | list3= self.model3.getParamList() |
---|
47 | |
---|
48 | for item in self.model.getParamList(): |
---|
49 | self.assert_(item in list3) |
---|
50 | for item in self.model2.getParamList(): |
---|
51 | #model3 parameters should not include effect_radius* |
---|
52 | if not 'effect_radius' in item: |
---|
53 | self.assert_(item in list3) |
---|
54 | |
---|
55 | ## test set value for parameters and get paramaters |
---|
56 | self.model3.setParam("scale", 15) |
---|
57 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
58 | self.model3.setParam("radius", 20) |
---|
59 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
60 | self.model3.setParam("radius.width", 15) |
---|
61 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
62 | |
---|
63 | ## Dispersity |
---|
64 | list3= self.model3.getDispParamList() |
---|
65 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width']) |
---|
66 | |
---|
67 | from sans.models.dispersion_models import ArrayDispersion |
---|
68 | disp_th = ArrayDispersion() |
---|
69 | |
---|
70 | values_th = numpy.zeros(100) |
---|
71 | weights = numpy.zeros(100) |
---|
72 | for i in range(100): |
---|
73 | values_th[i]=(math.pi/99.0*i) |
---|
74 | weights[i]=(1.0) |
---|
75 | |
---|
76 | disp_th.set_weights(values_th, weights) |
---|
77 | |
---|
78 | self.model3.set_dispersion('radius', disp_th) |
---|
79 | |
---|
80 | val_1d = self.model3.run(math.sqrt(0.0002)) |
---|
81 | val_2d = self.model3.runXY([0.01,0.01]) |
---|
82 | |
---|
83 | self.assertTrue(math.fabs(val_1d-val_2d)/val_1d < 0.02) |
---|
84 | model4= self.model3.clone() |
---|
85 | self.assertEqual(model4.getParam("radius"), 20) |
---|
86 | |
---|
87 | class TestsphereHardS(unittest.TestCase): |
---|
88 | """ |
---|
89 | Unit tests for SphereModel(Q) * HardsphereStructure(Q) |
---|
90 | """ |
---|
91 | def setUp(self): |
---|
92 | from sans.models.SphereModel import SphereModel |
---|
93 | from sans.models.HardsphereStructure import HardsphereStructure |
---|
94 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
95 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
96 | |
---|
97 | self.model = SphereModel() |
---|
98 | self.model2 = HardsphereStructure() |
---|
99 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
100 | self.modelD = DiamCylFunc() |
---|
101 | |
---|
102 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
103 | def test_multplication_radius(self): |
---|
104 | """ |
---|
105 | test multiplication model (check the effective radius & the output |
---|
106 | of the multiplication) |
---|
107 | """ |
---|
108 | self.model.setParam("radius", 60) |
---|
109 | modelDrun = 60 |
---|
110 | self.model2.setParam("volfraction", 0.2) |
---|
111 | self.model2.setParam("effect_radius", modelDrun ) |
---|
112 | |
---|
113 | #Compare new method with old method |
---|
114 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
115 | |
---|
116 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
117 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
118 | |
---|
119 | |
---|
120 | def testMultiplicationParam(self): |
---|
121 | """ Test Multiplication (check the parameters)""" |
---|
122 | ## test details dictionary |
---|
123 | |
---|
124 | ## test parameters list |
---|
125 | list3= self.model3.getParamList() |
---|
126 | |
---|
127 | for item in self.model.getParamList(): |
---|
128 | self.assert_(item in list3) |
---|
129 | for item in self.model2.getParamList(): |
---|
130 | #model3 parameters should not include effect_radius* |
---|
131 | if not 'effect_radius' in item: |
---|
132 | self.assert_(item in list3) |
---|
133 | |
---|
134 | ## test set value for parameters and get paramaters |
---|
135 | self.model3.setParam("scale", 15) |
---|
136 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
137 | self.model3.setParam("radius", 20) |
---|
138 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
139 | self.model3.setParam("radius.width", 15) |
---|
140 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
141 | |
---|
142 | ## Dispersity |
---|
143 | list3= self.model3.getDispParamList() |
---|
144 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width']) |
---|
145 | |
---|
146 | from sans.models.dispersion_models import ArrayDispersion |
---|
147 | disp_th = ArrayDispersion() |
---|
148 | |
---|
149 | values_th = numpy.zeros(100) |
---|
150 | weights = numpy.zeros(100) |
---|
151 | for i in range(100): |
---|
152 | values_th[i]=(math.pi/99.0*i) |
---|
153 | weights[i]=(1.0) |
---|
154 | |
---|
155 | disp_th.set_weights(values_th, weights) |
---|
156 | |
---|
157 | self.model3.set_dispersion('radius', disp_th) |
---|
158 | |
---|
159 | val_1d = self.model3.run(math.sqrt(0.0002)) |
---|
160 | val_2d = self.model3.runXY([0.01,0.01]) |
---|
161 | |
---|
162 | self.assertTrue(math.fabs(val_1d-val_2d)/val_1d < 0.02) |
---|
163 | model4= self.model3.clone() |
---|
164 | self.assertEqual(model4.getParam("radius"), 20) |
---|
165 | class TestsphereSHS(unittest.TestCase): |
---|
166 | """ |
---|
167 | Unit tests for SphereModel(Q) * StickyHSStructure(Q) |
---|
168 | """ |
---|
169 | def setUp(self): |
---|
170 | from sans.models.SphereModel import SphereModel |
---|
171 | from sans.models.StickyHSStructure import StickyHSStructure |
---|
172 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
173 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
174 | |
---|
175 | self.model = SphereModel() |
---|
176 | self.model2 = StickyHSStructure() |
---|
177 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
178 | self.modelD = DiamCylFunc() |
---|
179 | |
---|
180 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
181 | def test_multplication_radius(self): |
---|
182 | """ |
---|
183 | test multiplication model (check the effective radius & the output |
---|
184 | of the multiplication) |
---|
185 | """ |
---|
186 | self.model.setParam("radius", 60) |
---|
187 | modelDrun = 60 |
---|
188 | self.model2.setParam("volfraction", 0.2) |
---|
189 | self.model2.setParam("effect_radius", modelDrun ) |
---|
190 | |
---|
191 | #Compare new method with old method |
---|
192 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
193 | |
---|
194 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
195 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
196 | |
---|
197 | |
---|
198 | def testMultiplicationParam(self): |
---|
199 | """ Test Multiplication (check the parameters)""" |
---|
200 | ## test details dictionary |
---|
201 | |
---|
202 | ## test parameters list |
---|
203 | list3= self.model3.getParamList() |
---|
204 | |
---|
205 | for item in self.model.getParamList(): |
---|
206 | self.assert_(item in list3) |
---|
207 | for item in self.model2.getParamList(): |
---|
208 | #model3 parameters should not include effect_radius* |
---|
209 | if not 'effect_radius' in item: |
---|
210 | self.assert_(item in list3) |
---|
211 | |
---|
212 | ## test set value for parameters and get paramaters |
---|
213 | self.model3.setParam("scale", 15) |
---|
214 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
215 | self.model3.setParam("radius", 20) |
---|
216 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
217 | self.model3.setParam("radius.width", 15) |
---|
218 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
219 | |
---|
220 | ## Dispersity |
---|
221 | list3= self.model3.getDispParamList() |
---|
222 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width']) |
---|
223 | |
---|
224 | from sans.models.dispersion_models import ArrayDispersion |
---|
225 | disp_th = ArrayDispersion() |
---|
226 | |
---|
227 | values_th = numpy.zeros(100) |
---|
228 | weights = numpy.zeros(100) |
---|
229 | for i in range(100): |
---|
230 | values_th[i]=(math.pi/99.0*i) |
---|
231 | weights[i]=(1.0) |
---|
232 | |
---|
233 | disp_th.set_weights(values_th, weights) |
---|
234 | |
---|
235 | self.model3.set_dispersion('radius', disp_th) |
---|
236 | |
---|
237 | val_1d = self.model3.run(math.sqrt(0.0002)) |
---|
238 | val_2d = self.model3.runXY([0.01,0.01]) |
---|
239 | |
---|
240 | self.assertTrue(math.fabs(val_1d-val_2d)/val_1d < 0.02) |
---|
241 | model4= self.model3.clone() |
---|
242 | self.assertEqual(model4.getParam("radius"), 20) |
---|
243 | |
---|
244 | class TestsphereHayterM(unittest.TestCase): |
---|
245 | """ |
---|
246 | Unit tests for SphereModel(Q) * HayterMSAStructure(Q) |
---|
247 | """ |
---|
248 | def setUp(self): |
---|
249 | from sans.models.SphereModel import SphereModel |
---|
250 | from sans.models.HayterMSAStructure import HayterMSAStructure |
---|
251 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
252 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
253 | |
---|
254 | self.model = SphereModel() |
---|
255 | self.model2 = HayterMSAStructure() |
---|
256 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
257 | self.modelD = DiamCylFunc() |
---|
258 | |
---|
259 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
260 | def test_multplication_radius(self): |
---|
261 | """ |
---|
262 | test multiplication model (check the effective radius & the output |
---|
263 | of the multiplication) |
---|
264 | """ |
---|
265 | self.model.setParam("radius", 60) |
---|
266 | modelDrun = 60 |
---|
267 | self.model2.setParam("volfraction", 0.2) |
---|
268 | self.model2.setParam("effect_radius", modelDrun ) |
---|
269 | |
---|
270 | #Compare new method with old method |
---|
271 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
272 | |
---|
273 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
274 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
275 | |
---|
276 | |
---|
277 | def testMultiplicationParam(self): |
---|
278 | """ Test Multiplication (check the parameters)""" |
---|
279 | ## test details dictionary |
---|
280 | |
---|
281 | ## test parameters list |
---|
282 | list3= self.model3.getParamList() |
---|
283 | |
---|
284 | for item in self.model.getParamList(): |
---|
285 | self.assert_(item in list3) |
---|
286 | for item in self.model2.getParamList(): |
---|
287 | #model3 parameters should not include effect_radius* |
---|
288 | if not 'effect_radius' in item: |
---|
289 | self.assert_(item in list3) |
---|
290 | |
---|
291 | ## test set value for parameters and get paramaters |
---|
292 | self.model3.setParam("scale", 15) |
---|
293 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
294 | self.model3.setParam("radius", 20) |
---|
295 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
296 | self.model3.setParam("radius.width", 15) |
---|
297 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
298 | |
---|
299 | ## Dispersity |
---|
300 | list3= self.model3.getDispParamList() |
---|
301 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width']) |
---|
302 | |
---|
303 | from sans.models.dispersion_models import ArrayDispersion |
---|
304 | disp_th = ArrayDispersion() |
---|
305 | |
---|
306 | values_th = numpy.zeros(100) |
---|
307 | weights = numpy.zeros(100) |
---|
308 | for i in range(100): |
---|
309 | values_th[i]=(math.pi/99.0*i) |
---|
310 | weights[i]=(1.0) |
---|
311 | |
---|
312 | disp_th.set_weights(values_th, weights) |
---|
313 | |
---|
314 | self.model3.set_dispersion('radius', disp_th) |
---|
315 | |
---|
316 | val_1d = self.model3.run(math.sqrt(0.0002)) |
---|
317 | val_2d = self.model3.runXY([0.01,0.01]) |
---|
318 | |
---|
319 | self.assertTrue(math.fabs(val_1d-val_2d)/val_1d < 0.02) |
---|
320 | |
---|
321 | model4= self.model3.clone() |
---|
322 | self.assertEqual(model4.getParam("radius"), 20) |
---|
323 | |
---|
324 | ### P*S with cylinder model |
---|
325 | class TestcylinderSuareW(unittest.TestCase): |
---|
326 | """ |
---|
327 | Unit tests for CylinderModel(Q) * SquareWellStructure(Q) |
---|
328 | """ |
---|
329 | def setUp(self): |
---|
330 | from sans.models.CylinderModel import CylinderModel |
---|
331 | from sans.models.SquareWellStructure import SquareWellStructure |
---|
332 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
333 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
334 | |
---|
335 | self.model = CylinderModel() |
---|
336 | self.model2 = SquareWellStructure() |
---|
337 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
338 | self.modelD = DiamCylFunc() |
---|
339 | |
---|
340 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
341 | def test_multplication_radius(self): |
---|
342 | """ |
---|
343 | test multiplication model (check the effective radius & the output |
---|
344 | of the multiplication) |
---|
345 | """ |
---|
346 | self.model.setParam("radius", 60) |
---|
347 | self.modelD.setParam("radius", 60) |
---|
348 | modelDrun = self.modelD.run(0.1)/2 |
---|
349 | self.model2.setParam("volfraction", 0.2) |
---|
350 | self.model2.setParam("effect_radius", modelDrun) |
---|
351 | |
---|
352 | #Compare new method with old method |
---|
353 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
354 | |
---|
355 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
356 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
357 | |
---|
358 | |
---|
359 | def testMultiplicationParam(self): |
---|
360 | """ Test Multiplication (check the setparameters and the run & runXY w/ array dispersion)""" |
---|
361 | ## test details dictionary |
---|
362 | |
---|
363 | ## test parameters list |
---|
364 | list3= self.model3.getParamList() |
---|
365 | |
---|
366 | for item in self.model.getParamList(): |
---|
367 | self.assert_(item in list3) |
---|
368 | for item in self.model2.getParamList(): |
---|
369 | #model3 parameters should not include effect_radius* |
---|
370 | if not 'effect_radius' in item: |
---|
371 | self.assert_(item in list3) |
---|
372 | |
---|
373 | ## test set value for parameters and get paramaters |
---|
374 | self.model3.setParam("scale", 15) |
---|
375 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
376 | self.model3.setParam("radius", 20) |
---|
377 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
378 | self.model3.setParam("radius.width", 15) |
---|
379 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
380 | |
---|
381 | ## Dispersity |
---|
382 | list3= self.model3.getDispParamList() |
---|
383 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width', 'length.npts', \ |
---|
384 | 'length.nsigmas', 'length.width', 'cyl_theta.npts', 'cyl_theta.nsigmas', 'cyl_theta.width',\ |
---|
385 | 'cyl_phi.npts', 'cyl_phi.nsigmas', 'cyl_phi.width']) |
---|
386 | |
---|
387 | from sans.models.dispersion_models import ArrayDispersion |
---|
388 | disp_th = ArrayDispersion() |
---|
389 | |
---|
390 | values_th = numpy.zeros(100) |
---|
391 | weights = numpy.zeros(100) |
---|
392 | for i in range(100): |
---|
393 | values_th[i]=(math.pi/99.0*i) |
---|
394 | weights[i]=(1.0) |
---|
395 | |
---|
396 | disp_th.set_weights(values_th, weights) |
---|
397 | |
---|
398 | self.model3.set_dispersion('radius', disp_th) |
---|
399 | |
---|
400 | model4= self.model3.clone() |
---|
401 | self.assertEqual(model4.getParam("radius"), 20) |
---|
402 | |
---|
403 | class TestcylinderHardS(unittest.TestCase): |
---|
404 | """ |
---|
405 | Unit tests for CylinderModel(Q) * HardsphereStructure(Q) |
---|
406 | """ |
---|
407 | def setUp(self): |
---|
408 | from sans.models.CylinderModel import CylinderModel |
---|
409 | from sans.models.HardsphereStructure import HardsphereStructure |
---|
410 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
411 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
412 | |
---|
413 | self.model = CylinderModel() |
---|
414 | self.model2 = HardsphereStructure() |
---|
415 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
416 | self.modelD = DiamCylFunc() |
---|
417 | |
---|
418 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
419 | def test_multplication_radius(self): |
---|
420 | """ |
---|
421 | test multiplication model (check the effective radius & the output |
---|
422 | of the multiplication) |
---|
423 | """ |
---|
424 | self.model.setParam("radius", 60) |
---|
425 | self.modelD.setParam("radius", 60) |
---|
426 | modelDrun = self.modelD.run(0.1)/2 |
---|
427 | self.model2.setParam("volfraction", 0.2) |
---|
428 | self.model2.setParam("effect_radius", modelDrun ) |
---|
429 | |
---|
430 | #Compare new method with old method |
---|
431 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
432 | |
---|
433 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
434 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
435 | |
---|
436 | |
---|
437 | def testMultiplicationParam(self): |
---|
438 | """ Test Multiplication """ |
---|
439 | ## test details dictionary |
---|
440 | |
---|
441 | ## test parameters list |
---|
442 | list3= self.model3.getParamList() |
---|
443 | |
---|
444 | for item in self.model.getParamList(): |
---|
445 | self.assert_(item in list3) |
---|
446 | for item in self.model2.getParamList(): |
---|
447 | #model3 parameters should not include effect_radius* |
---|
448 | if not 'effect_radius' in item: |
---|
449 | self.assert_(item in list3) |
---|
450 | |
---|
451 | ## test set value for parameters and get paramaters |
---|
452 | self.model3.setParam("scale", 15) |
---|
453 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
454 | self.model3.setParam("radius", 20) |
---|
455 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
456 | self.model3.setParam("radius.width", 15) |
---|
457 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
458 | |
---|
459 | ## Dispersity |
---|
460 | list3= self.model3.getDispParamList() |
---|
461 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width', 'length.npts', \ |
---|
462 | 'length.nsigmas', 'length.width', 'cyl_theta.npts', 'cyl_theta.nsigmas', 'cyl_theta.width',\ |
---|
463 | 'cyl_phi.npts', 'cyl_phi.nsigmas', 'cyl_phi.width']) |
---|
464 | |
---|
465 | from sans.models.dispersion_models import ArrayDispersion |
---|
466 | disp_th = ArrayDispersion() |
---|
467 | |
---|
468 | values_th = numpy.zeros(100) |
---|
469 | weights = numpy.zeros(100) |
---|
470 | for i in range(100): |
---|
471 | values_th[i]=(math.pi/99.0*i) |
---|
472 | weights[i]=(1.0) |
---|
473 | |
---|
474 | disp_th.set_weights(values_th, weights) |
---|
475 | |
---|
476 | self.model3.set_dispersion('radius', disp_th) |
---|
477 | |
---|
478 | |
---|
479 | model4= self.model3.clone() |
---|
480 | self.assertEqual(model4.getParam("radius"), 20) |
---|
481 | class TestcylinderSHS(unittest.TestCase): |
---|
482 | """ |
---|
483 | Unit tests for SphereModel(Q) * StickyHSStructure(Q) |
---|
484 | """ |
---|
485 | def setUp(self): |
---|
486 | from sans.models.CylinderModel import CylinderModel |
---|
487 | from sans.models.StickyHSStructure import StickyHSStructure |
---|
488 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
489 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
490 | |
---|
491 | self.model = CylinderModel() |
---|
492 | self.model2 = StickyHSStructure() |
---|
493 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
494 | self.modelD = DiamCylFunc() |
---|
495 | |
---|
496 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
497 | def test_multplication_radius(self): |
---|
498 | """ |
---|
499 | test multiplication model (check the effective radius & the output |
---|
500 | of the multiplication) |
---|
501 | """ |
---|
502 | self.model.setParam("radius", 60) |
---|
503 | self.modelD.setParam("radius", 60) |
---|
504 | modelDrun = self.modelD.run(0.1)/2 |
---|
505 | self.model2.setParam("volfraction", 0.2) |
---|
506 | self.model2.setParam("effect_radius", modelDrun ) |
---|
507 | |
---|
508 | #Compare new method with old method |
---|
509 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
510 | |
---|
511 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
512 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
513 | |
---|
514 | |
---|
515 | def testMultiplicationParam(self): |
---|
516 | """ Test Multiplication (check the parameters)""" |
---|
517 | ## test details dictionary |
---|
518 | |
---|
519 | ## test parameters list |
---|
520 | list3= self.model3.getParamList() |
---|
521 | |
---|
522 | for item in self.model.getParamList(): |
---|
523 | self.assert_(item in list3) |
---|
524 | for item in self.model2.getParamList(): |
---|
525 | #model3 parameters should not include effect_radius* |
---|
526 | if not 'effect_radius' in item: |
---|
527 | self.assert_(item in list3) |
---|
528 | |
---|
529 | ## test set value for parameters and get paramaters |
---|
530 | self.model3.setParam("scale", 15) |
---|
531 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
532 | self.model3.setParam("radius", 20) |
---|
533 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
534 | self.model3.setParam("radius.width", 15) |
---|
535 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
536 | |
---|
537 | ## Dispersity |
---|
538 | list3= self.model3.getDispParamList() |
---|
539 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width', 'length.npts', \ |
---|
540 | 'length.nsigmas', 'length.width', 'cyl_theta.npts', 'cyl_theta.nsigmas', 'cyl_theta.width',\ |
---|
541 | 'cyl_phi.npts', 'cyl_phi.nsigmas', 'cyl_phi.width']) |
---|
542 | |
---|
543 | from sans.models.dispersion_models import ArrayDispersion |
---|
544 | disp_th = ArrayDispersion() |
---|
545 | |
---|
546 | values_th = numpy.zeros(100) |
---|
547 | weights = numpy.zeros(100) |
---|
548 | for i in range(100): |
---|
549 | values_th[i]=(math.pi/99.0*i) |
---|
550 | weights[i]=(1.0) |
---|
551 | |
---|
552 | disp_th.set_weights(values_th, weights) |
---|
553 | |
---|
554 | self.model3.set_dispersion('radius', disp_th) |
---|
555 | |
---|
556 | model4= self.model3.clone() |
---|
557 | self.assertEqual(model4.getParam("radius"), 20) |
---|
558 | |
---|
559 | class TestcylinderHayterM(unittest.TestCase): |
---|
560 | """ |
---|
561 | Unit tests for CylinderModel(Q) * HayterMSAStructure(Q) |
---|
562 | """ |
---|
563 | def setUp(self): |
---|
564 | from sans.models.CylinderModel import CylinderModel |
---|
565 | from sans.models.HayterMSAStructure import HayterMSAStructure |
---|
566 | from sans.models.DiamCylFunc import DiamCylFunc |
---|
567 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
568 | |
---|
569 | self.model = CylinderModel() |
---|
570 | self.model2 = HayterMSAStructure() |
---|
571 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
572 | self.modelD = DiamCylFunc() |
---|
573 | |
---|
574 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
575 | def test_multplication_radius(self): |
---|
576 | """ |
---|
577 | test multiplication model (check the effective radius & the output |
---|
578 | of the multiplication) |
---|
579 | """ |
---|
580 | self.model.setParam("radius", 60) |
---|
581 | self.modelD.setParam("radius", 60) |
---|
582 | modelDrun = self.modelD.run(0.1)/2 |
---|
583 | self.model2.setParam("volfraction", 0.2) |
---|
584 | self.model2.setParam("effect_radius", modelDrun ) |
---|
585 | |
---|
586 | #Compare new method with old method |
---|
587 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
588 | |
---|
589 | #Compare radius from two different calculations. Note: modelD.run(0.0) is DIAMETER |
---|
590 | self.assertEqual(self.model.calculate_ER(), modelDrun) |
---|
591 | |
---|
592 | |
---|
593 | def testMultiplicationParam(self): |
---|
594 | """ Test Multiplication (check the parameters)""" |
---|
595 | ## test details dictionary |
---|
596 | |
---|
597 | ## test parameters list |
---|
598 | list3= self.model3.getParamList() |
---|
599 | |
---|
600 | for item in self.model.getParamList(): |
---|
601 | self.assert_(item in list3) |
---|
602 | for item in self.model2.getParamList(): |
---|
603 | #model3 parameters should not include effect_radius* |
---|
604 | if not 'effect_radius' in item: |
---|
605 | self.assert_(item in list3) |
---|
606 | |
---|
607 | ## test set value for parameters and get paramaters |
---|
608 | self.model3.setParam("scale", 15) |
---|
609 | self.assertEqual(self.model3.getParam("scale"), 15) |
---|
610 | self.model3.setParam("radius", 20) |
---|
611 | self.assertEqual(self.model3.getParam("radius"), 20) |
---|
612 | self.model3.setParam("radius.width", 15) |
---|
613 | self.assertEqual(self.model3.getParam("radius.width"), 15) |
---|
614 | |
---|
615 | ## Dispersity |
---|
616 | list3= self.model3.getDispParamList() |
---|
617 | self.assertEqual(list3, ['radius.npts', 'radius.nsigmas', 'radius.width', 'length.npts', \ |
---|
618 | 'length.nsigmas', 'length.width', 'cyl_theta.npts', 'cyl_theta.nsigmas', 'cyl_theta.width',\ |
---|
619 | 'cyl_phi.npts', 'cyl_phi.nsigmas', 'cyl_phi.width']) |
---|
620 | |
---|
621 | from sans.models.dispersion_models import ArrayDispersion |
---|
622 | disp_th = ArrayDispersion() |
---|
623 | |
---|
624 | values_th = numpy.zeros(100) |
---|
625 | weights = numpy.zeros(100) |
---|
626 | for i in range(100): |
---|
627 | values_th[i]=(math.pi/99.0*i) |
---|
628 | weights[i]=(1.0) |
---|
629 | |
---|
630 | disp_th.set_weights(values_th, weights) |
---|
631 | |
---|
632 | self.model3.set_dispersion('radius', disp_th) |
---|
633 | |
---|
634 | model4= self.model3.clone() |
---|
635 | self.assertEqual(model4.getParam("radius"), 20) |
---|
636 | |
---|
637 | class TestGuinierHayterM(unittest.TestCase): |
---|
638 | """ |
---|
639 | Unit tests for GuinierModel(Q) * HayterMSAStructure(Q) |
---|
640 | """ |
---|
641 | def setUp(self): |
---|
642 | from sans.models.GuinierModel import GuinierModel |
---|
643 | from sans.models.HayterMSAStructure import HayterMSAStructure |
---|
644 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
645 | |
---|
646 | self.model = GuinierModel() |
---|
647 | self.model2 = HayterMSAStructure() |
---|
648 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
649 | |
---|
650 | #Radius of model1.calculate_ER should be equal to the output/2 of DiamFunctions |
---|
651 | def test_multplication_radius(self): |
---|
652 | """ |
---|
653 | test multiplication model (check the effective radius & the output |
---|
654 | of the multiplication) |
---|
655 | """ |
---|
656 | self.model.setParam("rg", 60) |
---|
657 | self.model.setParam("scale", 1) |
---|
658 | #Compare new method with old method |
---|
659 | self.assertEqual(self.model3.run(0.1), self.model.run(0.1)*self.model2.run(0.1)) |
---|
660 | |
---|
661 | #effective radius calculation is not implemented for this model. |
---|
662 | self.assertEqual(self.model3.calculate_ER(), NotImplemented) |
---|
663 | |
---|
664 | class TestLamellarHayterM(unittest.TestCase): |
---|
665 | """ |
---|
666 | Unit tests for LamellarModel(Q) * HayterMSAStructure(Q) |
---|
667 | """ |
---|
668 | def setUp(self): |
---|
669 | from sans.models.LamellarModel import LamellarModel |
---|
670 | from sans.models.HayterMSAStructure import HayterMSAStructure |
---|
671 | from sans.models.MultiplicationModel import MultiplicationModel |
---|
672 | |
---|
673 | self.model = LamellarModel() |
---|
674 | self.model2 = HayterMSAStructure() |
---|
675 | self.model3 = MultiplicationModel(self.model, self.model2) |
---|
676 | |
---|
677 | #Radius of model1.calculate_ER should Not be finite. |
---|
678 | def test_multplication_radius(self): |
---|
679 | """ |
---|
680 | test multiplication model (check the effective radius & the output |
---|
681 | of the multiplication) |
---|
682 | """ |
---|
683 | #Check run |
---|
684 | self.assertFalse(numpy.isfinite(self.model3.run(0.1))) |
---|
685 | #check effective radius . |
---|
686 | self.assertFalse(numpy.isfinite(self.model.calculate_ER())) |
---|
687 | |
---|
688 | if __name__ == '__main__': |
---|
689 | unittest.main() |
---|