[642b259] | 1 | ##################################################################### |
---|
| 2 | #This software was developed by the University of Tennessee as part of the |
---|
| 3 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | #project funded by the US National Science Foundation. |
---|
| 5 | #See the license text in license.txt |
---|
| 6 | #copyright 2008, University of Tennessee |
---|
| 7 | ###################################################################### |
---|
| 8 | |
---|
| 9 | ## TODO: Need test,and check Gaussian averaging |
---|
[04eb1a4] | 10 | import numpy |
---|
| 11 | import math |
---|
[87615a48] | 12 | |
---|
[642b259] | 13 | ## Singular point |
---|
| 14 | SIGMA_ZERO = 1.0e-010 |
---|
| 15 | ## Limit of how many sigmas to be covered for the Gaussian smearing |
---|
| 16 | # default: 2.5 to cover 98.7% of Gaussian |
---|
[d4bf55e9] | 17 | LIMIT = 3.0 |
---|
[642b259] | 18 | ## Defaults |
---|
[87615a48] | 19 | R_BIN = {'Xhigh':10, 'High':5,'Med':5,'Low':3} |
---|
| 20 | PHI_BIN ={'Xhigh':20,'High':12,'Med':6,'Low':4} |
---|
[642b259] | 21 | |
---|
| 22 | class Smearer2D: |
---|
| 23 | """ |
---|
| 24 | Gaussian Q smearing class for SANS 2d data |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | def __init__(self, data=None, model=None, index=None, |
---|
[87615a48] | 28 | limit=LIMIT, accuracy='Low', coords='polar', engine='python'): |
---|
[642b259] | 29 | """ |
---|
| 30 | Assumption: equally spaced bins in dq_r, dq_phi space. |
---|
| 31 | |
---|
| 32 | :param data: 2d data used to set the smearing parameters |
---|
| 33 | :param model: model function |
---|
| 34 | :param index: 1d array with len(data) to define the range of the calculation: elements are given as True or False |
---|
| 35 | :param nr: number of bins in dq_r-axis |
---|
| 36 | :param nphi: number of bins in dq_phi-axis |
---|
[d4bf55e9] | 37 | :param coord: coordinates [string], 'polar' or 'cartesian' |
---|
[87615a48] | 38 | :param engine: engine name [string]; 'c' or 'numpy' |
---|
[642b259] | 39 | """ |
---|
| 40 | ## data |
---|
| 41 | self.data = data |
---|
| 42 | ## model |
---|
| 43 | self.model = model |
---|
| 44 | ## Accuracy: Higher stands for more sampling points in both directions of r and phi. |
---|
| 45 | self.accuracy = accuracy |
---|
| 46 | ## number of bins in r axis for over-sampling |
---|
| 47 | self.nr = R_BIN |
---|
| 48 | ## number of bins in phi axis for over-sampling |
---|
| 49 | self.nphi = PHI_BIN |
---|
| 50 | ## maximum nsigmas |
---|
| 51 | self.limit = limit |
---|
| 52 | self.index = index |
---|
[d4bf55e9] | 53 | self.coords = coords |
---|
[642b259] | 54 | self.smearer = True |
---|
[87615a48] | 55 | self._engine = engine |
---|
[642b259] | 56 | |
---|
| 57 | |
---|
| 58 | def get_data(self): |
---|
| 59 | """ |
---|
| 60 | get qx_data, qy_data, dqx_data,dqy_data,and calculate phi_data=arctan(qx_data/qy_data) |
---|
| 61 | """ |
---|
| 62 | if self.data == None or self.data.__class__.__name__ == 'Data1D': |
---|
| 63 | return None |
---|
| 64 | if self.data.dqx_data == None or self.data.dqy_data == None: |
---|
| 65 | return None |
---|
| 66 | self.qx_data = self.data.qx_data[self.index] |
---|
| 67 | self.qy_data = self.data.qy_data[self.index] |
---|
[d4bf55e9] | 68 | self.q_data = self.data.q_data[self.index] |
---|
| 69 | # Here dqx and dqy mean dq_parr and dq_perp |
---|
[642b259] | 70 | self.dqx_data = self.data.dqx_data[self.index] |
---|
| 71 | self.dqy_data = self.data.dqy_data[self.index] |
---|
| 72 | self.phi_data = numpy.arctan(self.qx_data/self.qy_data) |
---|
| 73 | ## Remove singular points if exists |
---|
| 74 | self.dqx_data[self.dqx_data<SIGMA_ZERO]=SIGMA_ZERO |
---|
| 75 | self.dqy_data[self.dqy_data<SIGMA_ZERO]=SIGMA_ZERO |
---|
| 76 | return True |
---|
| 77 | |
---|
| 78 | def set_accuracy(self, accuracy='Low'): |
---|
| 79 | """ |
---|
| 80 | Set accuracy. |
---|
| 81 | |
---|
| 82 | :param accuracy: string |
---|
| 83 | """ |
---|
| 84 | self.accuracy = accuracy |
---|
| 85 | |
---|
| 86 | def set_smearer(self, smearer=True): |
---|
| 87 | """ |
---|
| 88 | Set whether or not smearer will be used |
---|
| 89 | |
---|
| 90 | :param smearer: smear object |
---|
| 91 | |
---|
| 92 | """ |
---|
| 93 | self.smearer = smearer |
---|
| 94 | |
---|
| 95 | def set_data(self, data=None): |
---|
| 96 | """ |
---|
| 97 | Set data. |
---|
| 98 | |
---|
| 99 | :param data: DataLoader.Data_info type |
---|
| 100 | """ |
---|
| 101 | self.data = data |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | def set_model(self, model=None): |
---|
| 105 | """ |
---|
| 106 | Set model. |
---|
| 107 | |
---|
| 108 | :param model: sans.models instance |
---|
| 109 | """ |
---|
| 110 | self.model = model |
---|
| 111 | |
---|
| 112 | def set_index(self, index=None): |
---|
| 113 | """ |
---|
| 114 | Set index. |
---|
| 115 | |
---|
| 116 | :param index: 1d arrays |
---|
| 117 | """ |
---|
| 118 | self.index = index |
---|
| 119 | |
---|
| 120 | def get_value(self): |
---|
| 121 | """ |
---|
[d4bf55e9] | 122 | Over sampling of r_nbins times phi_nbins, calculate Gaussian weights, |
---|
| 123 | then find smeared intensity |
---|
[87615a48] | 124 | """ |
---|
[642b259] | 125 | valid = self.get_data() |
---|
| 126 | if valid == None: |
---|
| 127 | return valid |
---|
[5a0d01b3] | 128 | # all zero values of dq |
---|
[836a762] | 129 | if numpy.all(numpy.fabs(self.dqx_data <= 1.1e-10)) and \ |
---|
| 130 | numpy.all(numpy.fabs(self.dqy_data <= 1.1e-10)): |
---|
[5a0d01b3] | 131 | self.smearer = False |
---|
[d4bf55e9] | 132 | |
---|
[642b259] | 133 | if self.smearer == False: |
---|
[d4bf55e9] | 134 | return self.model.evalDistribution([self.qx_data, self.qy_data]) |
---|
[04eb1a4] | 135 | |
---|
[642b259] | 136 | nr = self.nr[self.accuracy] |
---|
| 137 | nphi = self.nphi[self.accuracy] |
---|
| 138 | # Number of bins in the dqr direction (polar coordinate of dqx and dqy) |
---|
[d4bf55e9] | 139 | bin_size = self.limit / nr |
---|
| 140 | # Total number of bins = # of bins |
---|
| 141 | # in dq_r-direction times # of bins in dq_phi-direction |
---|
[642b259] | 142 | n_bins = nr * nphi |
---|
[87615a48] | 143 | # data length in the range of self.index |
---|
| 144 | len_data = len(self.qx_data) |
---|
| 145 | len_datay = len(self.qy_data) |
---|
[d4bf55e9] | 146 | |
---|
[87615a48] | 147 | if self._engine == 'c' and self.coords == 'polar': |
---|
| 148 | try: |
---|
| 149 | import sans_extension.smearer2d_helper as smearer2dc |
---|
| 150 | smearc = smearer2dc.new_Smearer_helper(self.qx_data, self.qy_data, |
---|
| 151 | self.dqx_data, self.dqy_data, |
---|
| 152 | self.limit, nr, nphi, int(len_data)) |
---|
| 153 | weight_res = numpy.zeros(nr * nphi ) |
---|
| 154 | qx_res = numpy.zeros(nr * nphi * int(len_data)) |
---|
| 155 | qy_res = numpy.zeros(nr * nphi * int(len_data)) |
---|
| 156 | smearer2dc.smearer2d_helper(smearc,weight_res, qx_res, qy_res) |
---|
| 157 | except: |
---|
| 158 | raise |
---|
[d4bf55e9] | 159 | else: |
---|
[87615a48] | 160 | # Mean values of dqr at each bins ,starting from the half of bin size |
---|
| 161 | r = bin_size / 2.0 + numpy.arange(nr) * bin_size |
---|
| 162 | # mean values of qphi at each bines |
---|
| 163 | phi = numpy.arange(nphi) |
---|
| 164 | dphi = phi * 2.0 * math.pi / nphi |
---|
| 165 | dphi = dphi.repeat(nr) |
---|
| 166 | |
---|
| 167 | ## Transform to polar coordinate, |
---|
| 168 | # and set dphi at each data points ; 1d array |
---|
| 169 | dphi = dphi.repeat(len_data) |
---|
| 170 | q_phi = self.qy_data / self.qx_data |
---|
| 171 | |
---|
| 172 | # Starting angle is different between polar and cartesian coordinates. |
---|
| 173 | #if self.coords != 'polar': |
---|
| 174 | # dphi += numpy.arctan( q_phi * self.dqx_data/ \ |
---|
| 175 | # self.dqy_data).repeat(n_bins).reshape(len_data,\ |
---|
| 176 | # n_bins).transpose().flatten() |
---|
| 177 | |
---|
| 178 | # The angle (phi) of the original q point |
---|
| 179 | q_phi = numpy.arctan(q_phi).repeat(n_bins).reshape(len_data,\ |
---|
| 180 | n_bins).transpose().flatten() |
---|
| 181 | ## Find Gaussian weight for each dq bins: The weight depends only |
---|
| 182 | # on r-direction (The integration may not need) |
---|
| 183 | weight_res = numpy.exp(-0.5 * ((r - bin_size / 2.0) * \ |
---|
| 184 | (r - bin_size / 2.0)))- \ |
---|
| 185 | numpy.exp(-0.5 * ((r + bin_size / 2.0 ) *\ |
---|
| 186 | (r + bin_size / 2.0))) |
---|
| 187 | # No needs of normalization here. |
---|
| 188 | #weight_res /= numpy.sum(weight_res) |
---|
| 189 | weight_res = weight_res.repeat(nphi).reshape(nr, nphi) |
---|
| 190 | |
---|
| 191 | weight_res = weight_res.transpose().flatten() |
---|
| 192 | |
---|
| 193 | ## Set dr for all dq bins for averaging |
---|
| 194 | dr = r.repeat(nphi).reshape(nr,nphi).transpose().flatten() |
---|
| 195 | ## Set dqr for all data points |
---|
| 196 | dqx = numpy.outer(dr,self.dqx_data).flatten() |
---|
| 197 | dqy = numpy.outer(dr,self.dqy_data).flatten() |
---|
| 198 | |
---|
| 199 | qx = self.qx_data.repeat(n_bins).reshape(len_data,\ |
---|
| 200 | n_bins).transpose().flatten() |
---|
| 201 | qy = self.qy_data.repeat(n_bins).reshape(len_data,\ |
---|
| 202 | n_bins).transpose().flatten() |
---|
| 203 | |
---|
| 204 | # The polar needs rotation by -q_phi |
---|
| 205 | if self.coords == 'polar': |
---|
| 206 | q_r = numpy.sqrt(qx * qx + qy * qy) |
---|
| 207 | qx_res = ((dqx*numpy.cos(dphi) + q_r) * numpy.cos(-q_phi) +\ |
---|
| 208 | dqy*numpy.sin(dphi) * numpy.sin(-q_phi)) |
---|
| 209 | qy_res = (-(dqx*numpy.cos(dphi) + q_r) * numpy.sin(-q_phi) +\ |
---|
| 210 | dqy*numpy.sin(dphi) * numpy.cos(-q_phi)) |
---|
| 211 | else: |
---|
| 212 | qx_res = qx + dqx*numpy.cos(dphi) |
---|
| 213 | qy_res = qy + dqy*numpy.sin(dphi) |
---|
| 214 | |
---|
[642b259] | 215 | ## Evaluate all points |
---|
[d4bf55e9] | 216 | val = self.model.evalDistribution([qx_res, qy_res]) |
---|
[642b259] | 217 | ## Reshape into 2d array to use numpy weighted averaging |
---|
| 218 | value_res= val.reshape(n_bins,len(self.qx_data)) |
---|
| 219 | ## Averaging with Gaussian weighting: normalization included. |
---|
[d4bf55e9] | 220 | value =numpy.average(value_res,axis=0, weights=weight_res) |
---|
[642b259] | 221 | ## Return the smeared values in the range of self.index |
---|
| 222 | return value |
---|
| 223 | |
---|
| 224 | if __name__ == '__main__': |
---|
| 225 | ## Test w/ 2D linear function |
---|
| 226 | x = 0.001*numpy.arange(1,11) |
---|
[d4bf55e9] | 227 | dx = numpy.ones(len(x))*0.0003 |
---|
[642b259] | 228 | y = 0.001*numpy.arange(1,11) |
---|
| 229 | dy = numpy.ones(len(x))*0.001 |
---|
| 230 | z = numpy.ones(10) |
---|
| 231 | dz = numpy.sqrt(z) |
---|
| 232 | |
---|
| 233 | from DataLoader import Data2D |
---|
| 234 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
| 235 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
| 236 | out = Data2D() |
---|
| 237 | out.data = z |
---|
| 238 | out.qx_data = x |
---|
| 239 | out.qy_data = y |
---|
| 240 | out.dqx_data = dx |
---|
| 241 | out.dqy_data = dy |
---|
[d4bf55e9] | 242 | out.q_data = numpy.sqrt(dx * dx + dy * dy) |
---|
[642b259] | 243 | index = numpy.ones(len(x), dtype = bool) |
---|
| 244 | out.mask = index |
---|
| 245 | from sans.models.LineModel import LineModel |
---|
| 246 | model = LineModel() |
---|
| 247 | model.setParam("A", 0) |
---|
| 248 | |
---|
| 249 | smear = Smearer2D(out,model,index) |
---|
| 250 | #smear.set_accuracy('Xhigh') |
---|
| 251 | value = smear.get_value() |
---|
| 252 | ## All data are ones, so the smeared should also be ones. |
---|
| 253 | print "Data length =",len(value) |
---|
[d4bf55e9] | 254 | print " 2D linear function, I = 0 + 1*qy" |
---|
| 255 | text = " Gaussian weighted averaging on a 2D linear function will " |
---|
| 256 | text += "provides the results same as without the averaging." |
---|
| 257 | print text |
---|
[642b259] | 258 | print "qx_data", "qy_data", "I_nonsmear", "I_smeared" |
---|
| 259 | for ind in range(len(value)): |
---|
| 260 | print x[ind],y[ind],model.evalDistribution([x,y])[ind], value[ind] |
---|
[d4bf55e9] | 261 | |
---|
| 262 | """ |
---|
| 263 | for i in range(len(qx_res)/(128*128)): |
---|
| 264 | k = i * 128*128 +64 |
---|
| 265 | |
---|
| 266 | print qx_res[k]-qqx[k], qy_res[k]-qqy[k] |
---|
| 267 | print qqx[64],qqy[64] |
---|
| 268 | """ |
---|
[642b259] | 269 | """ |
---|
| 270 | if __name__ == '__main__': |
---|
| 271 | ## Another Test w/ constant function |
---|
| 272 | x = 0.001*numpy.arange(1,11) |
---|
| 273 | dx = numpy.ones(len(x))*0.001 |
---|
| 274 | y = 0.001*numpy.arange(1,11) |
---|
| 275 | dy = numpy.ones(len(x))*0.001 |
---|
| 276 | z = numpy.ones(10) |
---|
| 277 | dz = numpy.sqrt(z) |
---|
| 278 | |
---|
| 279 | from DataLoader import Data2D |
---|
| 280 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
| 281 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
| 282 | out = Data2D() |
---|
| 283 | out.data = z |
---|
| 284 | out.qx_data = x |
---|
| 285 | out.qy_data = y |
---|
| 286 | out.dqx_data = dx |
---|
| 287 | out.dqy_data = dy |
---|
| 288 | index = numpy.ones(len(x), dtype = bool) |
---|
| 289 | out.mask = index |
---|
| 290 | from sans.models.Constant import Constant |
---|
| 291 | model = Constant() |
---|
| 292 | |
---|
| 293 | value = Smearer2D(out,model,index).get_value() |
---|
| 294 | ## All data are ones, so the smeared values should also be ones. |
---|
| 295 | print "Data length =",len(value), ", Data=",value |
---|
| 296 | """ |
---|